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The Case of  Scheme
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Scheme was originally about Actors

Sussman and Steele December 22 1875 48 leeentatlon of the in ter r e t e r

Acknowledgements

This work developed out of an initial attempt to understand the .

This paper would not have happened if Sussman had not been forced to
think about lambda calculus by having to teach 6,031, nor would it have
happened had not Steele been forced to understand PLASNA by morbid curiosity.

actorness of actors. Steele thought he understood it, but couldn't explain
it; Sussman suggested the experimental approach of actually building an
"ACTORS interpreter". This interpreter attempted to intermix the use of
actors and LISP lambda expressions in a clean manner. When it was completed,
we discovered that the "actors" and the lambda expressions were identical in
implementation. Once we had discovered this, all the rest fell into place,
and it was only natural to begin thinking about actors in terms of lambda
calculus. The original interpreter was call-by-name for various reasons
having to do with 6.031; we subsequently experimentally discovered how call-
by-name screws iteration, and rewrote it to use call-by-value. Note well that,
we did not bring forth a clean implementation in one brilliant flash of
understanding; we used an experimental and highly empirical approach to
bootstrap our knowledge.

precipitating this intellectual adventure. Carl Hewitt spent many hours
explaining the innards and outards of PLASI'IA to Steele over the course of
several months; Narilyn McClennan was also helpf'ul in this respect. Brian
Smith and Richard Zippel helped a lot. We wish to thank Seymour Papert, Ben
Kuipers, Narvin Ninsky, and Vaughn Pratt for their excellent suggestions.
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A Timeline for Scheme
43pp.

35pp.
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A Timeline for Scheme
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Semantics for Scheme

AIM-349

AIM-848 (RRRS)

AIM-452

R3RS

R4RS

R5RS

R6RS

R7RS

informal lambda-calculus substitution semantics

⤑

⤑

⤑

⤑

⤑

⤑

⤑

⤑

informal

...  a formal definition of  the semantics of  Scheme  
  will be included in a separate report ...	

     

denotational semantics + rewrite rules

denotational semantics + rewrite rules + macros 
(added support for immutables)

denotational semantics + syntactic forms

operational semantics

denotational semantics + syntactic forms 
(added support for dynamic-wind)
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Page 33 from R3RS
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Example: Argument Evaluation

I

value when considered as an identifier.

. may be lexically bound by lambda-expressions. There is a global environment
contai.ning values for (some} free variables. Nany of the variables in this
global environment initially have as their values primitive operations such
as, for example, cAR, coMs, and pLUs. SCHENE dif'fers from most LISP systems in
t hat t h e atom cat iS not itself an operation (in the sense of b e i n g a n
invocable object, e.g. a valid first argument to AvvLY), but only has one as a

Non-atomic forms are divided by the evaluator into two classes:
combinations and "magic (special) forms". T he BNF given above i s ambiguous;
any magic form c an also be p a r se d a s a combination. The e valuator a l w a y s
t reats an ambiguous case 'as a magic form. Nagic forms are recognized by the
presence of a "magic (reserved) word" in the car position of the form. All
non-atomic forms which are not magic forms are considered to be combinations.
The system has a small initial set of magic words; there is also a mechanism
for creating new ones (Note FUMCALL is a Pain).

are all evaluated. The first value must be a procedure; it is applied to the
other values to get the value of the combination. There are four important
p oints he re :

(I) T he procedure p o s i t i o n is always evaluated just l ike an y o t he r
posit ion . (This is why the primitive operators are . the v a l u e s o f globa l
identifiers.)

( <) The procedure is never " re -evaluated"; if the first subfoi m fails to
e valuate t o an applicable procedure, it is an error . Thu s , u n l i k e most
LISP systems, SCHENE always evaluates the first subform of a combination
exactly once .

(3) The arguments are all completely evaluated before the procedure is
applied; that is, SCHENE, like most LISP systems, is an applicative-order
language. Nany SCHENE programs exploit this fact.

(4) The argument forms (and procedure f'orm) may in principle be evaluated
i n any o r d e r . This is unlike the usual LISP left-to-right order . (All
SCHEI'lE interpreters implemented so far have in fact performed left-to-right
evaluation, but we do not wish programs to depend on this fact. Indeed,
the~e are some reasons why a clever interpreter might want to evaluate them
right-to-left, e.g. to get things on a stack in the correct order.}

A combination is considered to be a list of subforms. These subforms

AIM-452

AIM-848

The Revised Revised Report on Scheme

(operator operandf . . . ) essential special form
A list whose first element is not the keyword of a special form indicates a

procedure eall. The operator and operand expressions are evaluated and the

resulting procedure is passed the resulting arguments. In contrast to other
dialects of Lisp the order of evaluation is not specified, and the operator
expression and the operand expressions are always evaluated with the same

evaluation rules.

(+ 3 4)
( (11.' 0!false + +) 3 4 )

(quote datum) essential special form
datum essential special form

Evaluates to datum. This notation is used to include literal constants in
Scheme code.

(quote a)
(quote 0(a b c ) )
(quote (+ 1 2 ) )

a.
4(a b c)
(+ 1 2)

(quote datum) may be abbreviated as 'datum. The two notations are equiv-
alent in all respects.

'a
'4(a b c)
'(+ 1 2)
'(quote a)

C(a b c)
(+ 1 2)
(quote a)
(quote a)

Numeric constants, string constants, character constants, vect;or constants,
and the constants 0! t rue , 0 ! f a l s e , and 0 ! nu l l n e e d no t be qu o t ed .

> IIgb(. II
II abC
'146932
146932
'0!true
t !t rue

II gb( II

II gb(. II

145932
146932
0!true
0!true

(lambda (earl .. .) ezpr) essential special form
Each ear must be an identifier. The lambda expression evaluates to a pro-

cedure with formal argument list (uar1 ... ) and procedure body ezpr Th e .
environment in effect when the lambda expression was evaluated is rernem-
bered as part of the procedure. When the procedure is later called with some

ℇ ⟦(E0 E*)⟧ =  
    λρκ . ℇ*(permute (⟨E0⟩ § E*)) 
                  ρ 
                  (λε* . ((λε* . applicate (ε* ↓ 1) (ε* † 1) κ) 
                             (unpermute ε*))) 

R3RS →R7RS \ R6RS

The order of evaluation within a call is unspecified. We mimic 
that here by applying arbitrary permutations permute and 
unpermute, which must be inverses, to the arguments in a call 
before and after they are evaluated. This {still requires | is not 
quite right since it suggests, incorrectly, } that the order of 
evaluation is constant throughout a program (for any given 
number of arguments), but it is a closer approximation to the 
intended semantics than a left-to-right evaluation would be.	
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Some SICP statistics

• the let* form appears exactly twice - in exercise 4.7; 

• the letrec form appears exactly twice - in exercise 4.20/21; 

• the pattern "named let" does not occur at all; 

• the define form is used significantly more frequently than the let form - 
excluding chapter 1 (where the ratio is 129 to 7), the ratio varies between 
3 and 7 to 1; 

• most define forms are used on a global level - however, depending on the 
chapter, up to 1 out of  3 define forms are used locally; 

• the do special form is not used; neither is the case form; 

• it would really take a lot more space to report on of  how little (or not at all) 
standard library functions are used; 

• streams are extensively used, but are absent from any of  the Scheme 
standards. 
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A Rationale for Slip

• fully SICP compliant; 

• first-class treatment of  the REPL; 

• left-to-right evaluation everywhere1; 

• only one let-form (identical to Scheme's let*); 

• first-class define-form, both global and local, usable everywhere2; 

• (almost) no forward referencing; 

• set! and define return a value; 

• immutables are cloned, not flagged; 

• no do- or case-form; no syntax forms 

• reduced R5RS primitives 

• streams;

1not strictly necessary to have a begin-form 
2if  clauses are thunks
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Previously ...

An Executable Denotational Semantics for Scheme	


Anton van Straaten ©    anton@appsolutions.com    AppSolutions    	



Abstract.	


An executable implementation of the denotational semantics for the Scheme 
language, as defined in R5RS.	


The core of this implementation consists of a faithful translation of the R5RS 
denotational semantics into the Scheme language.	


A denotational semantics (DS) definition of a language can be used for a variety 
of purposes, including analysis, verification, compilation, and interpretation. 
This implementation provides a Scheme interpreter which has been built around 
the core DS definitions. Other applications of this DS implementation are also 
possible.

At the time of development, I could not find any other publicly available implementations of the R5RS DS. This 
kind of work has certainly been done before - Will Clinger has mentioned on comp.lang.scheme that Jonathan 
Rees did such a translation as part of the development of R3RS, and that:	



"Since then, several people have back-translated the denotational semantics into Scheme, usually to test some 
proposed change to the language or to aid in a mechanical proof of some property of Scheme or an 
implementation of Scheme. For example, the semantics of multiple values in R5RS was tested that way."	


However, none of these translations seems to be publicly available, although my checking of this was limited 
primarily to searching the WWW and Usenet. At a seminar, I did ask Dr. Clinger about the code he had 
mentioned, but he told me that he no longer had it, and that he would have made it available otherwise.

"Denotational semantics is just a very peculiar language with poor syntax." 	


-- Matthias Blume

http://www.schemers.org/Documents/Standards/R5RS/
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Notation

⟨...⟩ sequence formation                          
s ↓ k kth member of the sequence s (1-based)                           
#s length of sequence s                         
s § t concatenation of sequences s and t                          
s † k drop the first k members of sequence s                          
t → a, b McCarthy conditional “if t then a else b”                    
ρ[x / i] substitution “ρ with x for i”                      
x in D injection of x into domain D                       
x | D projection of x to domain D                        
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The Environment/Store model

(define null-address 0) 
!
(define (initial-store address) 
  (if (= address null-address) 0))

initial-store = λα.α = 0 → 0

  (define unspecified-value unspecified-value) 
!
  (define (initial-environment variable) 
    unspecified-value)

initial-environment = λI.∅
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The Store model

  (define (new store) 
    (+ (locate null-address store) 1))

  (define (bind-address address value store) 
    (lambda (address-prime) 
      (if (= address-prime address) 
        value 
        (store address-prime))))

  (define (locate address store) 
    (store address)) new = λσ.(locate 0 σ) + 1

locate = λασ.σ α

bind-address = σ[ε/α] = λαεσ.λα'.α' = α ! ε , σ α'

  (define (extend address store) 
    (bind-address null-address address store))

extend = λσα.σ[α/0]
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The Environment model

  (define (bind-variable variable address environment) 
    (lambda (variable-prime) 
      (if (equal? variable-prime variable) 
        address 
        (environment variable-prime))))

  (define (lookup variable environment) 
    (environment variable))

bind-variable = ρ[α/I] = λIαρ.λI'.I = I' ! α , ρ I'

lookup = λIρ.ρ I
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The REP loop
  (define (expression-evaluator expression continuation 
                                           environment store recovery) 
    (if (pair? expression) 
        (begin 
        (define operator (car expression)) 
        (define operands (cdr expression)) 
        (if (equal? operator 'begin)  
          (parse-begin operands continuation) 
           ... ) 
      (if (symbol? expression) 
        (variable-evaluator expression continuation 
                                       environment store recovery) 
        (constant-evaluator expression continuation 
                                       environment store recovery))))

  (define (continuation-loop value environment store) 
    (display value) 
    (newline) 
    (display ">>>") 
    (define expression (read)) 
    (expression-evaluator expression continuation-loop 
                                         environment store environment))
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The REP loop - curry'ed

  (define (continuation-loop value) 
    (lambda (environment) 
      (lambda (store) 
        (display value) 
        (newline) 
        (display ">>>") 
        (define expression (read)) 
        ((((expression-evaluator expression continuation-loop)  
                                    environment) store) environment))))

  (define (expression-evaluator expression continuation) 
    (if (pair? expression) 
         (begin 
        (define operator (car expression)) 
        (define operands (cdr expression)) 
        (if (equal? operator 'begin)  
          (parse-begin operands continuation) 
             ... ) 
      (if (symbol? expression) 
        (variable-evaluator expression continuation) 
        (constant-evaluator expression continuation))))



Theo D’Hondt

Programming Language Engineering

  

Master of  Computer Science

Section 4: Formal Semantics!19

Error recovery

  (define (wrong message) 
    (lambda (environment) 
      (lambda (store) 
        (lambda (recovery) 
          (define value (string-append "error: " message)) 
          (((continuation-loop value) recovery) store)))))
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Def/Get/Set in an Environment/Store

(define (def variable value continuation) 
  (lambda (environment) 
    (lambda (store) 
      (define address (new store)) 
      (define updated-environment 
                           (bind-variable variable address environment)) 
      (define extended-store (extend address store)) 
      (define updated-store (bind-address address value extended-store)) 
      (((send value continuation) updated-environment) updated-store))))

def = λIεκ.λρ.λσ.(λα.(λσ'.(λρ'.((send ε κ)ρ')σ')

                                          ρ[α/I])

                                   (λσ".σ"[ε/α])(extend α σ))

                             (new σ)
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Def/get/set in an Environment (cont'd)

(define (set variable value continuation) 
  (lambda (environment) 
    (lambda (store) 
      (define address (lookup variable environment)) 
      (if (equal? address unspecified-value) 
        (((wrong "unknown variable") environment) store) 
        (begin 
          (define updated-store (bind-address address value store)) 
          (((send value continuation) environment) updated-store))))))

set = λIεκ.λρ.λσ.(λα.α = ∅ →

                                        ((wrong “unknown variable”)ρ)σ , 

                                        ((send ε κ)ρ)σ[ε/α])

                             (lookup I ρ)



Theo D’Hondt

Programming Language Engineering

  

Master of  Computer Science

Section 4: Formal Semantics!22

Def/get/set in an Environment (cont'd)

(define (get variable continuation) 
  (lambda (environment) 
    (lambda (store) 
      (define address (lookup variable environment)) 
      (if (equal? address unspecified-value) 
        (((wrong "unknown variable") environment) store) 
        (begin 
          (define value (locate address store)) 
          (((send value continuation) environment) store))))))

get = λIκ.λρ.λσ.(λα.α = ∅ →

                                       ((wrong “unknown variable”)ρ)σ , 

                                       ((send (locate α σ) κ)ρ)σ)

                            (lookup I ρ)
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The Evaluation Dispatcher
(define (expression-evaluator expression continuation) 
  (if (pair? expression) 
    (begin 
      (define operator (car expression)) 
      (define operands (cdr expression)) 
      (if (equal? operator 'begin)  
        (parse-begin operands continuation) 
        (if (equal? operator 'define)   
          (parse-define operands continuation) 
          (if (equal? operator 'if)   
            (parse-if operands continuation)  
            (if (equal? operator 'lambda)   
              (parse-lambda operands continuation) 
              (if (equal? operator 'quote)   
                (parse-quote operands continuation) 
                (if (equal? operator 'set!)   
                  (parse-set! operands continuation) 
                  (application-evaluator operator operands  
                                                  continuation))))))))  
    (if (symbol? expression) 
      (variable-evaluator expression continuation) 
      (constant-evaluator expression continuation))))
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Slip Abstract Syntax
 K ∈ Con constants   
 I  ∈ Ide  variables    
 ε  ∈ E  expressions       
!
 ε → K | I | (ε0 ε*) 
          | (begin ε+) 
          | (define I ε) 
          | (define (I0 I*) ε+) 
          | (define (I0 I+ . I) ε+) 
          | (define (I0 . I) ε+) 
          | (if ε0 ε1) | (if ε0 ε1 ε2) 
          | (lambda (I*) ε+) 
          | (lambda (I+ . I) ε+) 
          | (lambda I ε+) 
          | (quote ε) 
          | (set! I ε)

       | (set! (I0 I*) ε+) 
       | (set! (I0 I+ . I) ε+) 
       | (set! (I0 . I) ε+)

?
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Slip Domain Equations

α ∈ L locations 
ν ∈ N natural numbers 
T = { false, true } booleans 
Q symbols 
H characters 
R numbers 
Ep = L × L pairs 
Ev = L* vectors 
Es = H* strings 
M = { false, true, null, unspecified } miscellaneous 
φ ∈ F = L × (E* × K → U → S → U) procedure values 
ε ∈ E = Q + H + R + Ep + Ev + Es + M + F expressed values 
σ ∈ S ⊂ L × E stores 
ρ ∈ U ⊂ Ide × L environments     
κ ∈ K = E → U → S → U continuations
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Semantic Functions

K  : Con → E 
ℇ  : E → K → U → S → U 

ℇ* : E* → K → E* → U → S → U 

ℇ+ : E* → K → U → S → U
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 A Simple Semantic/Evaluation Function

  (define (set!-evaluator variable expression continuation) 
    (define (continuation-value value) 
      (set variable value continuation)) 
    (expression-evaluator expression continuation-value))

 ℇ⟦(set! I E)⟧ = λκ.ℇ⟦E⟧ (λε.set I ε κ)
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Sequences and Lists

  (define (list-evaluator expressions continuation list) 
    (define (continuation-value value) 
      (define extended-list (cons value list)) 
      (define rest-of-expressions (cdr expressions)) 
        (list-evaluator rest-of-expressions continuation extended-list)) 
    (if (null? expressions) 
      (send (reverse list) continuation) 
      (begin 
        (define expression (car expressions)) 
        (expression-evaluator expression continuation-value))))

ℇ+⟦E+⟧ = λκ.ℇ⟦E+ " 1⟧ (λε.#E+ = 1 ! (send ε κ) , ℇ+⟦E+ † 1⟧ κ)

  (define (sequence-evaluator expressions continuation) 
    (define (continuation-value value) 
      (define rest-of-expressions (cdr expressions)) 
      (if (null? rest-of-expressions) 
        (send value continuation) 
        (sequence-evaluator rest-of-expressions continuation))) 
    (define expression (car expressions)) 
    (expression-evaluator expression continuation-value))

ℇ*⟦E*⟧ = λκℓ.#E* = 0 ! send ℓ κ , 


                                      ℇ⟦E* " 1⟧ (λε.(ℇ*⟦E* † 1⟧ κ (ℓ § ⟨ε⟩))
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Immutables

define (constant-evaluator datum continuation) 
    (define constant-expression (constant datum)) 
    (send constant-expression continuation))

ℇ⟦K⟧ = λκ.send (K⟦K⟧) κ

  (define (constant datum) 
    (if (pair? datum) 
      (cons (constant (car datum)) (constant (cdr datum))) 
      (if (string? datum) 
        (string-append datum "") 
        (if (vector? datum) 
          (list->vector (constant (vector->list datum))) 
          datum))))
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If  with Thunks

(define (if-then-else-evaluator predicate consequent alternate continuation) 
  (define (continuation-predicate boolean) 
    (lambda (environment-predicate) 
      (define (continuation-clause value) 
        (lambda (ignore-environment) 
          ((send value continuation) environment-predicate))) 
      (define expression (if boolean consequent alternate)) 
      ((expression-evaluator expression continuation-clause) 
                                                   environment-predicate))) 
  (expression-evaluator predicate continuation-predicate))

ℇ⟦(if E0 E1 E2)⟧ = λκ.ℇ⟦E0⟧ (λε.λρ.((ε = false ! ℇ⟦E2⟧ , ℇ⟦E1⟧) 

                                                               (λε.λρ∅.(send ε κ)ρ))ρ)
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Lambda expressions

(define (lambda-fixed-arity-function-evaluator parameters expressions  
                                                             continuation) 
  (lambda (environment) 
    (define (procedure arguments continuation-call) 
      (lambda (environment-call) 
        (define (continuation-body ignore-value) 
          (body expressions continuation-call environment-call)) 
        (if (= (length parameters) (length arguments)) 
          ((bind parameters arguments continuation-body) environment) 
          (wrong "non-matching argument list")))) 
    ((send procedure continuation) environment)))

ℇ⟦(lambda (I*) E+)⟧ = λI*E+.λκ.λρ.

                          (send (λε*κcall.λρcall.#I* = #ε* ! 

                                 (bind I* ε* (λε∅.body E+ κcall ρcall))ρ ,

                                 wrong “non-matching argument list”) κ)ρ
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First-class define

  (define (define-variable-evaluator variable expression continuation) 
    (define (continuation-define ignore-value) 
      (define (continuation-value value) 
        (set variable value continuation)) 
      (expression-evaluator expression continuation-value)) 
    (def variable unspecified-value continuation-define))

ℇ⟦(define I E)⟧ = λκ.def I ∅ (λε∅.ℇ⟦E⟧ (λε.set I ε κ))


  (define (define-fixed-arity-function-evaluator variable parameters  
                                                expressions continuation) 
    (define (continuation-define ignore-value) 
      (define (continuation-closure procedure) 
        (set variable procedure continuation)) 
      (lambda-fixed-arity-function-evaluator parameters expressions  
                                                   continuation-closure)) 
    (def variable unspecified-value continuation-define))

ℇ⟦(define (I0 I*) E+)⟧ = λκ.def I0 ∅ (λε∅.ℇ⟦(lambda (I*) E+)⟧  
                                                                       (λφ.set I0 φ κ))
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Function Application

  (define (applicate procedure arguments continuation) 
    (procedure arguments continuation))

applicate = λφε*κ.φ ε* κ

  (define (bind parameters arguments continuation) 
    (define (continuation-bind ignore-value) 
      (bind (cdr parameters) (cdr arguments) continuation)) 
    (if (null? parameters) 
      (send arguments continuation) 
      (def (car parameters) (car arguments) continuation-bind)))

bind = λI*ε*κ.I* = ⟨⟩ ! send ε* κ , 

                                   def I*"1 ε*"1 (λε∅.bind I*†1 ε*†1 κ)


!
  (define (body expressions continuation environment) 
    (define (continuation-closure value) 
      (lambda (ignore-environment) 
        ((send value continuation) environment))) 
    (sequence-evaluator expressions continuation-closure))

body = λE+κ.λρ.ℇ+⟦E+⟧ (λε.λρ∅.(send ε κ)ρ)
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Evaluation Startup

  (define (initialize primitives) 
    (if (null? primitives) 
      (continuation-loop "Denotational Semantics Slip") 
      (begin 
        (define (continuation-define ignore-value) 
          (initialize (cdr primitives))) 
        (define variable (caar primitives)) 
        (define value (cdar primitives))   
        (def variable value continuation-define)))) 
!
  (((initialize primitives) initial-environment) initial-store))

  (define primitives (list (cons 'circularity-level 0) 
                           (cons 'false #f) 
                           (cons 'true #t) 
                           (cons '- (wrap -)) 
                           (cons '* (wrap *)) 
                                  ...

  (define (wrap primitive) 
    (lambda (arguments continuation) 
      (define value (apply primitive arguments)) 
      (send value continuation)))
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Higher-Order Primitive Functions
(define (ds-apply arguments continuation) ... 
!
(define (ds-call-with-current-continuation arguments continuation) 
  (lambda (environment) 
    (define (current-continuation arguments ignore-continuation) 
      (define (parse-value value residue) 
        (if (null? residue) 
          ((send value continuation) environment) 
          (wrong "one argument required in current continuation"))) 
      (parse-pair arguments parse-value)) 
    (define (parse-procedure procedure residue) 
      (if (null? residue) 
        ((applicate procedure (list current-continuation) continuation) 
                                                             environment)  
        (wrong "one argument required in call-with-current-continuation"))) 
    (parse-pair arguments parse-procedure))) 
!
(define (ds-eval arguments continuation) ... 
(define (ds-for-each arguments continuation) ... 
(define (ds-force arguments continuation) ... 
(define (ds-load arguments continuation) ... 
(define (ds-map arguments continuation) ...
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An (Executable) DS for Slip #1

ℇ⟦(E0 E*)⟧ = λκ.ℇ⟦E0⟧ (λε.ε ∈ F →  ℇ*⟦E*⟧ (λε*.applicate ε ε* κ) ⟨⟩ ,  
                                                           wrong “procedure expected”) 
ℇ⟦(begin E+)⟧ = λκ.send ℇ+⟦ E+⟧ κ 
ℇ⟦K⟧ = send K⟦K⟧ κ 
ℇ⟦(define I E)⟧ = λκ.def I ∅ (λε∅.ℇ⟦E⟧ (λε.set I ε κ)) 
ℇ⟦(define (I0 I*) E+)⟧ = λκ.def I0 ∅ (λε∅.ℇ⟦(lambda (I*) E+)⟧ (λφ.set I0 φ κ)) 
ℇ⟦(define (I0 I+ . I) E+)⟧ = λκ.def I0 ∅ (λε∅.ℇ⟦(lambda (I+ . I) E+)⟧ (λφ.set I0 φ κ)) 
ℇ⟦(define (I0 . I) E+)⟧ = λκ.def I0 ∅ (λε∅.ℇ⟦(lambda I E+)⟧ (λφ.set I0 φ κ)) 
ℇ⟦(if E0 E1)⟧ = λκ.ℇ⟦E0⟧ (λε.λρ.ε = false → (send ∅ κ)ρ ,  
                                                                      (ℇ⟦E1⟧ (λε.λρ∅.(send ε κ)ρ))ρ) 
ℇ⟦(if E0 E1 E2)⟧ = λκ.ℇ⟦E0⟧ (λε.λρ.((ε = false → ℇ⟦E2⟧ ,  
                                                                             ℇ⟦E1⟧) (λε.λρ∅.(send ε κ)ρ))ρ) 
ℇ⟦(lambda (I*) E+)⟧ = λI*E+.λκ.λρ.(send (λε*κcall.λρcall.#I* = #ε* →  
                                          (bind I* ε* (λε∅.body E+ κcall ρcall))ρ , 
                                          wrong “non-matching argument list”) κ)ρ 
ℇ⟦(lambda (I+ . I) E+)⟧ = λI*IE+.λκ.λρ.(send (λε*κcall.λρcall.#I* <= #ε* →  
                                               (bind I* ε* (λε*'.def I ε*' (λε∅.body E+ κcall ρcall)))ρ , 
                                               wrong “non-matching argument list”) κ)ρ 
ℇ⟦(lambda I E+)⟧ = λIE+κ.λρ.(send (λε*κcall.λρcall.def I ε* (λε∅.(body E+ κcall)ρcall)ρ) κ)ρ 
ℇ⟦(quote E)⟧ = λκ.send K⟦E⟧ κ 
ℇ⟦(set! I E)⟧ = λκ.ℇ⟦E⟧ (λε.set I ε κ) 
ℇ⟦I⟧ = λκ.get I κ
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An (Executable) DS for Slip #2

ℇ+⟦E+⟧ = λκ.ℇ⟦E+↓1⟧ (λε.#E+ = 1 → (send ε κ) , ℇ+⟦E+†1⟧ κ) 
ℇ*⟦E*⟧ = λκl.#E* = 0 → send l κ ,  ℇ⟦E* ↓ 1⟧ (λε.ℇ*⟦E*†1⟧ κ (l § ⟨ε⟩)) 
!
bind-address = σ[ε/α] = λαεσ.λα'.α' = α → ε ,  σ α' 
bind-variable = ρ[α/I] = λIαρ.λI'.I = I' → α , ρ I' 
extend = λσα.σ[α/0] 
locate = λασ.σ α 
lookup = λIρ.ρ I 
new = λσ.(locate 0 σ) + 1 
!
def = λIεκ.λρ.λσ.(λα.(λσ'.(λρ'.((send ε κ)ρ')σ')ρ[α/I])(λσ".σ"[ε/α])(extend α σ))(new σ) 
set = λIεκ.λρ.λσ.(λα.α = ∅ → ((wrong “unknown variable” I)ρ)σ ,  
                                                 ((send ε κ)ρ)σ[ε/α])(lookup I ρ) 
get = λIκ.λρ.λσ.(λα.α = ∅ → ((wrong “unknown variable” I)ρ)σ , 
                                                ((send (locate α σ) κ)ρ)σ)(lookup I ρ) 
!
applicate = λφε*κ.φ ∈ F → φ ε* κ , wrong “procedure expected” 
bind = λI*ε*κ.I* = ⟨⟩ → send ε* κ , def I*↓1 ε*↓1 (λε∅.bind I*†1 ε*†1 κ) 
body = λE+κ.λρ.ℇ+⟦E+⟧ (λε.λρ∅.(send ε κ)ρ)
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ds.slip

Start	
  Slip	
  from	
  /Users/tjdhondt/Desktop/SLIPcharbased/testcode	
  
>(define	
  (f	
  n)	
  (if	
  (>	
  n	
  1)	
  (*	
  n	
  (f	
  (-­‐	
  n	
  1)))	
  1))	
  
!
>(f	
  10)	
  
3628800	
  
>(load	
  "ds")	
  
Denotational	
  Semantics	
  Slip	
  
>>>>(define	
  (f	
  n)	
  (if	
  (>	
  n	
  1)	
  (*	
  n	
  (f	
  (-­‐	
  n	
  1)))	
  1))	
  
#<procedure	
  procedure>	
  
>>>>(f	
  10)	
  
3628800	
  
>>>>(load	
  "ds")	
  
Denotational	
  Semantics	
  Slip	
  
>>>>(define	
  (f	
  n)	
  (if	
  (>	
  n	
  1)	
  (*	
  n	
  (f	
  (-­‐	
  n	
  1)))	
  1))	
  
#<procedure	
  procedure>	
  
>>>>(f	
  10)	
  
LOG	
  	
  	
  0:	
  stop	
  the	
  world	
  
LOG	
  	
  	
  1:	
  stop	
  the	
  world	
  
LOG	
  	
  	
  2:	
  stop	
  the	
  world	
  
3628800	
  
>>>>
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ds.rkt

Welcome to DrRacket, version 5.3 [3m].!
Language: R5RS; memory limit: 128 MB.!
> (define (f n) (if (> n 1) (* n (f (- n 1))) 1)) 
> (f 10) 
3628800 
> (load "dsSlip.rkt") 
Denotational Semantics Slip 
>>> (define (f n) (if (> n 1) (* n (f (- n 1))) 1)) 
#<procedure:procedure> 
>>>(f 10) 
3628800 
>>>(load "ds.rkt") 
Denotational Semantics Slip 
>>> (define (f n) (if (> n 1) (* n (f (- n 1))) 1)) 
#<procedure:procedure> 
>>>(f 10) 
3628800 
>>>


