
Uniting Global and Local Context Behavior with Context
Petri Nets

Nicolás Cardozo1,2, Sebastián González1, Kim Mens1, Theo D’Hondt2
1ICTEAM, Université catholique de Louvain

Place Sainte-Barbe 2 - 1348 Louvain-la-Neuve, Belgium
2Software Languages lab, Vrije Universiteit Brussel

Pleinlaan 2 - 1050 Brussels, Belgium
{nicolas.cardozo,s.gonzalez,kim.mens}@uclouvain.be, tjdhondt@vub.ac.be

ABSTRACT
Context-oriented programming enables adaptation of sys-
tems to their execution environment. Behavioral adapta-
tions are defined in the system and then associated to a
context. Such adaptations are made available at runtime
when their context is deemed more appropriate by the exe-
cution environment. Context activation is reified using two
techniques. Global to all running threads in the system, or
local to a particular thread of execution. Providing one tech-
nique or the other may hinder the adaptable capabilities of
the system. This paper extends the context Petri nets model
to unify global and local context behavior. Global and local
context behavior are represented as multicolored tokens in
context Petri nets, by assigning a color to each thread in the
system. By means of context Petri nets, context-oriented
systems can unambiguously adapt their behavior globally,
or to a particular thread of execution.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Design, Languages

Keywords
Context-oriented programming, Consistency management,
Behavioral adaptations, Petri nets

1. INTRODUCTION
Over the past few years, research in the field of Context-
Oriented Programming (COP) [6] has focused on the imple-
mentation of languages and language extensions to enable
dynamic adaptation to a system’s execution environment.
Nowadays, there are several COP languages which provide

COP’12, June 11, 2012, Beijing, China

language abstractions for the definition of context, behav-
ioral adaptations associated to a context, and the dynamic
activation and deactivation of contexts [1]. However, the
differences between such languages are marginal.

Our research vision builds on top of existing COP languages
by focusing on the software engineering aspects of the de-
velopment of context-aware systems. In particular we focus
on providing tools and tool support for the development of
such systems. This vision is motivated by the observation
that behavior inconsistencies may exist in a system due to
context changes in its execution environment. Behavior in-
consistencies may emerge, for example, from the interaction
between contexts or the unexpected deactivation of a con-
text while the behavior it provides is being used.

To deal with behavior inconsistencies, we envision a COP
system architecture that comprises all aspects in the life cy-
cle of a COP system, ranging from the context discovery to
the system behavior [8] and back. In particular, we use of a
context manager module that arbitrates the interaction be-
tween contexts whenever they are to be activated. Contexts
are effectively activated or deactivated only if such changes
do not yield a behavior inconsistency. To manage contexts
and their activations we use a Petri net-based model called
context Petri nets.

context Petri nets (CoPN) is a programming model that
ensures consistency in COP systems, which provides a live
representation of contexts and their activations —that is, if a
context can be activated, and how many times has it been ac-
tivated. In this paper we take advantage of this property to
reconcile one of the main differences between existing COP
languages. Namely, context activation. The family of COP
languages can be cleanly divided into two sets. On the one
hand, there are languages for which a context activation has
a global effect on the system. On the other hand, there are
languages for which a context activation has a local effect to
the current thread of execution in the system.

The use of one technique or the other depends on the require-
ments of the application domain. Some situations prefer a
global context behavior over a local one. While others may
prefer a local context behavior over a global one.

To provide both global and local context activations, the
CoPN model is extended to accept multicolored tokens. Each



thread is identified with a particular color. Local activations
on the thread only take place for that color. All global acti-
vations are identified with a single token color. Behavioral
adaptations associated to a context are made available to all
running threads in the system, or a particular thread, based
on the token color with which a context is marked.

The reminder of this paper is organized as follows. Section 2
presents a motivating example for a unified model of context
activation techniques. Our propose model for global and lo-
cal activations is presented in Section 3 by first providing
an introduction to the basic model and its programming in-
terface, and then the describing the support for global and
local context behavior. Related work is discussed in Sec-
tion 4. Finally the paper is rounded up by the conclusion
and future work in Section 5.

2. GLOBAL AND LOCAL CONTEXT
BEHAVIOR

A context is defined as the reification of a situation computa-
tionally accessible in the execution environment of a system.
Contexts are associated with particular behavioral adapta-
tions that modify the application behavior at runtime.

The Context-Oriented Programming (COP) community pro-
poses two visions of context. In the first vision, behavioral
adaptations associated to a context are understood to in-
fluence the complete system. That is, all running threads
in the system are conscious of all changes in the execution
environment [10, 8]. These changes are said to be global to
the system.

In the second vision, behavioral adaptations associated to
a context are understood isolated. That is, changes in the
execution environment of a system are only available within
the dynamic scope in which the corresponding context was
activated [6]. The behavioral adaptations associated to the
context are not available for any other executing thread.
These changes are said to be local to a thread.

We argue that the use of only one of these visions for context
activation is too restrictive and hinders the adaptability of
the system. On the one hand, only providing global context
behavior restricts the application domains in which COP
could be used. For example, if only a global context behav-
ior is provided, it is not possible to have specific variations of
a single application that changes dynamically with different
users. On the other hand, if the system only provides sup-
port for local context behavior, different application threads
may present different behavior according to the active con-
texts for the thread. Hence, not all threads would necessar-
ily present the most appropriate behavior according to the
execution environment.

2.1 Triangle Drawing Application
To illustrate the need to support global and local context be-
havior we use a small example application that consists on
drawing moving triangles on a mobile device’s screen. The
triangle drawing application, comprises a canvas in which a
set of triangles can be drawn. Triangle’s behavior is given
by a thread that autonomously moves each triangle forward
in the canvas. The direction in which a single triangle moves

can be modified to one of four directions Up, Down, Left, or
Right, each of them represented by a context and specializ-
ing an abstract Direction context. The direction in which
a triangle moves dictates the color of the triangle. A Color

context is used in combination with the Direction context
to give triangles an specific color. The application also al-
lows to log the movement of a triangle in the canvas by the
Log context. The direction, color, and logging of movement
is a behavior that should be independent for each triangle.

Additionally, the application presents two behavioral adap-
tations that all existing triangles in the application should
exhibit. A Dashed context draws all triangles with a dashed
line, instead of a full line. A Pause context pauses the move-
ment of all triangles.

In the triangle drawing application, though a proof-of-concept,
is already possible to see the usefulness of providing global
context behavior (e.g., Pause triangles movement) and local
context behavior (e.g., Log a triangle’s movement). If only
one of the two techniques is used, the behavior of the other
one would have to be manually supported.

3. UNITING GLOBAL AND LOCAL
CONTEXT BEHAVIOR

This section presents our programming model to support
global and local context behavior in COP systems, called
context Petri nets (CoPN). CoPN is a runtime model for the
consistent management of COP systems [5]. In particular,
we use Subjective-C [8] as our base COP language.

3.1 Context Petri Nets
CoPN (read co-pen) is a Petri net-based runtime model for
the management of COP systems. In particular CoPN uses
three extensions of the Petri net formalism, namely, reactive
Petri nets [7], static priorities [2], and inhibitor arcs [3]. The
purpose of this paper is to present the extension of CoPN
to support global and local context behavior in a COP lan-
guage. A full formalization and motivation behind the CoPN
model is provided as a technical report [4].

CoPN provides a concrete and live representation of a COP
system by associating the concepts of COP to those of Petri
nets. Figure 1 shows a prototypical example of a context
(Pause) represented as a CoPN.

Pr.Pause

req(Pause) act(Pause)

Pause

req(¬Pause)

Pr.¬Pause

deac(Pause)

¬Pause

cl(¬Pause)

Figure 1: CoPN definition of the Pause context

Contexts are mapped to places in a Petri net. Actually,
a context is an ensemble of 4 places which represent
the state of the context as shown in Figure 1 for the
Pause context. Context places (solid-line circles in Fig-
ure 1) represent a context being active. Temporary



places (dashed circles in Figure 1) respectively rep-
resent the states: prepare for activation (Pr.Pause),
prepare for deactivation (Pr.¬Pause), and already de-
activated (¬Pause).

Context state is mapped to Petri net tokens. Whenever
a token resides in a place, this means that such state
is currently valid. For example, in Figure 1 the con-
text Pause is active because the place labeled1 Pause

is marked by a token. Respectively, the context is
preparing for activation if place Pr.Pause contains a
token, preparing for deactivation if place Pr.¬Pause
contains a token, and already deactivated if place ¬Pause
contains a token.

Context activation/deactivation is mapped to Petri net
transitions. Intuitively transitions with an outgoing
arc to a place, are activations for the context state rep-
resented by the place. Transitions with an incoming
arc from a place, are deactivations of the context state
represented by the place. Figure 1 exhibits three dif-
ferent types of transitions. External transitions (white
squares in Figure 1), which are triggered as a con-
sequence of a context change in the system’s execu-
tion environment. Internal transitions (black squares
in Figure 1), fire automatically whenever they become
enabled. Internal cleaning transitions (gray squares in
Figure 1), fire whenever they are enabled, if none of
the black transitions is enabled.

Transition colors define the priority in which transi-
tions must fire. Higher priority transitions always fire
before lower priority ones. Black transitions have the
highest priority, and white transitions have the lowest
priority.

Tokens flow in a Petri net by means of transition firing.
In order to fire, a transition must be enabled. In CoPN
transitions are enabled if: their input places (i.e., incoming
arcs to the transition) from normal arcs (→) are marked,
their input places from inhibitor arcs (() are not marked,
and no other transition with a higher priority is enabled.
Once fired, tokens flow from the input places to the output
places.

Figure 2 shows a CoPN with initial marking m0(D)=1 and
m0(C)=2 for the Direction (D) and Color (C) contexts in the
triangles application. Suppose transition req.(¬D) is fired,
yielding marking m1 which is given by m1(D)=1, m1(C)=2,
m1(Pr.¬D)=1. In this configuration the only enabled transi-
tion is deac(D). Note that, although the external transitions
fulfill the requirements about their inputs, they are not en-
abled as they have a lower priority than deac(D). Firing the
transition removes a token from the respective input places
Pr.¬D and D, and adds a token to the ¬D place. The firing
enables the deac(C) transition to the right of the C place. Fir-
ing this transition two times removes both tokens from place
C. After this, the only enabled transition is the gray transi-
tions cl(¬D). After the transition fires, the CoPN yields an
empty marking.

1Labels in CoPN are mere decorations for places and tran-
sitions and have no semantic meaning in the model.

Pr.C

req(C)

act(C)

deac(C)

deac(D)

C

req(¬C)

Pr.¬C
deac(C)

¬C

cl(¬C)

Pr.D

req(D)

act(D)

D

req(¬D)

Pr.¬D
deac(D)

¬D

cl(¬D)

Figure 2: CoPN transition enabling and firing

3.2 Context Petri nets in Subjective-C
This section presents the language interface to interact with
the CoPN model in Subjective-C,2 a COP language exten-
sion to Objective-C. Additional to the basic COP language
constructs, Subjective-C has an integrated context manager
module. The context manager is responsible for arbitrat-
ing the interaction of context activation and deactivation.
To ensure that context changes do not lead to inconsisten-
cies, interaction between contexts is managed by means of
dependency relations.

The CoPN model plays the role of the context manager in
our Subjective-C implementation, arbitrating the activation
of context behavior and ensuring its consistency. The use of
CoPNs is transparent to developers since they interact with
it indirectly through Subjective-C’s language abstractions.

CoPN supports the definition of contexts, their dynamic ac-
tivation and deactivation, behavioral adaptations definition,
and contexts composition. Contexts are defined by means
of the @context construct. The Pause context given in Fig-
ure 1 is created as @context(Pause). Interaction between
contexts can be defined by means of dependency relations.
Currently, Subjective-C supports 4 kinds of dependency re-
lations exclusion, weak inclusion, strong inclusion and re-
quirement [8], however, other dependency relations could be
defined. A dependency relation is defined by giving the type
of the dependency and the contexts involved in the interac-
tion. For example, Figure 2 shows a requirement relation
between contexts C and D which is defined as [addRequire-

mentOf: D to: C]. Once the CoPN is created, a context
can be activated or deactivated by means of the @activate

and @deactivate constructs, respectively. Subjective-C uses
timestamps to keep track of the latest activation of a con-
text. Whenever a method is defined for two active contexts,

2A full implementation of context Petri nets is cur-
rently integrated with Subjective-C and is available
for download at http://released.info.ucl.ac.be/Tools/
Context-PetriNets.

http://released.info.ucl.ac.be/Tools/Context-PetriNets
http://released.info.ucl.ac.be/Tools/Context-PetriNets


the visible behavior will be that of the context activated the
latest.

In CoPNs contexts are not immediately activated. Instead,
context activation is requested by firing an external transi-
tion, e.g., req(Pause). Such firing may enable some of the
internal transitions which automatically fire. If only con-
text places are marked after all enabled internal transitions
have fire, the context is effectively activated. If one of the
temporary places is marked, changes in the CoPN marking
triggered by the activation request (req(Pause)) are reverted
to the marking before the external transition firing. In such
a case, the CoPN model presents the user with feedback
about the cause of the activation failure. Context deactiva-
tion follows a similar process to that of context activation.

The usefulness of using CoPN as the runtime model for the
consistency management of the system lies in that all infor-
mation regarding whether or not a context (de)activation
yields to an inconsistency, is directly available in the model.

3.3 Supporting Global and Local
Context Behavior

Up to this point we have only discussed how COP systems
are structured and managed by CoPNs. All context activa-
tions and deactivations discussed so far are global contexts
activations, as this is the technique used in Subjective-C.

To introduce local contexts (i.e., contexts that are specific
to a thread of execution) we take advantage of the thread
model provided by Objective-C, and Colored Petri nets [11],
a Petri net extension to model concurrent processes. Colored
Petri nets extend the basic Petri net model by adding colors
to tokens. Thus transitions may be enabled for a particular
color. Transition firing is modified to take into account the
color of input and output tokens.

Providing a local activation of contexts implies that a con-
text and its associated behavior adaptations will only be
available in the threads for which the context is active. All
other threads in the system are oblivious to the context.

At the language level, the @activate and @deactivate con-
structs are modified to take into account the thread in which
the action is to take place. Figure 3 shows the activation of
the Log context in an specific thread, threadblue. The ac-
tivation is expressed as @activate(Log in threadblue). In
CoPN such an activation is represented by a colored token.
Each thread in the system is identified with a unique color.
Activation of the Log context in the threadblue thread is
then represented by the introduction of a blue token. This
is shown in Figure 3 by the introduction of a blue token in
the Pr.Log temporary place. Note that the Log context is al-
ready active in two other threads, threadgreen and threadred
as the Log place is marked by green and red tokens. Color
of tokens is not modified by transitions. The firing of the
act(Log) transition moves the blue token to the Log place.

In CoPN global context activations are represented by black
tokens. Unlike local context activations, behavioral adapta-
tions of contexts marked with a black token are available for
all running threads in the system.

Pr.Log

req(Log) act(Log)

Log

req(¬Log)

Pr.¬Log

deac(Log)

¬Log

cl(¬Log)

Figure 3: Three thread local activations for the Log

context

// thread creation for the t1 triangle
NSThread *threadgreen = ...
// thread creation for the t2 triangle
NSThread *threadblue = ...
// Triangles start moving
// movement of first triangle is logged
@activate(Log in threadgreen);
//all triangles drawn with dashed lines
@activate(Dashed);

Snippet 1: Effect of global and local context
activations

Snippet 1 shows a piece of code for the triangle drawing
application that exemplifies how global and local contexts
are used. In the snippet we assume to have two triangles t1
and t2, each of them associated to an independent thread,
threadgreen and threadblue respectively.

Triangles start to move independently based on their direc-
tion. Suppose we decide to log the movements for triangle
t1. This is represented by the call to @activate(Log in

threadgreen). After the context has been activated (sup-
posing the activation does not yield any inconsistencies)
all movements of t1 will be logged. However, the move-
ments of triangle t2 remain unlogged. Finally, the @acti-

vate(Dashed) message makes available the method to draw
triangles in a dashed line. As no thread is specified in this
activation, all triangles are drawn with a dashed line. Note
that a thread could have been given to the Dashed context.
CoPN allows to activate any context globally or locally.

Global and local context behavior interaction exists only
when contexts interact with each other via a dependency
relation. Intuitively if the conditions that reified a context
are valid globally, they are also valid for a particular thread.
If such context conditions are not longer valid globally, they
are not valid for any thread. This interaction between global
and local context activations can be better explained using
the color theory analogy of color subtractive composition. In
color theory, the black color can be seen as the subtractive
combination of all colors i.e., it is the result of mixing all
colors. In CoPN global context activations (black tokens)
can be seen as activations in every thread in the system
(containing all colors), hence contexts activated in particu-
lar threads, can depend or be influenced by global context
activations. When a context activation depends on, or in-
fluences other contexts through a dependency relation, the
interaction takes into account the thread of the activation.

If the activation of a context depends on a second context,
the latter context can be active both globally, or in the same



thread the former context is to be activated in. If the deac-
tivation of a context generates de deactivation of a second
context and the former context is being deactivated globally,
the latter context is also deactivated even if its active in an
specific thread.

Figure 4 revisits the requirement relation between the C and
D contexts of Figure 2, showing the interaction of global
and local context activations. Take as the initial marking
of the CoPN m0 to be m0(D)=1. Suppose that context C

is to be activated in an specific thread threadred by the
construct @activate(C in threadred). After the firing of
the req(C) transition, the marking of the CoPN is m1 where
m1(D)=1 m1(C)=1red.3 Note that the act(C) transition was
fired because the input place D is marked with a black token
and, by subtractive composition, red.

Similarly, if context D is deactivated by the construct @de-

activate(D) the firing of req(¬D) will lead to a marking m2

where m2(D)=1, m2(Pr.¬D)=1, and m2(C)=1red. With this
marking the bottom most deac(D) transition can fire. The
firing of the transition leads to marking m3 where m3(¬D)=1,
and m3(C)=1red. Note that transition deac(C) can fire even
though the deactivation is being performed globally. The
firing of such transition and the enabled internal cleaning
transition deac(¬D) leads to an empty marking.

Pr.C

req(C)

act(C)

deac(C)

deac(D)

C

req(¬C)

Pr.¬C
deac(C)

¬C

cl(¬C)

Pr.D

req(D)

act(D)

D

req(¬D)

Pr.¬D
deac(D)

¬D

cl(¬D)

Figure 4: Global and local context activation inter-
action

4. RELATED WORK
Global context behavior is supported in Ambience [9] and
Subjective-C [8]. Both Ambience and Subjective-C main-
tain a representation of all active contexts in the system
called the current context. At runtime, all threads in the
system gather the information about active contexts from
the current context. Whenever a context is activated or
deactivated, the current context is modified by respectively

3The notation 1red is used to express that there is 1 red
token in the place, if no color is specified we assume the
token to be black.

adding or withdrawing contexts from it. Hence, such ac-
tions influence all running threads. ContextErlang [14] is
a COP language that supports distribution an concurrency
natively. In ContextErlang, active contexts are registered in
a variations stack per distributed component in the system.
Thus, context activations and deactivations are applied to
all threads running in such a component. Lambic [15] is
COP language with explicit distribution. In Lambic be-
havioral adaptations are defined as predicate methods, a
method with an associated predicate describing its context
conditions. Behavioral adaptations become available in the
system, if their predicate is valid. Predicates are evaluated
every time a method is called. This means that as long as
a predicate is valid, its corresponding behavioral adaptation
would be seen by the complete system.

Local context behavior is supported by ContextL [6] and
other layer based COP implementations [1]. These lan-
guages restrict context availability to the dynamic scope
of the with construct for context activation. This means
that whichever thread a context is activated in, is the only
thread for which the context’s associated behavioral adap-
tations are available. Other threads are oblivious to any
context modifications. EventCJ [12] is an event-based COP
language. In EventCJ contexts are not defined based on
the dynamic scope of the context activation construct, but
rather contexts can be activated for a particular object in-
stance. Although EventCJ’s context activation differs from
other COP languages, context activations can be regarded
as local per object instance.

Thus far, support for global and local context behavior has
only been provided by ContextJS [13]. ContextJS is a lay-
ered based context-oriented extension of JavaScript. In Con-
textJS layers can be activated in the dynamic scope of the
activation construct withLayer, or in the global scope of the
system by explicitly activating the layer with the enable-

Layer construct. Globally activated layers remain active un-
less explicitly deactivated using the disableLayer construct.
By default global behavior takes precedence over local be-
havior. However, ContextJS provides an open model which
allows to define the activation scope of a layer. In particular
the precedence of global and local behavior can be modified.

5. CONCLUSIONS AND FUTURE WORK
This paper presents an extension to the context Petri nets
model (CoPN) by adding support for multicolored tokens.
The purpose of this extension is to provide a unified support
for global and local context behavior and their interaction
in context-oriented programming (COP) systems. To do so,
we extended the implementation of Subjective-C that rei-
fies CoPNs, by allowing the activation and deactivation lan-
guage constructs to specify in which thread a context is to be
(de)activated. The CoPN model maps each of the different
running threads in the system with a particular token color.
When a context is activated in a particular thread, the con-
text place is marked with a token of the respective color.
Behavioral adaptations associated to the context are only
made available in such thread, and oblivious to all other
threads. Global context behavior is treated as an special
case of the local context behavior. When a context is acti-
vated without specifying any thread, its activation is marked
with an special token color (e.g., black). Whenever a context



is marked with a black token, its behavioral adaptations are
made available to all running threads in the system. Inter-
action between global and local activations is automatically
managed by the CoPN model.

Providing both global and local techniques of context activa-
tion by means of CoPN allows COP systems to present more
flexible kinds of adaptations according to the requirements
of the application domain.

Unifying the global and local context behavior is already
a step forward into providing full adaptable systems with
COP, however, we see interesting directions in which this
work could be extended. An interesting direction for future
work would be not to allow local context activations in a per-
thread basis, but instead to reify local context activations
in a per-object instance basis as in EventCJ. Note that to
allow per-object instance local context activation instead of
per-thread local context activation the CoPN model does
not need to be modified.

Acknowledgements
This work has been supported by the ICT Impulse Pro-
gramme of the Brussels Institute for Research and Innova-
tion.We thank the anonymous reviewers for their comments
on an earlier version of this paper.

6. REFERENCES
[1] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke,

and M. Perscheid. A comparison of context-oriented
programming languages. In International Workshop
on Context-Oriented Programming, pages 1–6, New
York, NY, USA, 2009. ACM Press.

[2] F. Bause. On the analysis of petri nets with static
priorities. In Acta Informatica, volume 33, pages 669 –
685, 1996.

[3] E. Best and M. Koutny. Petri net semantics of priority
systems. Theoretical Computer Science, 96:175–215,
April 1992.

[4] N. Cardozo, S. González, K. Mens, and T. D’Hondt.
Context petri nets: Definition and manipulation.
Technical report, Université catholique de Louvain
and Vrije Universiteit Brussel, April 2012.
http://soft.vub.ac.be/Publications/2012/

vub-soft-tr-12-07.pdf.

[5] N. Cardozo, J. Vallejos, S. González, K. Mens, and
T. D’Hondt. Context petri nets: Enabling consistent
composition of context-dependent behavior. In
International Workshop on Petri Nets and Software
Engineering, PNSE’12, June 2012. (to appear).

[6] P. Costanza and R. Hirschfeld. Language constructs
for context-oriented programming: an overview of
ContextL. In Proceedings of the Dynamic Languages
Symposium, pages 1–10. ACM Press, Oct. 2005.
Co-located with OOPSLA’05.

[7] R. Eshuis and J. Dehnert. Reactive petri nets for
workflow modeling. In Application and Theory of Petri
Nets 2003, pages 296–315. Springer, 2003.

[8] S. González, N. Cardozo, K. Mens, A. Cádiz, J.-C.
Libbrecht, and J. Goffaux. Subjective-C: Bringing
context to mobile platform programming. In
Proceedings of the International Conference on
Software Language Engineering, volume 6563 of
Lecture Notes in Computer Science, pages 246–265.
Springer-Verlag, 2011.

[9] S. González, K. Mens, and A. Cádiz.
Context-Oriented Programming with the Ambient
Object System. Journal of Universal Computer
Science, 14(20):3307–3332, 2008.

[10] S. GonzÃ ↪alez, K. Mens, and P. Heymans. Highly
dynamic behaviour adaptability through prototypes
with subjective multimethods. In Proceedings of the
Dynamic Languages Symposium, pages 77–88, New
York, NY, USA, Oct. 2007. ACM Press. Co-located
with OOPSLA’07.

[11] K. Jensen and L. M. Kristensen. Coloured Petri Nets:
Modeling and validation of Concurrent Systems.
Springer-Verlag, 2009.

[12] T. Kamina, T. Aotani, and H. Masuhara. Eventcj: A
context-oriented programming language with
declarative event-based context transition. In
Proceedings of the International Conference on
Aspect-Oriented Software Development, AOSD’11,
pages 253–264. ACM Press, Mar. 2011.

[13] J. Lincke, M. Appeltauer, B. Steinert, and
R. Hirschfeld. An open implementation for
context-oriented layer composition in contextjs. Sci.
Comput. Program., 76(12):1194–1209, Dec. 2011.

[14] G. Salvaneschi, C. Ghezzi, and M. Pradella.
Contexterlang: introducing context-oriented
programming in the actor model. In Proceedings of the
11th annual international conference on
Aspect-oriented Software Development, AOSD ’12,
pages 191–202, New York, NY, USA, 2012. ACM.

[15] J. Vallejos, S. González, P. Costanza, W. De Meuter,
T. D’Hondt, and K. Mens. Predicated generic
functions: Enabling context-dependent method
dispatch. In B. Baudry and E. Wohlstadter, editors,
Software Composition, volume 6144 of Lecture Notes
in Computer Science, pages 66–81. Springer-Verlag,
2010.

http://soft.vub.ac.be/Publications/2012/vub-soft-tr-12-07.pdf
http://soft.vub.ac.be/Publications/2012/vub-soft-tr-12-07.pdf

	Introduction
	Global and Local Context Behavior
	Triangle Drawing Application
	Uniting Global and Local Context Behavior
	Context Petri Nets 
	Context Petri nets in Subjective-C
	Supporting Global and Local Context Behavior

	Related Work
	Conclusions and Future Work



	References

