
Proxies: Design Principles for Robust Object-oriented
Intercession APIs

Tom Van Cutsem
∗

Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussels, Belgium
tvcutsem@vub.ac.be

Mark S. Miller
Google Research

1600 Amphitheatre Parkway
Mountain View, CA, USA
erights@google.com

ABSTRACT
Proxies are a powerful approach to implement meta-objects
in object-oriented languages without having to resort to
metacircular interpretation. We introduce such a meta-level
API based on proxies for Javascript. We simultaneously in-
troduce a set of design principles that characterize such APIs
in general, and compare similar APIs of other languages
in terms of these principles. We highlight how principled
proxy-based APIs improve code robustness by avoiding in-
terference between base and meta-level code that occur in
more common reflective intercession mechanisms.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Object-oriented lan-
guages

General Terms
Design, Languages

Keywords
Proxies, Javascript, Reflection, Intercession

1. INTRODUCTION
We introduce a new meta-level API for Javascript based

on dynamic proxies. Proxies have a wide array of use cases [8].
In this paper, we distinguish two general cases depending
on whether the proxy is proxying another object within the
same address space:

Generic wrappers are proxies that wrap other objects in
the same address space. Example uses include access
control, profiling, adaptors that intermediate between
different versions of an interface, etc.

∗Tom Van Cutsem is a Postdoctoral Fellow of the Research
Foundation, Flanders (FWO). This work was carried out
while on a Visiting Faculty appointment at Google, spon-
sored by Google and a travel grant from the FWO.

Submitted to DLS 2010, October 2010, Reno, Nevada.

Virtual objects are proxies that emulate other objects,
without the emulated objects ever having to be present
in the same address space. Examples include remote
object proxies (emulate objects in other address spaces),
persistent objects (emulate objects stored in databases),
transparent futures (emulate results not yet computed),
etc.

The contributions of this paper are first, the introduction
of a proxy-based metaprogramming API for Javascript (Sec-
tion 4), second, the enumeration of a set of design princi-
ples that characterize general message-based object-oriented
metaprogramming APIs (Sections 4.2 through 4.9), third, a
characterization of related metaprogramming APIs in terms
of these design principles (Section 7.1) and fourth, the char-
acterization of Proxy APIs as stratified APIs that avoid
interference between message interception and application-
level code (Sections 3.3 and 4.3).

2. REFLECTION TERMINOLOGY
A metaobject protocol (MOP) [11] is an object-oriented

framework that describes the behavior of an object-oriented
system. It is a term most commonly associated with re-
flective object-oriented programming languages. It is cus-
tomary for a MOP to represent language operations defined
on objects as method invocations on their meta-objects.
Throughout the rest of this paper, we use the general term
operation to denote mechanisms such as message sending,
field access and assignment, defining a method, performing
an instanceof operation, and so on.

According to Kiczales et. al [11] a MOP supports in-
trospection if it enables reflective read-only access to the
structure of an object. It supports self-modification if it is
possible to modify this structure. Finally, it supports inter-
cession if it enables programmers to redefine the semantics
of operations on specific objects. Introspection is typically
supported by all meta-level APIs. Self-modification is more
exceptional, and meta-level APIs with extensive support for
intercession are rare in mainstream languages, the CLOS
MOP being a notable exception (see Section 7.4).

We will use the term intercession API to refer to any
API that enables the creation of new base-level objects with
custom meta-level behavior.

3. JAVASCRIPT
Javascript is a scripting language whose language run-

time is often embedded within a larger execution environ-
ment. By far the most common execution environment for

Javascript is the web browser. While the full Javascript lan-
guage as we know it today has a lot of accidental complexity
as a side-effect of a complex evolutionary process, at its core
it is a fairly simple dynamic language with first-class lexical
closures and a concise object literal notation that makes it
easy to create one-off anonymous objects. This simple core
is what Crockford refers to as “the good parts” [5].

The standardized version of the Javascript language is
named ECMAScript. The Proxy API described in this paper
was designed based on the latest standard of the language,
ECMAScript 5 [7]. Because ECMAScript 5 adds a num-
ber of important features to the language that have heavily
influenced our Proxy API, we briefly summarize the new
features relevant to our discussion in the following section.

3.1 ECMAScript 5
ECMAScript 5 defines a new object-manipulation API

that provides more fine-grained control over the nature of
object properties [7]. In Javascript, objects are records of
properties mapping names (strings) to values. A simple two-
dimensional diagonal point can be defined as:

var point = {
x: 5,
get y() { return this.x; },
toString: function() { return ’(’+x+’,’+y+’)’]; }
};

ECMAScript 5 distinguishes between two kinds of proper-
ties. Here, x is a data property, mapping a name to a value
directly. y is an accessor property, mapping a name to a
“getter” and/or a “setter” function. The expression point.y

implicitly calls the getter function.
ECMAScript 5 further associates with each property a

set of attributes. Attributes are meta-data that describe
whether the property is writable (can be assigned to), enu-
merable (whether it appears in for-in loops) or configurable
(whether the property can be deleted and whether its at-
tributes can be modified). The following code snippet shows
how these attributes can be inspected and defined:

var pd = Object.getOwnPropertyDescriptor(o, ’x ’);
// pd = {
// value: 5,
// writable: true,
// enumerable: true,
// configurable: true
// }
Object.defineProperty(o, ’z ’, {
get: function() { return this.x; },
enumerable: false,
configurable: true
});

The pd object and the third argument to defineProp-

erty are called property descriptors. These are objects that
describe properties of objects. Data property descriptors
declare a value and a writable property, while accessor
property descriptors declare a get and/or a set property.

The Object.create function can be used to generate new
objects based on a set of property descriptors directly. Its
first argument specifies the prototype of the object to be
created (Javascript is a prototype-based language with dele-
gation). Its second argument is an object mapping property
names to property descriptors. We could have also defined
the point object explicitly as:

var point = Object.create(Object.prototype, {
x: { value: 5,enumerable: true,writable: true,configurable: true },

y: { get: function() { return this.x; }, enumerable: true, ... },
toString: { value: function() {...}, enumerable: true, ...}
});

ECMAScript 5 supports the creation of tamper-proof ob-
jects that can protect themselves from modifications by client
objects. Objects can be made non-extensible, sealed or frozen.
A non-extensible object cannot be extended with new prop-
erties. A sealed object is a non-extensible object whose own
(non-inherited) properties are all non-configurable. Finally,
a frozen object is a sealed object whose own properties are
all non-writable. The call Object.freeze(obj) freezes the
object obj. Section 4.4 details how tamper-proof objects
have influenced the design of our intercession API.

3.2 Reflection in Javascript
Javascript has built-in support for introspection and self-

modification. These features are provided as part of the lan-
guage, rather than through a distinct metaobject protocol.
This is largely because Javascript objects are represented as
flexible records mapping strings to values. Property names
can be computed at runtime and their value can be retrieved
using array indexing notation. The following code snippet
demonstrates introspection and self-modification:

var o = { x: 5, m: function(a) {...} };
// introspection:
o [”x”] // computed property access
”x” in o // property lookup
for (prop in o) {...} // property enumeration
o [”m ”]. apply(o ,[42]) // reflective method call
// self−modification:
o [”x”] = 6 // computed property assignment
o.z = 7 // add a property
delete o.z // remove a property

The new property descriptor API discussed in the previous
section provides for more fine-grained introspection and self-
modification of Javascript objects, as it additionally reveals
the property attributes.

3.3 Intercession in Javascript
Javascript has no standard support for intercession. It is

not possible to intercept an object’s property access, how
it responds to the in-operator, for-in loops and so on.
Mozilla’s Spidermonkey engine has long included a non-
standard way of intercepting method calls based on Smalltalk’s
doesNotUnderstand: mechanism (see Section 7.1). In Spi-
dermonkey, the equivalent method is named __noSuchMethod__.
For example, a proxy that can generically forward all re-
ceived messages to a target object o is created as follows:

function makeProxy(o) {
return {
__noSuchMethod__: function(prop, args) {

return o[prop].apply(o,args);
}
};
}

In what follows, we will refer to methods that intercept
language-level operations as traps, a term borrowed from the
Operating Systems community. Methods such as __noSuch-
Method__ and doesNotUnderstand: are traps because they
intercept method calls.

The problem with doesNotUnderstand: and derivatives
is that the trap is not stratified : it is defined in the same
name space as the rest of the application code. The only
way in which a trap is distinguished from a regular method

is by its name. This violation of stratification can lead to
confusion:

• Say an object purposely defines the trap to intercept
invocations. Since the trap is part of the object’s in-
terface, its clients can accidentally invoke the trap as
if it were an application-level method. This confuses
meta-level code, since the call “originated” from the
base-level.

• Say an object accidentally defines an application-level
method whose name matches that of the trap. The VM
may then incidentally invoke the application method
as if it were a trap. This confuses the base-level code,
since the call “originated” from the meta-level.

Without stratification, the intercession API pollutes the
application’s namespace. We conjecture that this lack of
stratification has not posed a significant problem in practice
because systems such as Smalltalk and Spidermonkey define
only one such special method. But the approach does not
scale. What if we were to introduce additional such traps to
intercept not only method invocation, but also property ac-
cess, assignment, lookup, enumeration, etc.? The number of
“reserved method names” would quickly grow out of control.

We have discussed how the lack of stratification leads to
confusion when a trap is invoked by the wrong caller. There
are other ways in which the presence of a trap as part of
an object’s interface may cause confusion. For example, a
common Javascript idiom is to enumerate all properties of an
object. Say we want to populate the content of a drop-down
list in an HTML form with id id with all of the property
names of an object obj:

function populateList(id, obj) {
var select = document.getElementById(id);
for (var name in obj) {

// skip inherited properties
if (!obj.hasOwnProperty(name)) continue;
var opt = document.createElement(’option’);
opt.text = name;
select.add(opt, null); // append opt
}
}

If obj is a proxy that defines __noSuchMethod__ for the
sake of intercepting property access, this method will show
up in the enumeration of obj’s properties, which is probably
not what the code expects.

4. JAVASCRIPT PROXIES
We now describe an intercession API for Javascript. This

API is officially proposed for inclusion in the next version of
the ECMAScript standard1.

Our intercession API for Javascript supports intercession
by means of distinct proxy objects. The behavior of a proxy
object is controlled by a separate handler object. The meth-
ods of the handler object are traps that are called whenever
a corresponding operation is applied to the proxy object.
Handlers are effectively “meta-objects” and their interface
effectively defines a “metaobject protocol”. A proxy object
is created as follows:

var proxy = Proxy.create(handler, proto);

1Its draft specification is available at www.tinyurl.com/
harmony-proxies.

Here, handler is an object that must implement a par-
ticular meta-level API and proto is an optional argument
object representing the proxy’s prototype.

Table 1 lists those base-level operations applicable to ob-
jects that can be trapped by handlers. The name proxy

refers to a proxy instance, handler to that proxy’s handler,
proto to the prototype specified in Proxy.create and re-

ceiver to either a proxy or an object that inherits (directly
or indirectly) from a proxy. The distinction between funda-
mental and derived traps is explained in Section 4.7.

The relationship between traps and the operations they
trap should be clear in most cases. The fix trap is described
in Section 4.4. The enumerate trap must return an array of
strings representing the enumerable property names of the
proxy. The corresponding for-in loop is then driven by
iterating over this array. Because Javascript methods are
just functions, method invocation, as in proxy.m(a,b) is reified
as a property access handler.get(proxy ,’m ’) that is expected to
return a function. That function is immediately applied to
the arguments [a,b] and with this bound to proxy.

The distinction between proxy objects and regular objects
ensures that non-proxy objects (which we expect make up
the vast majority of objects in a system) do not pay the
runtime costs associated with intercession (cf. Section 6).
Finally, note that the link between a proxy and its handler
is immutable and inaccessible to clients of the proxy.

4.1 Function Proxies
In Javascript, functions are objects. However, they differ

from non-function objects in a number of ways. In partic-
ular functions support two operations not applicable to ob-
jects: they can be called and constructed. For reasons that
will be made clear in Section 4.6, our API explicitly distin-
guishes between object proxies and function proxies. The
call Proxy.create returns object proxies. To create a func-
tion proxy, one invokes the method Proxy.createFunction:

var call = function() { ... };
var cons = function() { ... };
var f = Proxy.createFunction(handler, call, cons);
f (1,2,3); // calls call (1,2,3)
new f(1,2,3); // calls cons(1,2,3)
f.x // calls handler.get(f ,’ x’)

The first argument to Proxy.createFunction is exactly
the same kind of handler object passed to Proxy.create. It
intercepts all operations applicable to functions used as ob-
jects. The additional arguments call and construct are
functions that respectively trap Javascript’s function call
and new operator.

Unlike Proxy.create, Proxy.createFunction does not
accept a prototype argument. Functions always inherit from
Function.prototype, and so do function proxies.

4.2 Generic Wrappers
To implement generic wrappers around existing objects,

a useful handler is one that simply forwards all operations
applied to the proxy to the wrapped object:

function makeForwardingHandler(target) {
return {
get: function(rcvr,name) { return target[name];},
set: function(rcvr,name,val) { target[name] = val; return true; },
has: function(name) { return name in target; },
delete: function(name) { return delete target[name]; },
...
};
};

Operation Triggered by Reified as
Fundamental traps
Own descriptor access Object.getOwnPropertyDescriptor(proxy,name) handler.getOwnPropertyDescriptor(name)

Descriptor access Object.getPropertyDescriptor(proxy,name) handler.getPropertyDescriptor(name)

Descriptor definition Object.defineProperty(proxy,name,pd) handler.defineProperty(name,pd)

Own keys Object.getOwnPropertyNames(proxy) handler.getOwnPropertyNames()

Property deletion delete proxy.name handler.delete(name)

Key enumeration for (name in proxy) {...} handler.enumerate()

Object fixing Object.{freeze,seal,preventExtensions}(proxy) handler.fix()

Derived traps
Property lookup name in proxy handler.has(name)

Own Property lookup ({}).hasOwnProperty.call(proxy,name) handler.hasOwn(name)

Property access receiver.name handler.get(receiver, name)

Property assignment receiver.name = val handler.set(receiver, name, val)

Own enumerable keys Object.keys(proxy) handler.enumerateOwn()

Table 1: Operations reified on handlers by the Proxy API

var proxy = Proxy.create(makeForwardingHandler(target),
Object.getPrototypeOf(target));

A particular generic wrapper can inherit from this for-
warder and override only the methods for the operations
that it needs to intercept. We make use of this handler in
Sections 4.5 and 5.

4.3 Stratification
Bracha and Ungar [3] introduce the principle of stratifi-

cation for mirror-based architectures. The principle states
that meta-level facilities must be separated from base-level
functionality. Bracha and Ungar focus mostly on stratifica-
tion in the context of introspection and self-modification. In
this paper we focus on the application of this principle to
intercession. Mirrors are further discussed in Section 7.2.

The distinction between a proxy and its handler object
enforces stratification of the traps. Traps are not defined as
part of the interface of the proxy object, but as part of the
interface of the handler.

The handler is a regular object. It may inherit from other
objects, and its inheritance chain is completely independent
from that of the proxy it handles. A single handler may
handle multiple proxies. The handler can be a proxy itself
(we will illustrate a use case of this in Section 4.5).

Accessing aProxy.has explicitly on a proxy will not trigger
the proxy’s corresponding has trap. Instead, the access will
be reified like any other as handler.get(aProxy ,‘has ’). Like-
wise, aProxy.get is reified as handler.get(aProxy ,‘get ’). Traps
can only be invoked explicitly on a proxy’s handler, not on
the proxy itself. This enforces stratification (the meta-level
traps should not interfere with base-level method names).
Thus, proxies continue to work correctly if an application
(by accident or by design) uses the names get, set, etc.

The principle of stratification when applied to proxies can
be summarized as follows.

Stratification: a proxy’s traps should be stratified by
defining them on a separate handler object.

4.4 Temporary Intercession
Recall from section 3.2 that ECMAScript 5 enables the

creation of tamper-proof objects. A tamper-proof object
provide useful guarantees that programmers can rely upon.
When designing a proxy API, care should be taken that
proxies cannot break these guarantees. For example, if o

is an object, then Object.freeze(o) freezes that object. If

the programmer knows o is frozen, he can rely on the fact
that the number of properties contained in o will no longer
change. If o is a proxy, we do not want a proxy to violate
such assumptions.

To reconcile non-extensible, sealed and frozen objects with
proxies, we introduce an additional trap named fix. A call
to Object.freeze(proxy) will be interpreted as:

var props = handler.fix();
if (props === undefined) {

throw new TypeError();
} else {
become(proxy, Object.freeze(Object.create(proto, props)));
}

Again, handler denotes proxy’s handler and proto de-
notes the prototype argument passed to the Proxy.create

call that created the proxy.
The fix trap is introduced to enable a proxy to inter-

act with the Object.preventExtensions, Object.seal and
Object.freeze primitives available in ECMAScript 5. A
non-extensible, sealed or frozen object should restrict the
handler’s freedom in terms of what it can return from sub-
sequent calls to has, get, etc. For example, once proxy
p is frozen, all invocations of ’foo’ in p must return the
same value. If this operation traps to the proxy’s handler’s
has trap (i.e., as handler.has(’foo’)), then this restriction
would be difficult to enforce.

Proxies enforce these restrictions as follows: when an at-
tempt is made to make a proxy non-extensible, sealed or
frozen, the fix trap is invoked on the proxy’s handler. The
handler has two options. It can refuse the request (by mak-
ing its fix trap return undefined). This causes the opera-
tion to throw an exception. Or, the handler can allow the
request by returning a “fixed” representation of the proxy’s
properties. The implementation instantiates this descrip-
tion into an actual object. From that point on the proxy
effectively becomes that object and the handler is bypassed
entirely. The proxy is now said to be “fixed”.

The become operation used in the above code snippet is
pseudo-code: it can only be implemented in the VM. The
props object returned by the fix trap is the same kind of
object that can be passed as the second argument to Ob-

ject.create: a record that maps property names to prop-
erty descriptors.

Because of the fixing-protocol, proxies can essentially be
in two states. A proxy is created in a trapping state, during

which its handler traps all operations applied to the proxy.
Once the fix trap returns an object description, the proxy
is fixed. Once a proxy is fixed, it remains forever fixed.
A fixed proxy is essentially a “static” proxy, and as far as
the Javascript programmer is concerned, it is at that point
indistinguishable from a normal Javascript object.

When an object proxy is fixed, the prototype of the gen-
erated object is the proto object passed as an argument to
Proxy.create. The prototype of a function proxy is always
Function.prototype, and this remains unchanged when fix-
ing the function proxy.

The essence of the fixing mechanism can be summed up
in the following principle:

Temporary Intercession: if an operation imposes strong
consistency requirements on a proxy object (such as becom-
ing immutable), intercession should be disabled for some or
all of the operations intercepted by proxies.

Fixing does not necessarily need to be an “all or nothing”
process. However, in the particular case of ECMAScript, we
found this to be the simplest solution.

4.5 Proxies as Handlers
A common use case for proxy handlers is, for example, to

perform an access control check before performing the oper-
ation on some wrapped object. Only if the check succeeds is
the operation forwarded. Since there are 12 different oper-
ations that proxy handlers can intercept, a straightforward
implementation would have to duplicate the pattern of ac-
cess checking and forwarding the operation in each trap. It’s
difficult to abstract this pattern, because each operation has
to be “forwarded” in a different way, as exemplified by the
forwarding handler in Section 4.2. Ideally, if all operations
could be uniformly funneled through a single trap, the han-
dler would only have to perform the access check once, in
the single trap.

Such funneling of all operations through a single trap can
be achieved by implementing the proxy handler itself as
a proxy. In meta-programming terms, this corresponds to
shifting to the meta-meta-level. Figure 1 depicts how meta-
level shifting works. The base-level proxy is the proxy object
with which other regular application objects directly inter-
act. That proxy’s handler is the base handler. The crucial
part is that the base handler is itself a proxy, call it a meta-
level proxy. The handler of a meta-level proxy is a meta
handler.

Note how all operations performed on p are intercepted by
mh’s get trap. We carefully designed the intercession API
such that proxies only interact with their associated handler
by invoking their traps. Proxies never assign, enumerate
or test for the presence of traps on their handler. Because
of this uniformity, if the base handler is only used in its
role as the handler for a base-level proxy, the meta handler
only needs to implement the get trap. Because method
invocation is the only operation performed on meta-level
proxies, only this single trap is triggered on meta handlers.

Another way to explain why this funneling works is as
follows. At the base-level, running programs perform an as-
sortment of operations on Javascript objects (e.g. property
lookup, access, assignment, enumeration, . . .). At the meta-
level (that is: in the intercession API), all of these operations
are reified uniformly as method invocations on handlers.
Therefore, at the meta-level, the only operation performed
on meta-level objects (base-level handlers) is property ac-

Figure 1: Meta-level shift using a proxy as a handler

cess, and meta-meta-level objects (meta-level handlers) only
need to handle this single operation in their protocol.

If one shifts an extra level upwards to funnel all oper-
ations through a single trap of a meta-level handler, one
must also shift an extra level downwards if these operations
must eventually be applied to a base-level object. This can
be accomplished by having the meta handler forward the
operations to a generic forwarding handler. The forward-
ing handler essentially translates meta-level operations back
into base-level operations on a target object.

Naturally, one can apply this trick of shifting meta-levels
at the meta-meta-level recursively. The API allows an arbi-
trary number of such meta-level shifts. This brings up the
question of infinite meta-regress. Such an infinite regress is
avoided as long as a handler is eventually implemented as a
concrete Javascript object, rather than as yet another proxy.

To summarize, this section reveals two important design
principles of proxy-based intercession APIs:

Meta-level shifting: a proxy-based intercession API
supports shifting to a new meta-level by implementing a
handler as a proxy.

Meta-level funneling: the interaction between a proxy
and its handler determines the API of the meta-meta-level.
If the proxy only invokes the handler’s traps, then the meta-
meta-level API collapses to a single trap through which all
meta-level operations are funneled.

Meta-level funneling is demonstrated in Section 5.1.

4.6 Selective Interception
A proxy-based intercession API introduces a tradeoff be-

tween what operations can be intercepted by proxy han-
dlers on the one hand, versus what operations have a reliable
outcome from the language runtime and the programmer’s
point of view. We already briefly touched upon this issue
in Section 4.4 when discussing how proxies interact with op-
erations that make objects non-extensible, sealed or frozen.
As we have discussed, the fix trap enables a proxy handler
to dynamically decide whether or not to commit to a fixed
representation.

Some operations may be so critical that we don’t want
proxies to ever influence their outcome. One such operation
is testing for equality. In Javascript, the expression a === b

determines whether a and b refer to identical objects. The
=== operator comes with a number of guarantees that are
implicitly taken for granted by programmers. For example,
=== on objects is commutative, transitive, symmetric and
deterministic (it always reports the same answer given the

same arguments). Furthermore, testing a and b for equality
should not grant a access to b or vice versa. For all these
reasons, we decided not to enable proxy handlers to trap ===.
Proxies cannot influence the outcome of this operation.

As in the case of ===, the fact that an operation should be
deterministic is a requirement for many operations. To up-
hold determinism, the operation should not trap to a proxy
handler. However, just because an operation should have a
deterministic result does not mean that it cannot be reliably
intercepted. When an operation requires a deterministic,
stable result, this result can be provided once to the proxy
when it is created. There are two concrete examples of this
in our intercession API.

The first example is that proxies must commit to their pro-
totype upfront. Recall from section 4 that the second argu-
ment to Proxy.create denotes the proxy’s prototype. This
has two important effects: the first is that ECMAScript’s
built-in operation Object.getPrototypeOf remains deter-
ministic, even when applied to a proxy. The second is that
proxies cannot influence instanceof when they are used
as the left-hand operand: to determine whether proxy in-

stanceof Foo is true, the implementation need only look
at the prototype of proxy, which using our API it can do
without consulting the proxy handler.

The second example is that proxies have to decide up-
front whether they will proxy a plain object or a function
object. By requiring proxies to commit to representing ei-
ther an object or a function at proxy creation time, the lan-
guage runtime is able to uphold important invariants that
it would have to forfeit if it would have to consult the han-

dler. For example the expression typeof o should evaluate
to "function" if o is a function, and to "object" otherwise.
Also, functions always inherit from Function.prototype.
The distinction between object and function proxies allows
our API to enforce these invariants.

Another aspect to take into account when deciding whether
or not a certain operation can be intercepted by a proxy is
the fact that it may lead to arbitrary code being run in
places where the language runtime or the programmer did
not expect this to. For example, without our intercession
API, the expression name in obj does not trigger Javascript
code. Since in is a primitive operation, the evaluation of
this expression occurs entirely within the language runtime,
without it ever having to run non-native code. Proxies may
change these assumptions.

In our particular case, proxies enable non-native code to
run while evaluating the in operator, the delete operator
and for-in loops, yet they preserve the integrity of === and
typeof. It’s hard to make general claims about what oper-
ations should generally be interceptable and which should
not. It is a design decision that depends on the particulars
of the system at hand. The point that we want to make is
that it’s important to recognize that such a tradeoff exists.
This brings us to the following design principle:

Selective interception: determine what properties of
an object should be to committed to upfront. If these prop-
erties are required to be stable but may be configurable, turn
them into parameters of the proxy constructor rather than
retrieving them via a handler trap.

4.7 Fundamental versus derived traps
As shown in Table 1, our handler API defines 12 traps

in total, each intercepting a different Javascript operation

applied to a proxy. However, some traps can be expressed
in terms of the semantics of other traps (i.e. the semantics
of the operation which they intercept is subsumed by the
semantics of some other operation). We refer to such traps
as derived traps, since their implementation may be derived
from other, more fundamental traps.

4.7.1 Efficiency: the case for derived traps
Our handler API is comprised of 7 fundamental traps and

5 derived traps. If 7 traps are sufficient to faithfully emulate
an object, why define 12 of them? The reason is efficiency:
implementing a derived trap directly may be more efficient
than using its default implementation based on the corre-
sponding fundamental trap. In our particular design, as
a rule of thumb, we introduced derived traps only if their
implementation could intercept the operation with fewer al-
locations than the corresponding implementation based on
the fundamental trap.

As a concrete example, consider the expression name in

obj. The in operator returns a boolean indicating whether
obj defines or inherits a property named name. If obj is a
proxy, this operation triggers the handler’s has(name) trap,
which should return a boolean. has is a derived trap: its se-
mantics can be directly derived from the fundamental trap
getPropertyDescriptor which, given a property name, re-
turns either a property descriptor for a property correspond-
ing to that name if it exists, or returns undefined otherwise.
Clearly, has could have just been defined implicitly as:

has: function(name) {
return this.getPropertyDescriptor(name) !== undefined;
}

The downside of this implementation is that getProper-

tyDescriptor must needlessly allocate a property descriptor
object if the named property exists. A custom implementa-
tion of has can often avoid this allocation.

While defining the intercession API, we found that there
is another force at play that can prevent designers from in-
troducing a derived trap, even if it were more efficient.

4.7.2 Consistency: the case against derived traps
One reason not to introduce a derived trap, even in the

face of improved efficiency, is that introducing the distinc-
tion may break language invariants that may surprise the
language runtime and programmers.

Once the API provides a proxy handler with both a fun-
damental and a derived trap, there is no guarantee that a
proxy handler will effectively make sure that the derived trap
is indeed semantically equivalent to the canonical derived
implementation. For example, if a proxy handler is given
the option to override both the has and the getProperty-

Descriptor traps, it is not enforced that these traps return
mutually consistent results. Without proxies, the program-
mer can count on the invariant that name in obj is equiv-
alent to Object.getPropertyDescriptor(obj, name) !==

undefined. If obj is a proxy, this invariant is no longer guar-
anteed: has could return true and getPropertyDescriptor

could nevertheless return undefined.
For proxies, both the language runtime and programmers

can no longer count on such invariants being upheld, al-
though a “correct” handler should attempt to uphold them.
Even if the handler implementor does not intend to violate
the invariants, the distinction between fundamental and de-
rived traps nevertheless introduces a maintenance cost: if

either of the two traps is changed or gets overridden in a
delegating object, the other trap should be changed or over-
ridden in a compatible way.

The requirement of mutual consistency between opera-
tions is an opposing force in the decision of whether or not
to introduce a derived trap for a certain operation. Whether
the benefits of efficiency outweigh the mutual consistency of
operations is, again, based on the particulars of the system
and there is no general answer.

Fundamental versus Derived Traps: an intercession
API faces a tradeoff between defining a minimal API consist-
ing only of fundamental traps versus defining a more com-
plex API that introduces derived traps. Derived traps may
be more efficient, but may break invariants that hold be-
tween the operations corresponding to the fundamental and
the derived trap.

4.8 Handler Encapsulation
A Proxy-based intercession API encapsulates its handler

if, given a reference to a proxy, one cannot gain direct ac-
cess to the proxy’s handler. For our proxy API, this is the
case. If a handler can be encapsulated behind its proxy, the
handler can ensure that its traps can only ever be invoked
by manipulating its corresponding proxy.

If the handler explicitly wants to be accessible from its
proxy, it can cater to such access itself without violating
stratification. The handler could register the association be-
tween its proxy and itself in a registry. Objects with access
to this registry and to the proxy can then look up the han-
dler, using the proxy as a key. Such a registry plays a similar
role in our architecture as mirror factories in a mirror-based
architecture (see Section 7.2).

4.9 Uniform Intercession
Eugster [8] introduces the term uniform proxies to denote

an object model in which objects of all types can be prox-
ified. More generally, we state that an intercession API is
uniform if it enables the creation of proxies for all possi-
ble types of values in the language. Javascript proxies do
not support uniform intercession, since they are only able
to proxy for objects (object proxies) or functions (function
proxies). Primitive values cannot be proxified.

The advantage of having a uniform intercession API is
that it does not restrict programmers to use only language
values that can be proxied. Conversely, it enables meta-
programmers to potentially use the intercession API on more
base-level objects.

5. ACCESS CONTROL WRAPPERS
We now show how to apply our Proxy API to implement

generic wrappers for access control purposes.

5.1 Revocable Object References
Say an object Alice wants to hand out to Bob a reference

to Carol. Carol could represent a precious resource, and
for that reason Alice may want to limit the lifetime of the
reference it hands out to Bob. In other words, Alice wants
to have the ability to revoke Bob’s access to Carol.

One can implement this pattern of access control by wrap-
ping Carol in a forwarder that can be made to stop for-
warding. Such a forwarder is also known as a caretaker [17].
Without proxies, the programmer is forced to write a dis-
tinct caretaker for each kind of object that should be wrapped.

Proxies enable the programmer to abstract from the details
of the wrapped object’s protocol and instead write a generic
caretaker2:

function makeRevocableRef(target) {
var enabled = true;
return Object.freeze({
caretaker: Proxy.create({
get: function(rcvr, name) {

if (!enabled) { throw new Error(”revoked”); }
return target[name];
},
has: function(name) {

if (!enabled) { throw new Error(”revoked”); }
return name in target;
},
// ... and so on for all other traps
}, Object.getPrototypeOf(target)),
revoker: Object.freeze({
revoke: function() { enabled = false; }
})
});
}

Given this abstraction, Alice can now wrap Carol in a
revokable reference, pass the caretaker to Bob, and hold on
to the revoker such that access can later be revoked.

The caretaker is a proxy whose handler is very similar to
the generic forwarder defined in Section 4 except that it ex-
plicitly checks the enabled flag before forwarding. As noted
in Section 4.5, this is a pattern that can itself be abstracted
by shifting meta-levels once more. If the caretaker’s han-
dler is itself a proxy, the meta-level handler can funnel all
meta-level operations through a single get trap:

function makeRevocableRef(target) {
var enabled = true;
var fwdHandler = makeForwardingHandler(target);
var baseHandler = Proxy.create({
get: function(rcvr, name) {

if (!enabled) { throw new Error(”revoked”); }
return fwdHandler[name];
}
});
return Object.freeze({
caretaker: Proxy.create(baseHandler,Object.getPrototypeOf(target)),
revoker: Object.freeze({
revoke: function() { enabled = false; }
})
});
}

A limitation of the above caretaker abstraction is that
objects exchanged via the caretaker are themselves not re-
cursively wrapped in a revocable reference. For example, if
Carol defines a method that returns this, an unwrapped ref-
erence may be exposed to Bob, circumventing the caretaker.
This is an instance of the two-body problem [8], the fact that
wrappers may be “leaky” because the wrapping proxy and
the wrapped object are distinct entities. The abstraction
discussed in the following section addresses this issue.

5.2 Membranes
A membrane is an extension of a caretaker that transi-

tively imposes revocability on all references exchanged via
the membrane [13]. In the following implementation, we
make use of meta-level funneling once more to centralize
the access control in a single trap:

2For brevity, we left out the case in which target is a func-
tion, requiring the caretaker to be a function proxy.

function makeMembrane(initTarget) {
var enabled = true;
function wrapFunction(f) {

return function() { // variable−argument function
if (!enabled) {throw new Error(”revoked”);}
try {

return wrap(f.apply(wrap(this), toArray(arguments).map(wrap)));
} catch (e) { throw wrap(e); }
}
}
function wrap(target) {

//primitives provide irrevocable knowledge, no need to wrap them
if (isPrimitive(target)) { return target; }
var fwdHandler = makeForwardingHandler(target);
var baseHandler = Proxy.create({
get: function(rcvr, name) {

return wrapFunction(fwdHandler[name]);
}
});

if (typeof target === ”function”) {
var wrappedF = wrapFunction(target);
return Proxy.createFunction(baseHandler, wrappedF);
} else {

return Proxy.create(baseHandler,
wrap(Object.getPrototypeOf(target)));

}
}
return Object.freeze({
wrapper: wrap(initTarget),
revoker: Object.freeze({
revoke: function() { enabled = false; }
})
});
}

A membrane consists of one or more wrappers. Every
such wrapper is created by a call to the wrap function. Note
that all wrappers belonging to the same membrane share
a single enabled variable. Assigning the variable to false

instantaneously revokes all of the membrane’s wrappers.
Recall that this example makes use of meta-level funnel-

ing. The baseHandler is itself a proxy with a handler. This
handler need only implement a get trap that returns a meta-
level trap (a function) that will immediately be invoked. To
be able to wrap the arguments of these invocations, the get

trap returns a wrapped version of the default forwarding
trap contained in the fwdHandler.

If the object to be wrapped is a function (or a method,
because Javascript methods are just functions), a function
proxy is returned whose call trap is a wrapped version of
the function, as defined by wrapFunction. The variable-
argument function3 returned by wrapFunction performs the
actual wrapping of values that cross the membrane: argu-
ments to methods cross the membrane in one direction, re-
turned values or thrown exceptions in the other direction.

The membrane abstraction in Javascript enables innova-
tive new ways of composing code from untrusted third par-
ties on a single web page (so-called “mash-ups”). By loading
the untrusted code using a membrane-wrapped eval func-
tion, it becomes possible to isolate scripts from one another
and from their container page.

Identity-preserving Membranes.
One problem with the above membrane abstraction is

that it fails to uphold object identity across both sides of
the membrane. If an object o is passed through the same

3In Javascript, arguments is an array-like object that con-
tains all arguments passed to a function. It is used to define
variable-argument functions, and it is customary to convert
this object into a proper array first.

Proxies Proxies
Disabled Enabled

(non-proxy) (proxy)
Operation a b c = b/a d e = d/b

typeof .38 µs .39 1.02 .39 1.00
instanceof .49 µs .51 1.04 .52 1.01

call .47 µs .47 1.00 .61 1.29
delete .42 µs .42 1.00 .71 1.69

has .41 µs .41 1.00 .73 1.78
set .40 µs .41 1.02 .74 1.80
get .38 µs .39 1.03 .73 1.87

enumerate 1.58µs 1.58 1.00 4.0 2.53

Table 2: Micro-benchmarks measuring overhead of
the Proxy API (c) and of a proxy wrapper (e).

membrane twice, an object on the other side of the mem-
brane will receive two distinct wrappers w1 and w2, such
that w1 !== w2, even though both wrap an identical object.
Likewise, passing w1 or w2 back through the membrane does
not unwrap them but rather wraps them again. These limi-
tations can be addressed by having the membrane maintain
two maps. The first maps objects to their wrappers, such
that only one canonical wrapper is created per object. The
second maps wrappers back to the objects they wrap, al-
lowing these objects to be unwrapped when they cross the
membrane in the other direction.

Unfortunately, implementing these maps in Javascript is
impossible without introducing memory leaks. Ephemeron
tables are a proposed language feature for the upcoming EC-
MAScript standard that address this issue [14]. An ephemeron
table is almost identical to a non-enumerable weak-key iden-
tity hashtable, but it avoids a crucial memory leak when
cyclic dependencies exist between the keys and the values
stored in the table.

6. IMPLEMENTATION
Andreas Gal has implemented a prototype of our proposed

Proxy API as an extension of Tracemonkey. Tracemonkey is
an adaptation of Spidermonkey, Mozilla’s Javascript engine,
that employs trace trees for aggressive optimization [10]4.

We used the prototype implementation to get an initial
idea of the overhead of our Proxy API. To this end, we per-
formed the following micro-benchmark: first, we measured
the runtime of operations applied to regular objects in regu-
lar Tracemonkey, without the Proxy API extensions. Next,
we measured the runtime of the same operations on regular,
non-proxy objects in the Tracemonkey extension with sup-
port for proxies. Finally, we measured the runtime of the
operations on a proxy object whose handler is the default
forwarding handler from Section 4.

Table 2 shows results for a subset of the operations, ob-
tained on a MacPro Dual-core Intel Xeon (2.66Ghz) with
4GB Memory, running Mac OS X 10.5.8, using the fol-
lowing version of the Tracemonkey prototype: http://hg.

mozilla.org/tracemonkey/file/eba4f78cdca4. Runtimes
shown are an average over multiple runs. We should note
that these results are obtained from a non-optimized proto-

4At the time of writing, proxies are in the tracemonkey build
of the Firefox 3.7a5 pre-release at http://ftp.mozilla.
org/pub/mozilla.org/firefox/tinderbox-builds

type implementation. The final tracemonkey implementa-
tion may generate significantly different results.

The results in column (c) show that the addition of prox-
ies in the virtual machine introduces no significant overhead
for non-proxy objects. Hence, proxies only introduce a per-
formance penalty when they are needed.

The results in column (e) show the overhead of using prox-
ies to implement generic wrappers. Traps are ordered from
least to most overhead. Our results confirm that operations
like typeof and instanceof that do not consult the handler
introduce no overhead. The overhead of intercepting the
other operations, save enumeration, is less than a factor of
2. The overhead comes from the additional invocation of the
handler method. Presumably, the get and set traps intro-
duce the most overhead because they are the most optimized
for non-proxy objects. Enumeration is the only operation
that is more than twice as slow when applied to proxies.
This is because enumeration must now proceed by iterating
over a user-created array returned by the enumerate trap,
rather than using the built-in iteration algorithm.

7. RELATED WORK

7.1 OO Intercession APIs: a comparison
In this section we summarize a variety of message-based,

object-oriented intercession APIs. We discuss whether and
how each of them upholds the design principles put forth in
Section 4. We do not claim that our survey is exhaustive,
but we believe the most representative intercession APIs are
covered. We briefly discuss the surveyed mechanisms and
then summarize which of our design principles they uphold
in Table 3.

Java The Java 1.3 java.lang.reflect.Proxy API is a
major precedent to our Javascript proxy API. Java’s dy-
namic proxies can be used to intercept invocations on in-
stances of interface types:

InvocationHandler h = new InvocationHandler() {
Object invoke(Object pxy, Method m, Object [] args) {...}
};
Foo proxy = (Foo) Proxy.newProxyInstance(
aClassloader, new Class[] { Foo.class }, h);

Here, proxy implements the Foo interface. h is an object
that implements a single invoke method. All method invo-
cations on proxy are reified by calling the h.invoke method.

The main difference between Java proxies and Javascript
proxies is that Java proxies can only intercept method in-
vocation. There are no other meta-level operations to trap.
For instance, since interfaces cannot declare fields, proxies
do not need to intercept field access.

The Java Proxy API is non-uniform: proxies can only be
constructed for interface types, not class types. As a result,
proxies cannot be used in any situation where code is typed
using class types rather than interface types, limiting their
general applicability. Eugster [8] describes how to extend
the Java Proxy API to work uniformly with instances of
non-interface classes. Next to the usual InvocationHandler,
proxies for class types have an additional AccessHandler to
trap field access.

AmbientTalk The design of Javascript proxies was in-
fluenced by AmbientTalk mirages [16]. AmbientTalk is a
distributed dynamic language, with a mirror-based meta-
level API. AmbientTalk enables intercession through mi-

rages, which are proxy-like objects controlled explicitly by a
separate mirror object:

def mirage := object: {...} mirroredBy: (mirror: {
def invoke(receiver, message) { ... };
def addSlot(slot) { ... };
def removeSlot(slot) { ... };
...

});

The mirror is to the mirage what the proxy handler is
to a Javascript proxy. Like Javascript proxy handlers, mir-
rors define an extensive set of traps, enabling near-complete
control over the mirage.

E is a secure, distributed dynamic language [12]. In E,
everything is an object, but there are two kinds of object
references: near and eventual references. Similarly, there
are two message passing operators: immediate call (o.m(), a
synchronous method invocation) and eventual send (o<−m(),
an asynchronous message send). Both operations are al-
lowed on near references, but eventual references carry only
asynchronous messages. Because of this distinction, E has
two separate intercession APIs: one for objects and one for
references.

E has a proxy-based API to represent user-defined even-
tual references [15]:

def handler {
to handleSend(verb :String, args :List) {...}
to handleSendOnly(verb :String, args :List) {...}
to handleOptSealedDispatch(brand) {...}
}
def proxy := makeProxy(handler, slot, state);

This API is very similar to the one for Javascript prox-
ies. The proxy represents an eventual reference, and any
asynchronous send proxy<-m() either triggers the handler’s
handleSend or handleSendOnly trap, depending on whether
the sender expects a return value.

The handleOptSealedDispatch trap is part of E’s trade-
marking system and is beyond the scope of this paper. The
slot argument to makeProxy can be used to turn the proxy
reference into an actual, so-called resolved reference. Once a
reference is resolved, the proxy is bypassed and the handler
no longer consulted. It fulfills a role similar to the fix trap
described in Section 4.4. The state argument to makeProxy

determines the state of the reference. The details are out-
side the scope of this paper, but note that this allows the
eventual reference proxy to determine its state without con-
sulting the handler, similar to how Javascript proxies can
determine their prototype without consulting the handler.

E has a distinct intercession API for objects. A non-
methodical object is an empty object with no methods. In-
stead, its implementation consists of a single match clause
that encodes an explicit message dispatch:

def obj match [verb, args] {
handle the message generically
}

The variable obj is bound to a new object whose dispatch
logic, if any, is explicitly encoded in the match clause. An im-
mediate call obj.m(x) will trigger this clause, binding verb

to "m" and args to a list [x].
Finally, it is worth noting that AmbientTalk inherits from

E the distinction between near and eventual references and
the distinction between immediate call and eventual send.
Unlike E, AmbientTalk has only one intercession API (mi-

rages), but a mirage can represent both objects and even-
tual references, depending on how the handler implements
its traps (immediate calls and eventual sends each trigger a
separate trap).

Smalltalk Smalltalk-80 popularized generic message dis-
patch via its doesNotUnderstand: mechanism. Briefly, if
standard method lookup does not find a method correspond-
ing to a message, the Smalltalk VM instead sends the mes-
sage doesNotUnderstand: msg to the original receiver ob-
ject. Here, msg is an object containing the message’s selector
and arguments. The default behavior of this method, inher-
ited from Object is to throw an exception.

The doesNotUnderstand: trap is not stratified. It occu-
pies the same namespace as application-level methods. This
lack of stratification did lead Smalltalk programmers to look
for alternative interception mechanisms. Foote and John-
son describe a particular extension to ParcPlace Smalltalk
called a dispatching class: “Whenever an object belonging
to a class designated as a dispatching class (using a bit in
the class object’s header) is sent a message, that object is in-
stead sent dispatchMessage: aMessage.” [9]. Instances of
dispatching classes are effectively proxies, the dispatchMes-

sage: method acting as the sole trap of an implicit handler.
Ducasse [6] gives an overview of the various message pass-

ing control techniques in Smalltalk. He concludes that does-
NotUnderstand: is not always the most appropriate mech-
anism. Rather, he stresses the usefulness of method wrap-
pers. This approach was elaborated by Brant et. al [4].
In this approach, rather than changing the method lookup,
the method objects returned by the lookup algorithm are
modified. This is possible because Smalltalk methods and
method dictionaries are accessible from within the language.
The method wrapper approach is in many ways similar to
CLOS method combinations, enabling before/after/around
augmentation of existing methods. As their name suggests,
they are great for wrapping existing methods, but they seem
less suitable to implement virtual objects and thus only sup-
port part of the use cases covered by doesNotUnderstand:.

Summary Table 3 shows that each of the aforementioned
intercession APIs has its own set of characteristics. It is
difficult to declare one API to be better than another one.
By their very nature, meta-level APIs are strongly tied to
their particular language. The tradeoffs made by these APIs
cannot be understood without reference to the idiosyncratic
constraints and motivations of their respective languages.
However, for an OO intercession API to be called robust,
we believe it should adhere to the principle of stratification.

7.2 Mirrors
This work is heavily influenced by the work on mirrors.

Bracha and Ungar [3] discuss the design principles of mirror-
based meta-level architectures. The principles of stratifica-
tion and handler encapsulation as stated in this paper are
related to the corresponding principles for mirror-based ar-
chitectures, but with a focus on how they apply to interces-
sion rather than to introspection and self-modification.

Mirror-based architectures strive to decouple base-level
from meta-level code. Traditional reflection APIs usually
define access to the reflective interface of an object as part
of that object’s own interface. A prominent example is the
getClass() method defined on java.lang.Object. The re-
sult is a tight coupling between the base-level object and
its meta-level representation (in the case of Java the result-

ing Class object). As a point in case, consider the diffi-
culty of defining a local mirror for a remote object. In Java,
the getClass() method, when applied to a remote object
proxy would invariably break the abstraction, as getClass()
would reveal the proxy’s class.

Mirrors are meta-level objects that are manufactured by
objects known as mirror factories. To acquire a mirror on
an object o, one does not ask o for its mirror but rather asks
a mirror factory for a mirror on o. The logic of what kind
of mirror to associate with an object is not tied to that ob-
ject’s representation. As discussed in Section 4.8, our Proxy
API does not enable clients of proxies to directly access the
handler through the proxy. If such access is required, the
cleanest solution is to introduce a separate registry abstrac-
tion which can be regarded as a “handler factory”.

Systems with a mirror-based architecture include Self [19],
Strongtalk [2], Newspeak [1] and the Java Debugger API.
Each of these architectures supports introspection and self-
modification, but they have very limited support for in-
tercession. To the best of our knowledge, AmbientTalk’s
meta-level architecture based on mirages [16] was the first
to reconcile mirrors with support for intercession. Mirages
directly inspired our work on Javascript proxies. A mirage
is very much like our proxy. Its behavior is controlled by
a separate handler, which in AmbientTalk is also a mirror.
The main difference between AmbientTalk and Javascript
in this regard, is that Javascript has no built-in notion of
mirrors or mirror factories.

7.3 Partial Behavioral Reflection
Partial Behavioral Reflection (PBH) [18] is a framework

that describes the spatiotemporal extent of reification. Re-
flex is an intercession API for Java, based on bytecode rewrit-
ing, that supports PBH. Reflex enables the definition of
meta-objects for Java objects. A single meta-object can con-
trol multiple base-level objects. The spatial scope of meta-
objects is delimited using three concepts: entity selection
enables a meta-object to specify what objects it will control
(e.g. all instances of a class, or only a particular instance
of a class). Operation selection determines what particular
operations of the affected objects are reified (e.g. only field
access). Intra-operation selection enables reification to occur
only if the operation satisfies further conditions (e.g. only
reify calls to the foo method). Finally, temporal selection
controls the time during which a meta-object is active.

Reflex differs from our Proxy API in that it enables the
creation of meta-objects that can act upon objects not ex-
plicitly declared as proxies. Nevertheless, some aspects of
our proxy API can be understood in terms of PBH. Prox-
ies induce a static form of entity selection: operations on
proxy objects are reified, operations on non-proxy objects
are not. Proxies may support temporal selection. For exam-
ple, Javascript proxies only reify while they are in a trapping
state. Once fixed, the proxy no longer reifies operations. Fi-
nally, proxies enable a static form of operation selection:
some operations on proxies (e.g. typeof) are never reified,
whereas others such as property access are always reified.

One could characterize Reflex as a meta-intercession API:
using Reflex, one can define many different specific interces-
sion APIs, each with its own settings for entity, operation
and temporal selection.

7.4 CLOS

What type of value can be virtualized?
JS proxies Objects and functions
Java proxies Objects whose static type is an interface or Object

AT mirages Objects and eventual references
E proxies Eventual references
E non-methodicals Objects
ST doesNotUnderstand: Objects
Is the API stratified?
JS proxies Yes, proxy versus handler
Java proxies Yes, Proxy versus InvocationHandler
AT mirages Yes, mirage versus mirror
E proxies Yes, proxy versus ProxyHandler
E non-methodicals Yes, non-methodicals have no behavior other than their match clause
ST doesNotUnderstand: No, proxy and handler are the same object
Is the handler encapsulated?
JS proxies Yes
Java proxies No, because of Proxy.getInvocationHandler(proxy)

AT mirages Yes, but can get access indirectly via a mirror factory
E proxies Yes
E non-methodicals Yes
ST doesNotUnderstand: No, proxy and handler are the same object
Can intercession be limited in time (temporary intercession)?
JS proxies Yes, by fixing the proxy (see Section 4.4)
Java proxies No, proxies remain proxies forever
AT mirages No, mirages remain mirages forever
E proxies Yes, by resolving the proxied reference into a real reference
E non-methodicals No, non-methodicals remain non-methodicals forever
ST doesNotUnderstand: Yes, by replacing the object using Smalltalk’s become: primitive
Can one shift meta-levels?
JS proxies Yes, if handler is itself a proxy
Java proxies Yes, if handler is itself a proxy
AT mirages Yes, if mirror is itself a mirage
E proxies No, handler cannot itself be an eventual reference proxy
E non-methodicals No, non-methodicals have no handler
ST doesNotUnderstand: No, cannot trap invocations of doesNotUnderstand: itself
Is there a trap through which all operations can be funneled?
JS proxies Yes, the get trap, for a meta-handler
Java proxies Yes, the invoke trap, for any handler
AT mirages Yes, the invoke trap, for a meta-handler
E proxies Yes, if handler is a non-methodical object, its match clause funnels all operations
E non-methodicals Yes, the match clause
ST doesNotUnderstand: Yes, doesNotUnderstand: itself, if class is otherwise empty (no implemented or inherited methods).

In this case, the class may not inherit from Object

Can all types of values in the language be virtualized (uniform intercession)?
JS proxies No, primitives cannot
Java proxies No, instances of non-interface classes and primitives cannot
AT mirages Yes, all values are objects or references (mirages cover both)
E proxies Yes, all values are objects or references (proxies cover references)
E non-methodicals Yes, all values are objects or references (non-methodicals cover objects)
ST doesNotUnderstand: Yes, all values are objects
Are there some operations applicable on proxies that cannot be intercepted (selective interception)?
JS proxies Yes, identity, prototype and typeof are fixed
Java proxies Yes, identity, class, implemented interfaces and final methods inherited from Object

AT mirages Yes, an object’s mirror is determined by a separate mirror factory object
E proxies Yes, identity and the “state” of a reference are fixed
E non-methodicals Yes, identity and “trademarks” (unforgeable types) are fixed
ST doesNotUnderstand: Yes, calls to methods implemented in or inherited by the defining class will not be intercepted
Is there a distinction between fundamental and derived traps?
JS proxies Yes, see Table 1
Java proxies No, invoke is the only trap
AT mirages No, all traps are fundamental
E proxies Yes, sendOnly can be derived from send

E non-methodicals No, the match clause is the only trap
ST doesNotUnderstand: No, the doesNotUnderstand: method is the only trap

Table 3: Comparison of object-oriented intercession APIs

The Common Lisp Object System (CLOS) has an exten-
sive MOP [11]. Because CLOS is function-oriented as op-
posed to a message-oriented, it is difficult to transpose the
design principles described in this paper to CLOS. In CLOS,
computation proceeds mainly through generic function in-
vocation, as opposed to sending messages to objects. The
dispatch mechanism of generic functions can be modified
via the MOP. However, if one simply wants to wrap exist-
ing methods, CLOS offers a method combination protocol
that can be used to insert behavior before, after or around
existing methods without modifying the protocol.

8. CONCLUSION
This paper introduces an intercession API for Javascript

based on proxies, enabling the creation of generic wrappers
and virtual objects. We characterize our API as robust, pri-
marily due to its stratified design and because it upholds
important invariants (pertaining to e.g. identity, runtime
types and tamper-proofness).

The second contribution of this paper is the identifica-
tion of general design principles for proxy-based intercession
APIs. These design principles can be used to characterize
similar APIs of other programming languages, as summa-
rized in Table 3. The design principles put forward are:

Stratification: traps are defined on a separate handler.
Selective interception: some operations are not trapped

or their semantics is determined at proxy-creation time.
Derived traps can be more efficient than fundamental

traps but introduce the potential for inconsistencies.
Meta-level shifting: handlers as proxies shift meta-levels.
Temporary intercession: proxies can become fixed.
Handler encapsulation: a proxy encapsulates its handler.
Uniform intercession: every value can be proxified.

Acknowledgements
We thank the members of the ECMA TC-39 committee and
the es-discuss@mozilla.org community for their feedback
on our Proxy API. Thanks to Brendan Eich, Andreas Gal
and Dave Herman for detailed comments and to Andreas
Gal for his work on the Tracemonkey implementation.

9. REFERENCES
[1] G. Bracha, P. Ahé, V. Bykov, Y. Kashai, W. Maddox,

and E. Miranda. Modules as objects in newspeak. In
ECOOP ’10: Proceedings of the 24th European
Conference on Object Oriented Programming,
Maribor, Slovenia, LNCS. Springer Verlag, June 2010.

[2] G. Bracha and D. Griswold. Strongtalk: typechecking
smalltalk in a production environment. In OOPSLA
’93: Proceedings of the eighth annual conference on
Object-oriented programming systems, languages, and
applications, pages 215–230, NY, USA, 1993. ACM.

[3] G. Bracha and D. Ungar. Mirrors: Design principles
for meta-level facilities of object-oriented
programming languages. In OOPSLA ’04: Proceedings
of the 19th annual Conference on Object-Oriented
Programming, Systems, Languages and Applications,
pages 331–343, 2004.

[4] J. Brant, B. Foote, R. E. Johnson, and D. Roberts.
Wrappers to the rescue. In ECOOP ’98: Proceedings
of the 12th European Conference on Object-Oriented

Programming, pages 396–417, London, UK, 1998.
Springer-Verlag.

[5] D. Crockford. Javascript: The Good Parts. O’Reilly,
2008.

[6] S. Ducasse. Evaluating message passing control
techniques in smalltalk. Journal of Object-Oriented
Programming (JOOP), 12:39–44, 1999.

[7] ECMA International. ECMA-262: ECMAScript
Language Specification. ECMA, Geneva, Switzerland,
fifth edition, December 2009.

[8] P. Eugster. Uniform proxies for java. In OOPSLA ’06:
Proceedings of the 21st annual conference on
Object-oriented programming systems, languages, and
applications, pages 139–152, NY, USA, 2006. ACM.

[9] B. Foote and R. E. Johnson. Reflective facilities in
smalltalk-80. In OOPSLA ’89: Conference proceedings
on Object-oriented programming systems, languages
and applications, pages 327–335, NY, USA, 1989.
ACM.

[10] A. Gal. Efficient bytecode verification and compilation
in a virtual machine. PhD thesis, University of
California, Irvine, Long Beach, CA, USA, 2006.

[11] G. Kiczales, J. D. Rivieres, and D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press,
Cambridge, MA, USA, 1991.

[12] M. Miller, E. D. Tribble, and J. Shapiro. Concurrency
among strangers: Programming in E as plan
coordination. In Symposium on Trustworthy Global
Computing, pages 195–229. Springer, 2005.

[13] M. S. Miller. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control.
PhD thesis, John Hopkins University, Baltimore,
Maryland, USA, May 2006.

[14] M. S. Miller. Ephemeron tables straw-man proposal
for ES-Harmony, 2010. http://wiki.ecmascript.
org/doku.php?id=strawman:ephemeron_tables.

[15] M. S. Miller and K. Reid. Proxies for eventual
references in E, 2009.
http://wiki.erights.org/wiki/Proxy.

[16] S. Mostinckx, T. Van Cutsem, S. Timbermont, and
E. Tanter. Mirages: Behavioral intercession in a
mirror-based architecture. In Proceedings of the
Dynamic Languages Symposium - OOPSLA’07
Companion, pages 222–248. ACM Press, 2007.

[17] D. D. Redell. Naming and Protection in Extensible
Operating Systems. PhD thesis, Department of
Computer Science, University of California at
Berkeley, Nov 1974.

[18] É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial
behavioral reflection: spatial and temporal selection of
reification. In OOPSLA ’03: Proceedings of the 2003
Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 27–46. ACM, 2003.

[19] D. Ungar and R. B. Smith. Self: The power of
simplicity. In OOPSLA ’87: Conference proceedings on
Object-oriented Programming Systems, Languages and
Applications, pages 227–242. ACM Press, 1987.

