
Event-based Analysis of Timed Rebeca Models using SQL

B. Magnússon
Reykjavik University
Reykjavik, Iceland

brynjar@brynjar.is

E. Khamespanah
University of Tehran, Tehran,

Iran
Reykjavik University,
Reykjavik, Iceland

e.khamespanah@ut.ac.ir

M.Sirjani
Reykjavik University
Reykjavik, Iceland
marjan@ru.is

R. Khosravi
University of Tehran

Tehran, Iran
r.khosravi@ut.ac.ir

ABSTRACT
In this paper, we present a simulation-based approach for
analysis of Timed Rebeca models to tackle the state space ex-
plosion problem. We present a simulation toolkit, TRSim,
which uses McErlang as a back-end simulator and stores
the occurrences of events while executing the model in a
relational database. We also present TeProp, a timed event-
based property language, which is designed to be easy-to-
use for specifying and reasoning about timed occurrences of
events in an actor system. One can check TeProp formulas
against multiple simulation runs by transforming the formu-
las to SQL queries and executing the queries over the event
database. Using this approach, the correctness of large mod-
els can be analyzed to a bounded degree of confidence. To
illustrate the applicability of TRSim toolkit and TeProp we
provide a number of case studies.

Keywords
Actor model, Timed-Rebeca, Verification, Realtime systems,
Simulation, Database, Action based property, TeProp

1. INTRODUCTION
Model checking is a formal verification approach aiming

to verify correctness of systems with a very high level of con-
fidence. The importance of using model checking to assure
reliability of reactive systems has long been acknowledged.
The major limiting factor in applying model checking for ver-
ification of real world reactive systems is the huge amount
of space and time required to store and explore the state
space. Alternatively, simulation techniques do not guarantee
the correctness of system, however, they are extremely useful
for design exploration to obtain estimates of the correctness
of the systems.

In this paper, we present an approach for analysis of actor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AGERE ’14 Portland, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

models, using simulation and event-based property specifi-
cations. We generate numbers of simulation traces and store
the traces in a relational database. We propose an event-
based property language (TeProp) that can address interac-
tions among components in a natural way, in comparison
with state-based property languages. We map TeProp for-
mulas to SQL queries using our tool. Analysis of systems
takes place by executing the SQL queries over the database
of simulation traces. Using database as the storage and SQL
queries enable us to analyze complex reactive systems, mod-
eled by Timed Rebeca, an actor based modeling language.

Reactive systems are inherently parallel systems in which
ongoing communication and interaction between the system
and its environment plays a key role [4]. A well-known
paradigm for modeling the functional behavior of reactive
systems with asynchronous communication is the actor model
[15, 5]. In the actor model, actors are universal primitives of
concurrent computation: in response to a message, an ac-
tor can make local decisions, create actors, send messages,
and determine how to respond to the next message. They
may also redirect communication links through exchange of
actor identities [28]. All the actors in the system run concur-
rently and the message passing among them is asynchronous.
There are some extensions to the actor model such as RT-
synchronizer [24] and Timed Rebeca[3] for modeling real-
time systems.

Timed Rebeca is proposed as an extension to Rebeca [29]. Re-
beca, is an operational interpretation of the actor model with
formal semantics, supported by model checking tools [28].
Rebeca is designed to bridge the gap between formal meth-
ods and software engineering. The formal semantics of Re-
beca is a solid basis for its formal verification. Compositional
and modular verification, abstraction, symmetry and partial-
order reduction have been investigated for verifying Rebeca
models. The theory underlying these verification methods is
already established and is embodied in verification tools [28,
16, 26, 27]. With its simple, message-driven and object-based
computational model, Java-like syntax, and a set of verifica-
tion tools, Rebeca is an interesting and easy-to-learn model
for practitioners. In Timed Rebeca, timing primitives are
added to Rebeca to address computation time, message delivery
time, message expiration, and period of occurrence of events [3].
More details about Timed Rebeca is presented in Section 2.

Timed Rebeca is supported by the Afra toolset for schedu-
lability and deadlock freedom analysis [17]. In [17], the focus

is on the key features of actors, being event-driven and iso-
lated, and a highly efficient approach for generating state
space of actors is proposed. This approach, in principle, can
be used for model checking against any event-based prop-
erty. At present the tool only supports schedulability and
deadlock freedom check. Another tool is developed for map-
ping Timed Rebeca to Real-time Maude [25]. This provides
a spectrum of analysis methods for Timed Rebeca, but the
properties are all state-based and not event-based. The cur-
rent work is a continuation of work presented in [20]. Here,
the approach is using simulation and focusing on event-based
properties. SQL is used to expand our ability in saving and
analyzing simulation traces. Moreover, we propose an event
based property language, TeProp, and define its formal se-
mantics to facilitate specifying the required properties (Sec-
tion 3). The stored traces can be analyzed using SQL queries
generated from TeProp formulas (Section 4 and Section 5).
We prepare a number of experimental results to illustrate the
applicability of our approach (Section 6).

The contribution of this paper can be summarized as fol-
lows.

• Implementing a toolset for simulating Timed Rebeca
models, using McErlang model checker, and storing
simulation traces in a relational database for further
analysis.

• Introducing TeProp as an event-based property lan-
guage for Timed Rebeca models, including a tool for
mapping TeProp formulas to SQL queries as well as a
tool for analysis of the results of executing SQL queries
on simulation traces.

• Providing experimental results which very well illus-
trate the applicability of the proposed technique and
toolset.

2. BACKGROUND
Rebeca [29, 28] is an actor-based language for modeling

concurrent and reactive systems with asynchronous message
passing. Rebeca models have reactive objects with no shared
variables, asynchronous message passing with no blocking
send and no explicit receive, and unbounded buffers for mes-
sages. Objects in Rebeca are reactive and self-contained,
called a rebec. In this paper we used actor and rebec in-
terchangeably. Communication among rebecs takes place by
message passing. Each rebec has an unbounded buffer, for
its arriving messages. Computation is event-driven, mean-
ing that each rebec takes a message that can be considered as
an event from the top of its message queue and execute the
corresponding message server (also called a method). The ex-
ecution of a message server is an atomic execution of its body
that is not interleaved with any other method execution.

As shown in example of Figure 1, a Rebeca model consists
of a set of reactive class definitions – which areTicketService,
Agent, and Customer in the example – and the main block
(lines 42 to 46). In the main block the rebecs which are in-
stances of the reactive classes are declared. In the example,
a, ts, and c are three rebecs which are defined in the main
block (lines 43 to 45). The body of the reactive class includes
the declaration for its known rebecs, state variables, and mes-
sage servers. The rebecs instantiated from a reactive class can
only send messages to the known rebecs of that reactive class.
For the reactive class TicketService, line 2 shows definition

of its known rebecs, line 4 shows the definition of its state
variables, and lines 10 to 14 shows the definition of one of
its message servers. Message servers consist of the declara-
tion of local variables and the body of the message server.
The statements in the body can be assignments (e.g. line 13),
conditional statements, enumerated loops, non-deterministic
assignment, and method calls (e.g line 12). Method calls are
sending asynchronous messages to other rebecs (or to itself).
The operational semantics of Rebeca has been introduced in
[29] in more details.

Timed Rebeca is an extension of Rebeca with time fea-
tures for modeling and verification of time-critical systems.
These primitives are added to Rebeca to address computa-
tion time, message delivery time, message expiration, and period
of occurrence of events. In a Timed Rebeca model, each rebec
has its own local clock. The local clocks can be considered
as synchronized distributed clocks. Methods are still exe-
cuted atomically, however passing of time while executing a
method can be modeled. In addition, instead of queue for
messages, there is a bag of messages for each rebec.

The timing primitives that are added to the syntax of Re-
beca are delay, deadline and after. The delay statement models
the passing of time for a rebec during execution of a message
server (e.g line 11). The keywords after and deadline can only
be used in conjunction with a method call (e.g. lines 38 and
23). The value of the argument of after shows how long it
takes for the message to be delivered to its receiver. The dead-
line shows the timeout for the message, i.e., how long it will
stay valid. The formal semantics of Timed Rebeca has been
introduced in [3]. Some toolset are developed for verification
of Timed Rebeca models which have been presented in [17,
25, 20].

3. EVENT-BASED PROPERTY
LANGUAGE FOR TIMED REBECA

Computation in actor models is mainly derived by asyn-
chronous communication. Therefore, reasoning about the
relation among execution of message servers has a key role
in analysis of actor models. So, a formalism to express cor-
rectness of properties of such models should be able to take
events into account as well as atomic propositions over sys-
tem states. As for the design of TeProp (Timed event-based
Property language) our goal was to create a language that is
capable of specifying properties about the timed occurrence
of events in a natural way, and be easy to use by practition-
ers. The design of TeProp is based on Metric Temporal Logic
(MTL) [19] which is an extension of Linear Temporal Logic
(LTL) [22] adding optional real-time constraints to the tem-
poral operators. As MTL uses relative intervals it is closer
to Timed Rebeca needs, compared to other alternatives like
Timed Computation Tree Logic TCTL [6], TILCO [21], and
Timed Propositional Temporal Logic TPTL [7]. Our focus has
restricted TeProp compared to MTL, which is in line with our
goal to have an easy to use language. At the same time using
timed property patterns, in the following we show that we
can specify a wide range of properties using TeProp.

TeProp is influenced by the property patterns which are
described in [2], [8] and [18], along with papers related to
the untimed property languages such as [12]. We found that
specifying maximum, minimum, and exact distance between two
events, periodic occurrence of events, bounded response to events,
and precedence relation between events are the widely used prop-

1 reactiveclass TicketService {
2 knownrebecs {Agent a;}
3 statevars {
4 int issueDelay, nextId;
5 }
6 msgsrv initial(int myDelay) {
7 issueDelay = myDelay;
8 nextId = 0;
9 }

10 msgsrv requestTicket() {
11 delay(issueDelay);
12 a.ticketIssued(nextId);
13 nextId = nextId + 1;
14 }
15 }
16 reactiveclass Agent {

17 knownrebecs {
18 TicketService ts;
19 Customer c;
20 }
21 msgsrv requestTicket() {
22 ts.requestTicket()
23 deadline(5);
24 }
25 msgsrv ticketIssued(byte id) {
26 c.ticketIssued(id);
27 }
28 }
29 reactiveclass Customer {
30 knownrebecs {Agent a;}
31 msgsrv initial() {
32 self.try();

33 }
34 msgsrv try() {
35 a.requestTicket();
36 }
37 msgsrv ticketIssued(byte id) {
38 self.try() after(30);
39 }
40 }
41
42 main {
43 Agent a(ts, c):();
44 TicketService ts(a):(3);
45 Customer c(a):();
46 }

Figure 1: The model of ticket service system.

erty types in event based systems. The first five property
types are mentioned in [19] and the sixth one is in [8]. Varia-
tions of these property types also appear in [2] and [18]. We
designed TeProp to address these six types of properties. To
this aim, we defined three temporal modalities G, F, B (pro-
nounced “globally”, “finally”, and “before” respectively) and
two operators→ (“implies”) and{ (“leads-to”).

Differences with MTL. Since the standard Until operator
in temporal logic is expressing that a state-proposition should
hold until something happens and we are only concerned
with the order and occurrence of instantaneous events we
introduce the Before operator instead of including the Until
operator. For example for stating that: e1 precedes e2 in the
next 10 time units, we say e1 B[0, 10] e2, while in MTL this
would be¬((¬e1) U[0, 10] e2)∧ F[0, 10] e2. The other difference
is defining the operator “leads-to” which is very similar to
standard “implies” except for that if p is false in p { q then
p { q is false (unlike for p → q which is true if p is false).
We found this operator more intuitive when we express that
occurrence of some event will finally cause some other events.
Note that G can be paired by →, and F can be paired with
{. The syntax and semantics of TeProp are presented in the
following subsections.

3.1 Syntax and Informal Semantics of TeProp
In TeProp temporal modalities are evaluated over time in-

tervals. A time interval consists of two non-negative integers
inside brackets [from, to]. The intervals are relative to the
current time, i.e. the current time instant is represented by 0,
positive integer represents the future, and the symbol end is
used to refer to the occurrence time of the last event of a trace.
Omitting an interval for an operator is the same as using the
interval [0, end].

As in this paper we define TeProp for Timed Rebeca mod-
els, events are defined based on the terminology of Timed
Rebeca. An event in Timed Rebeca is assumed as starting the
execution of a message server. An event is identified by the
name of its receiver and the name of message server in form
of receiver.msgsrvName(condition). Condition is optional and
given as a Boolean expression over the event’s parameters
and its sender (using the keyword sender). The formal syntax
of TeProp is depicted in Figure 2.

The intuitive meaning of TeProp formulas constructed by
valid combinations of temporal modalities and “implies” and
“leads-to” operator, is depicted in the following.

φ ::= e | ¬φ | φ ∧ φ | (φ) | FI e | FI (e{ φ) | GI (e→ φ) | e BI e
I ::= [〈Integer〉, 〈Integer〉] | [〈Integer〉, end]
e ::= receiver.messageName([condition])

Figure 2: The syntax of TeProp. In e (denoting an event),
the “condition” is a boolean expression on the values of the
parameters and sender of e which its evaluation results in a
boolean value.

• Finally: F[i1, i2] e. An event matching e will happen
somewhere during the interval [i1, i2].
Examples: F X.call() - An event with instance name X
and message server call will happen at some point.
F[5, 20] X.call(n==7) - An event with instance name X
and message server call and the message parameter n
with value 7 will happen at some point between 5 and
20 time units.

• Before: e1 B[i1, i2] e2. Within the interval [i1, i2], an
event matching e1 happens at least once before an event
matching e2.
Example: X.call() B[0, 5] Y.call() - Within 0 and 5 time
units an event with instance name X and message server
call will happen before an event with instance name Y
and message server call.

• Globally with Implies: G[i1, i2](e → φ). For all events
matching e during the interval [i1, i2], the formula φ
must be satisfied when the time of occurrence of e is
used as φ’s current time. The formula is also satisfied if
there is no event that matches e during [i1, i2].
Example: G(X.call() → F[0, 10] Y.call()) - Every occur-
rence of an event with instance name X and message
server call is followed by an event with instance name
Y and message server call within 10 time units of event
X.
G(X.call() → Y.call() B[0, 9] Z.call()) - Every occurrence
of an event with instance name X and message server
call is followed by an event with instance name Y and
message server call before an event with instance name
Z and message server call , both within 9 time units of
event X.

• Finally with Leads-to: F[i1, i2](e{ φ). At least for one
occurrence of an event matching e in the interval [i1, i2]

the evaluation of the formula φ using the timing of the
event e as its current time must be satisfied.
Example: F(X.call(){ F[0, 10] Y.call()) - At least one oc-
currence of an event with instance name X and message
server call is followed by an event with instance name
Y and message server call within 10 time units of event
X.
F(X.call() { Y.call() B[0, 9] Z.call()) - At least one occur-
rence of an event with instance name X and message
server call is followed by an event with instance name
Y and message server call before an event with instance
name Z and message server call, both within 9 time
units of event X.

In the following we show how the six property patterns
mentioned before can be specified in TeProp. For each prop-
erty pattern we describe a scenario, for which we provide a
TeProp formula.

• Maximum distance between an event and its reaction:
every event e1 is followed by its reaction e2 within x
units of time. TeProp formula: G(e1 → F[0, x] e2). This
pattern also called as “bounded response between an
event and its reaction”.

• Exact distance between an event and its reaction: ev-
ery event e1 is followed by its reaction e2 in exactly x
units of time. TeProp formula: G(e1 → F[x, x] e2).

• Minimal distance between an event and its reaction:
two consecutive events e are at least x units apart. TeProp
formula: G(e1 → ¬F[0, x] e2).

• Periodic occurrence of events: event e occurs regularly
with a period of x units of time. TeProp formula: G(e→
(F[x, x] e ∧ ¬F[0, x − 1] e)) ∧ F[0,∞] e.

• Bounded response: each occurrence of an event e is
responded within a maximum number of time units.
TeProp formula: G(e1 → F[0, x] e2).

• Precedence relation between two events: within the
next x time units, the occurrence of e1 precedes the oc-
currence of e2. TeProp formula: e1B[0, x] e2.

For the above patterns, except for the last one, the MTL
formula is similar to the TeProp formula. Although it seems
that TeProp and MTL have minor differences, when we have
more complicated formula TeProp can be easier to use in
the event based setting. For example, stating that at least
once after an occurrence of e1, within the next 8 time units,
e2 precedes e3. In MTL it will be F(e1 → (¬((¬e2) U[0, 8] e3)
∧ F[0, 8] e3 ∧ e1)), while in TeProp this would be F(e1 { e2
B[0, 8] e3). In the state space setting MTL is more expressive
as not all MTL formulas can be expressed in TeProp, as it was
designed for use in the event based setting.

3.2 Formal Semantics of TeProp
Consider an alphabet Σ of all events of a given model. Let

π be a finite sequence (e0, τ0),(e1, τ1),. . . (et, τt) of timed events
where ei ∈ Σ is an event name and τi ∈ N increasing over
time, shows the occurrence time of ei. Satisfaction of a TeProp
formula φ by a sequence of timed events π from position
i (shown by π, i |= φ) is defined inductively in Figure 3.
Remind that by event at position i we refer to the ith timed
event in π, not the timed event at time i.

π, i |= true always
π, i |= e iff the name of the instance and message

server in ei and e are the the same and
the values of parameters and sender
of ei satisfy the optional condition of e

π, i |= ¬φ iff π, i 6|= φ

π, i |= φ1 ∧ φ2 iff π, i |= φ1 ∧ π, i |= φ2

π, i |= FI e iff ∃ j ∈ [i, |π|] · π, j |= e ∧ τ j − τi ∈ I
π, i |= e1 BI e2 iff (∃ k ∈ [i, |π|] · π, k |= e2 ∧ τk − τi ∈ I)→

(∃ j ∈ [i, k] · π, j |= e1 ∧ τ j − τi ∈ I)
π, i |= GI (e → φ) iff ∀ j ∈ [i, |π|] · (π, j |= e ∧ τ j − τi ∈ I)

→ π, j |= φ

π, i |= FI (e { φ) iff ∃ j ∈ [i, |π|] · π, j |= e ∧ τ j − τi ∈ I
∧ π, j |= φ

Figure 3: The formal description of TeProp.

4. DATABASE DESIGN AND MAPPING
TEPROP FORMULAS TO SQL QUERIES

Storing the results of Timed Rebeca simulator in a relational
database and creating a mapping from TeProp formulas to
SQL queries is a convenient way to achieve our goal in ana-
lyzing Timed Rebeca models. Using a relational database, we
get an established solution for storing the simulation traces
as well as taking the advantage of the industrial standard
technology for data analysis. Besides, we allow modelers to
write their own SQL queries in addition to checking TeProp
formulas.

To increase the performance of analyzing TeProp formu-
las, we decide that for each rebec instance we create a sepa-
rate table per message server. The general form of “Simula-
tionID_InstanceName_MessageServerName” is used for the
naming of the tables to illustrate that each table corresponds
to which simulation run, rebec, and message server. The ta-
ble has three columns, called “id”, “time”, and “sender”. The
column for “id” stores a global auto-generated number used
in the simulator to indicate the total order of events. The
columns “time” and “sender” store time of the event and
sender of the event respectively. In case of message servers
with parameters additional columns are added to the table
for each parameter.

To give a top-down view of the mapping from TeProp for-
mulas to SQL queries we start from the base SQL query. The
basic query is a select query. The where clause of the select
query is filled with the results of mapping from TeProp for-
mulas to SQL queries. The general form of the base query is
depicted below.

select ‘satisfied′ from [basic information table]
where ([the outcome of the mapping from TeProp
formulas to SQL queries])

This way, if a TeProp formula is satisfied one record, con-
tains “satisfied”, is returned.

In TeProp formulas, the time in which the inner formulas
are to be satisfied is determined by the outer formula. For

example, for TeProp formula F[0, 10](e1 → F[0, 5]e2) the outer
formula is F[0, 10](e1 → φ), the outer event is e1 and the
inner formula is F[0, 5]e2. For each occurrence of e1 in time
interval [0, 10], the inner formula F[0, 5]e2 must be satisfied
assuming that the occurrence time of e1 is time 0 for F[0, 5]e2.
In this section, the information related to the outer formula
are shown by variables with parent subscript.

Two basic TeProp formulas using conjunction and negation
operators are mapped to the SQL queries using “and” and
“not” operators as described below.

¬φ → not(φ)
φ1 ∧ φ2 → (φ1) and (φ2)

In the other four types of TeProp formulas, looking for the
set of different occurrences of event e in a time interval is
required. This set is retrieved from simulation traces using
the following SQL query. The sequence number and the
timing of event e is considered to be related to the sequence
number and timing of its outer formula, obtained by the
following query. We refer to this query by e[i1, i2].

select aliase.id from evente aliase where aliase.id
> aliasparent.id and aliase.time between
aliasparent.time + i1 and aliasparent.time + i2

In the above formula, evente is the name of the table storing
occurrences of e, aliase is an alias to refer to e, and aliasparent
is an alias to refer to the parent of e[i1, i2]. This query returns
the set of ids.

The event occurrence, “globally”, and “finally” TeProp for-
mulas are directly mapped to SQL using the definition of
e[i1, i2] as described bellow.

e → exists(e[0, 0])
F[i1, i2] e → exists(e[i1, i2])
F[i1, i2] (e{ φ) → exists(e[i1, i2]) and (φ)
G[i1, i2] (e→ φ) → not exists((e[i1, i2]) and not(φ))

Finally, “before” formula e1 B[i1, i2] e2 is mapped to SQL
query as shown in the following.

exists (select aliase1 .id from evente1 aliase1 where
(aliase1 .id > aliasparent.id and aliase1 .time between
aliasparent.time + i1 and aliasparent.time + i2)

and
(exists (select aliase2 .id from evente2 aliase2 where
aliase2 .id > aliase1 .id and aliase2 .time between
aliase1 .time and aliasparent.time + i2))

)

In the above formula the first term makes sure that there is
at least one occurrence of e1 and the second term makes sure
that all the occurrences of e2 are after e1 in the interval of
[i1, i2].

4.1 SQL Examples
To give a clear idea how the SQL queries look like we

have included below some TeProp formulas and their SQL
counterpart. The formulas are for a simple communication
protocol model that can be found at [1]

Listing 1: SQL for G(senderAgent.start()→
F[0, 10]receiverAgent.send())

1 select ’satisfied’ from "base" t0_0 where (
2 not exists(
3 select t1_0.ID from "senderAgent_start"

t1_0 where t1_0.ID > t0_0.ID and
4 t1_0.time >= t0_0.time and not (exists(
5 select t1_1.ID from

"receiverAgent_send" t1_1 where
t1_1.ID > t1_0.ID and

6 t1_1.time between t1_0.time and
t1_0.time + interval ’10’ second

7))
8)
9)

Listing 2: SQL for F(senderAgent.start(){
F[0, 8]receiverAgent.send())

1 select ’satisfied’ from "base" t0_0 where (
2 exists(
3 select t1_0.ID from "senderAgent_start"

t1_0 where t1_0.ID > t0_0.ID and
4 t1_0.time >= t0_0.time and (exists(
5 select t1_1.ID from

"receiverAgent_send" t1_1 where
t1_1.ID > t1_0.ID and

6 t1_1.time between t1_0.time and
t1_0.time + interval ’8’ second

7))
8)
9)

Listing 3: SQL for F receiverAgent.ack()

1 select ’satisfied’ from "base" t0_0 where (
2 exists(
3 select t1_0.ID from "senderAgent_ack" t1_0

where
4 t1_0.ID > t0_0.ID and t1_0.time >=

t0_0.time
5)
6)

Listing 4: SQL for senderAgent.start()
B[0, 5]senderAgent.ack()

1 select ’satisfied’ from "base" t0_0 where (

2 exists(
3 select t1_0.ID from "senderAgent_start"

t1_0 where
4 t1_0.ID > t0_0.ID and t1_0.time between

t0_0.time and
5 t0_0.time + interval ’5’ second and exists(
6 select t1_1.ID from "senderAgent_ack" t1_1

where
7 t1_1.ID > t1_0.ID and t1_1.time between

t1_0.time and
8 t0_0.time + interval ’5’
9)

10)
11)

5. TRSIM TOOLKIT
We implemented a set of tools, TRSim toolkit, to support

the analysis of Timed Rebeca models using TeProp. TRSim
toolkit uses the new version of the translator of Timed Re-
beca models to Erlang codes and PostgreSQL database [23].
PostgreSQL is an open source database system available for
different operating systems with support for nested queries
which are essential for the mapping of TeProp expressions to
SQL queries.

5.1 Transformer of Timed Rebeca to Erlang
A toolset for transforming Timed Rebeca models to Erlang

codes (timedreb2erl) is previously presented in [3]. Authors
transform Timed Rebeca model to Erlang code, then they use
McErlang [14] to simulate it. Later, an extension of McErlang
which supports discrete-time semantics is released [13], re-
sults in development of a new transforming toolset for Timed
Rebeca models [20]. For the simulation based analysis pur-
poses choosing the right time to stop the simulation and the
number of simulation traces must be considered to achieve
credible analysis.
The Right Time to Stop the Simulation. As Timed Rebeca is
used for modeling and verification of reactive systems with
non-terminating behavior, simulation of Timed Rebeca mod-
els results in infinite simulation traces. But we need finite
simulation traces of Timed Rebeca models to be able to use
simulation based analysis. Therefore, each simulation run
of Timed Rebeca models should be stopped at some point
to have finite simulation traces. However, the best place to
stop the simulation is not always clear and depends heavily
on the model and the properties. Changing the model such
that it stops after few iterations is an ideal solution for reac-
tive systems that have a non-terminating behavior, this can
be done with a local counter inside a reactive class. Another
alternative for achieving bounded simulation traces is using
the time limit option in McErlang. It allows specifying how
long the simulation should be in seconds.
Number of Simulation Traces. No matter how simple our
models are, their behavior can be complex as a result of non-
deterministic choices which model concurrency of the ele-
ments. Therefore, for a given model it is important to run
as much as possible simulation traces to try to cover all the
behaviors of the model and compute µz as mean value of cor-
rectness of the model against a given property. But deciding
on the right number of simulation traces that is needed to
cover all the cases for all the models is not clear. Therefore,
µ̃z is computed as (ε, δ)-approximation of µz. We say µ̃z is an
(ε, δ)-approximation of µz if Pr[|µz − µ̃z| < ε] ≥ 1 − δ. ε is the

error value and δ is the confidence value of the approximated
value of µ̃z. Dagum et al. in [10] presented a general optimal
approximation algorithm to provide N as an upper bound
on the number of execution traces and compute µ̃z, as the
following.

N =
Υ2 × ε
µ̂z

Υ2 = 2(1 +
√
ε)(1 + 2

√
ε)(1 +

ln3/2
ln2/δ

)Υ

Υ =
4
ε2 (e − 2)ln(2/δ)

In this formula, the value of N depends on the value of µ̂z

which is raw estimates of µz. Here µ̂z = 1+(1+ε)Υ
N , where N is

the number of traces which are needed to be analyzed to at
least b1+(1+ε)Υc number of them satisfies the given property.
For the raw estimation of µz, values of min{1/2,

√
ε} and δ/3

are used to compute the value of Υ.
As described in [20], the modeler defines number of sim-

ulation traces which are required to achieve a given (ε, δ)-
approximation. In most cases time limits are more important
than the number of traces and affects the values of ε and δ.
In other words, time limit is set for simulation and the confi-
dence interval is computed based on the generated traces.

5.2 TRSim Components
TRSim includes three stand alone applications which are

PrepareDB, Logger, and Query Tool. Figure 4 shows the archi-
tectur of TRSim, including the life cycle from the modeling
to the analysis of results. The detailed activities of the men-
tioned applications are described below.
PrepareDB is a command line Java program that creates the
database tables which are required for the Logger based on
a given Timed Rebeca model. A separate table is created for
every message server of each rebec instance using the naming
rule “SimulationID_InstanceName_MessageServerName”.

The tool also creates a table for storing information about
the simulation characteristics such as the environment vari-
ables. It also creates a database view that selects the lowest
time in any of the tables to find the starting time of the simu-
lation.
Logger is a command line Java program that stores all the
logs of the message server calls in a database. Logger uses
the Erlang Jinterface to communicate with Erlang, allowing
Logger to send and receive messages like an Erlang actor. To
achieve a better performance during the simulation, for each
table of the database, a data file is created on disk to store
the logs. The data files are compatible with the schema of
their corresponding tables. At the end of the simulation, the
content of each data file is inserted into the database using
bulk insert.

The logger also detects potential Zeno behavior by count-
ing the number of messages received in a row tagged with
the same time. If this number exceeds a threshold, defined by
the modeler, a warning of possible Zeno behavior is shown
in the application.
Query Tool is a Java desktop application for the analysis of
simulation traces stored in the database, using TeProp for-
mulas. The modeler can select a database which contains
simulation traces, write a TeProp formula, and check its sat-

Database

Timed
Rebeca
Model

TeProp
Property

timedreb2erl TRSim:
PrepareDB

McErlang TRSim:
Logger

Erlang code

Create
tables

Events Log
records

TRSim:
Query Tool

SQL Query

Result

Step 1: Model

Step 2:
Simulation

Step 3: Specification

Result
table

Figure 4: The architectural overview of the TRSim tool-set.

isfiability over all the simulation traces in the database. For
checking a TeProp formula against simulation traces in the
database, mapping from TeProp formulas to SQL queries is
used (described in Section 4). The results of a query is dis-
played in a tabular format, showing the number of simulation
traces, simulation environment parameters, and whether the
property is satisfied. For further uses, the result table can be
exported as a LATEX table.

6. EXPERIMENTAL RESULTS
Using TRSim toolkit and TeProp specifications, we have

analyzed many case studies and reported two of them in this
paper. For each case study, we have run multiple simulations
and checked various TeProp formulas. The source files of
these models and TRSim toolkit are available from the Rebeca
home page [1]. The experiments have been performed on a
server with Intel(R) Xeon(TM) Quad CPU 2.66GHz processor
and 32GB of RAM running 64-bit Ubuntu 10.04.4 LTS with
Linux kernel 2.6.32-38-server, PostgreSQL 9.1.3, and Erlang
R13B03.

6.1 Sensor Network
The sensor network model is introduced and modeled in

[3]. The model consists of two sensors, a scientist, an admin,
and a rescue team. The sensors are set up to measure the
levels of toxic gas in the scientist’s environment. Each sensor
sends the measured values periodically to the admin with
a period of sensor0period time units for the first sensor and
sensor1period for the second sensor. the Admin checks the
received values periodically with a period of adminCheckDe-
lay time units. When the measured value exceeds dangerous
toxic level, the admin immediately notifies the scientist by
a message. If the scientist does not acknowledge the mes-
sage within scientistDeadline time units, the admin sends the
rescue team to save the scientist. If the scientist can not be
rescued within rescueDeadline time units, it will die. There is
a communication delay of netDelay time units between all the
elements of the model.

For the analysis of the model we have used 700 simulation
runs, using seven different settings, depicted in Table 1 (100

simulation runs for each setting). The results of analysis of
the model against its related TeProp formulas are shown in
Table 2. The percentages in the cells of Table 2 are computed
based on the number of traces satisfying the given property.

In the first step, safety of the scientist is evaluated in dif-
ferent settings of the environment (shown in the first row
of Table 2). To this aim, “¬F [0, end] admin.scientistDead()”
TeProp formula is designed to make sure that the admin never
receives and executes “scientistDead” message. The other
properties have similar interpretations.

The results of the verification shows that the model is be-
having as intended; the rescue team is sent when the scientist
does not acknowledge within the time limit and sadly the sci-
entist dies in the case the rescue team does not reach him in
time. The results show well how some timings end in tragic
results. It is interesting to compare the results for property 1
and 2, where for settings 2 and 6 the scientist does not die as
the rescue team is sent for him. But for setting 7 the scientist
does not die although no rescue team is sent, as the scientist
acknowledges the warning message in time. We also observe
in property 3 that the timings for setting 7 avoids sending
the rescue team because scientist acknowledges the admin’s
message.

6.2 Multi Flight Booking
Multi flight booking model is an extended version of the

ticket service (see Figure 1) where timing is crucial. Here,
there are related requests which have to be served by two
different servers in an atomic transaction. Because of the
distribution without synchronization, undesirable behavior
may happens when ending up with one successful request
while the other has been unsuccessful.

The model consists of two airlines and a customer. The
customer starts by finding flights; that involves finding the
first flight and requesting a reservation of a ticket from the
website of the first airline and then finding and reserving
the second flight from the website of the second airline. In
the model it takes findFlightTime1 units of time to find an
appropriate ticket from the first web site and findFlightTime2
time units for the second website. The airline websites keep

Setting Network
delay

Admin
period

Sensor 0
period

Sensor 1
period

Scientist
deadline

Rescue
deadline

1 1 4 2 3 2 3
2 1 4 2 3 2 4
3 2 1 1 1 4 5
4 2 1 1 1 4 6
5 2 1 1 1 4 7
6 2 4 1 1 4 7
7 2 4 1 1 5 7

Table 1: Environment settings used for the simulation of the sensor network model. The first six settings are the same as the
ones in [3].

Property Setting / Result
1 2 3 4 5 6 7

The scientist will not die:
¬F [0,end] admin.scientistDead() 0% 100% 0% 0% 0% 100% 100%

The rescue team never went to rescue:
¬F [0,end] rescue.go() 0% 0% 0% 0% 0% 0% 100%

Admin never misses an acknowledgment
as result of ordering of events within a time
unit: G(admin.checkScientistAck()→ ¬F [0, 0] admin.ack())

0% 0% 0% 0% 0% 0% 100%

Table 2: Overview of TeProp formulas checked for the sensor network. The setting column refers to the environment
variables in Table 1.

the reservations of each flight for either reservationTimeout1 or
reservationTimeout2 time units. After receiving the messages
that both flights have been reserved, the customer starts to
book the flights by sending a request to the airlines websites.
It takes bookingTime1 and bookingTime2 units of time to prepare
the booking order before sending it. If an airline website
receives the booking order before the reservation, it sends
a confirmation that the flight has been successfully booked,
otherwise a message is sent indicating that the flight was not
booked. There is a communication delay of networkDelay time
units between all the actors of this model.

For the analysis of the model, we have used 700 simulation
runs, using 7 different settings, depicted in Table 3 (100 sim-
ulation runs for each setting). The results of the analysis of
the model against its related TeProp formulas are shown in
Table 4.

The results in Table 4 show that the model can behave as
intended; similar to the ticket service model in which valid
tickets are booked if the timing parameters are set properly.
Comparing the results of properties 1 to 3 clearly shows the
impact of an unsuccessful booking for a flight, as both flights
must be booked for a successful multi-flight booking. Even
though our success rate of booking a ticket for each flight is
close to 50% we can end up with only 30% of successful multi-
flight bookings. Property 4 then gives us an indication on
whether the time for keeping the reservations is too generous.
This is important since in reservation systems the goal is to
minimize the this time (keeping the reservation) to fulfill as
many requests as possible.

7. RELATED WORK
Böhlen et al. introduced a transformation from Linear Tem-

poral Logic (LTL) to TSQL2, a temporal extension to the SQL
language [9]. Our transformation from TeProp to SQL differs
from theirs in the way that we are also working with time but
use a standard SQL database (not a temporal extension).

TLtoSQL is a tool-set for rapid post-mortem verification
of systems using temporal logic to SQL [11]. Post-mortem
execution log files are read into the toolkit and automatically
converted into JUnit test cases. The JUnit test cases are then

executed and the event sequence during the run is stored in a
database along with the events, their relative order, and time.
The toolkit then offers a graphical editor for Linear Temporal
Logic (LTL) and Metric Temporal Logic (MTL) formal spec-
ifications. The output of the editor is SQL query code that
the user can then execute on the database. While both TRSim
and TLtoSQL make use of a database and conversion from a
property language to SQL, they differ in their intended use.
TLtoSQL is meant to be a verification framework for verifying
system implementations using execution logs, where TRSim
is an integrated environment for simulation and verification
of Timed Rebeca models; making it easy to run verification
queries over multiple simulations. LTtoSQL also stores all the
information in one database table, while TRSim uses a sepa-
rate table for each message server. This way, the performance
of the analysis of SQL queries is increased significantly.

8. CONCLUSION
In this paper, we proposed an approach for verification

of timed actor models, using database and simulation tech-
nique; and we illustrated its applicability with a number of
case studies. We used relational database as a repository of
simulation traces and SQL queries for the analysis of traces.
To analyze the relation among the events occurred during
the execution of actor systems, we introduced an event based
property language (TeProp). We also proposed a mapping
from TeProp formulas to SQL queries. The database system
executes SQL queries corresponding to TeProp formulas over
simulation traces and reports the verification results. This
way we can use distributed SQL query analysis or any other
solutions proposed for database systems for analysis of big
data sets.

Acknowledgement
The work on this paper was supported by the project “Timed
Asynchronous Reactive Objects in Distributed Systems: TARO”
(nr. 110020021) of the Icelandic Research Fund.

9. REFERENCES
[1] Rebeca Home Page. http://www.rebeca-lang.org.

Setting
Network

delay
findFlight

Time1
findFlight

Time2
booking
Time1

booking
Time2

reservation
Timeout1

reservation
Timeout2

1 1 1 2 1 2 2 4
2 1 2 2 2 2 5 10
3 2 1 3 0 0 2 5
4 2 2 1 0 3 4 8
5 2 2 1 2 1 2 4
6 2 3 2 1 1 8 10
7 2 3 2 1 1 15 16

Table 3: Environment settings used for the simulation of the multi flight booking model.

Property Setting / Result
1 2 3 4 5 6 7

The first ticket is successfully booked:
F [0,end] customer.flightBooked(f == “1” ∧ successful == “true”) 7% 52% 13% 28% 0% 90% 100%

The second ticket is successfully booked:
F [0,end] customer.flightBooked(f == “2” ∧ successful == “true”) 9% 54% 50% 48% 0% 100% 100%

All tickets are successfully booked:
¬F [0,end] customer.flightBooked(successful == “false”) 2% 31% 7% 19% 0% 90% 100%

Booking occurred 3 or more time units
before the reservation ran out:
F [0,end] (ws1.bookFlight(){ F [3, end] ws1.reservationExpired()) ∨
F [0,end] (ws2.bookFlight(){ F [3, end] ws2.reservationExpired())

0% 75% 0% 30% 0% 57% 100%

Table 4: Overview of TeProp properties checked for the multi flight booking. The setting column refers to the environment
variables in Table 3.

[2] N. Abid, S. Dal Zilio, and D. Le Botlan. A Real-Time
Specification Patterns Language. Technical Report
LAAS 11364, 2011.

[3] L. Aceto, M. Cimini, A. Ingólfsdóttir, A. H. Reynisson,
S. H. Sigurdarson, and M. Sirjani. Modelling and
Simulation of Asynchronous Real-Time Systems using
Timed Rebeca. In M. R. Mousavi and A. Ravara,
editors, FOCLASA, volume 58 of EPTCS, pages 1–19,
2011.

[4] L. Aceto, A. Ingólfsdóttir, K. G. Larsen, and J. Srba.
Reactive Systems: Modelling, Specification and Verification.
Cambridge University Press, New York, NY, USA, 2007.

[5] G. Agha. Actors: a model of concurrent computation in
distributed systems. MIT Press, Cambridge, MA, USA,
1986.

[6] R. Alur, C. Courcoubetis, and D. Dill. Model-checking
for real-time systems. In Logic in Computer Science, 1990.
LICS ’90, Proceedings., Fifth Annual IEEE Symposium on e,
pages 414 –425, jun 1990.

[7] R. Alur and T. A. Henzinger. A really temporal logic. J.
ACM, 41(1):181–203, Jan. 1994.

[8] P. Bellini, P. Nesi, and D. Rogai. Expressing and
organizing real-time specification patterns via temporal
logics. J. Syst. Softw., 82(2):183–196, Feb. 2009.

[9] M. H. Böhlen, J. Chomicki, R. T. Snodgrass, and
D. Toman. Querying TSQL2 Databases with Temporal
Logic. In P. M. G. Apers, M. Bouzeghoub, and
G. Gardarin, editors, Advances in Database Technology -
EDBT’96, 5th International Conference on Extending
Database Technology, Avignon, France, March 25-29, 1996,
Proceedings, volume 1057 of Lecture Notes in Computer
Science, pages 325–341. Springer, 1996.

[10] P. Dagum, R. M. Karp, M. Luby, and S. M. Ross. An
optimal algorithm for monte carlo estimation. SIAM J.
Comput., 29(5):1484–1496, 1995.

[11] D. Drusinsky. TLtoSQL: Rapid post-mortem
verification using temporal logic to sql code generation
in the Eclipse PDE. In SoSE, pages 1–5, 2009.

[12] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns
in property specifications for finite-state verification. In
Proceedings of the 21st international conference on Software
engineering, ICSE ’99, pages 411–420, New York, NY,
USA, 1999. ACM.

[13] C. B. Earle and L.-Å. Fredlund. Verification of timed
erlang programs using mcerlang. In FMOODS/FORTE,
pages 251–267, 2012.

[14] L.-Å. Fredlund and H. Svensson. McErlang: a model
checker for a distributed functional programming
language. SIGPLAN Not., 42(9):125–136, Oct. 2007.

[15] C. Hewitt. Description and Theoretical Analysis (Using
Schemata) of PLANNER: a Language for Proving
Theorems and Manipulating Models in a Robot.
Technical Report 258, MIT AI Laboratory, 1972.

[16] M. M. Jaghoori, M. Sirjani, M. R. Mousavi,
E. Khamespanah, and A. Movaghar. Symmetry and
Partial Order Reduction Techniques in Model
Checking Rebeca. Acta Inf., 47(1):33–66, 2010.

[17] E. Khamespanah, Z. S. Kaviani, R. Khosravi, M. Sirjani,
and M.-J. Izadi. Timed-Rebeca Schedulability and
Deadlock-Freedom Analysis Using Floating-Time
Transition System. In AGERE!@SPLASH, pages 23–34,
2012.

[18] S. Konrad and B. Cheng. Real-time specification
patterns. In Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on, pages 372 –
381, may 2005.

[19] R. Koymans. Specifying Real-Time Properties with
Metric Temporal Logic. Real-Time Systems, 2(4):255–299,
1990.

[20] H. Kristinsson, A. Jafari, E. Khamespanah,
B. Magnusson, and M. Sirjani. Model Checking and
Performance Evaluation of Timed Rebeca Models
Using McErlang. In AGERE!@SPLASH, 2013.

[21] R. Mattolini and P. Nesi. An interval logic for real-time
system specification. Software Engineering, IEEE
Transactions on, 27(3):208 –227, mar 2001.

[22] A. Pnueli. The temporal logic of programs. In
Foundations of Computer Science, 1977., 18th Annual
Symposium on, pages 46 –57, 31 1977-nov. 2 1977.

[23] PostgreSQL. http://www.postgresql.org, 2012.
[24] S. Ren and G. Agha. RTsynchronizer: Language

Support for Real-Time Specifications in Distributed
Systems. In R. Gerber and T. J. Marlowe, editors,
Workshop on Languages, Compilers, & Tools for Real-Time
Systems, pages 50–59. ACM, 1995.

[25] Z. Sabahi-Kaviani, R. Khosravi, M. Sirjani, P. C.
Ölveczky, and E. Khamespanah. Formal semantics and
analysis of Timed Rebeca in Real-Time Maude. In
FTSCS, pages 178–194, 2013.

[26] H. Sabouri and M. Sirjani. Slicing-Based Reductions for
Rebeca. In Proceedings of FACS 2008. ENTCS, 2008.

[27] M. Sirjani, F. S. de Boer, and A. Movaghar-Rahimabadi.
Modular Verification of a Component-Based Actor
Language. J. UCS, 11(10):1695–1717, 2005.

[28] M. Sirjani and M. M. Jaghoori. Ten Years of Analyzing
Actors: Rebeca Experience. In G. Agha, O. Danvy, and
J. Meseguer, editors, Formal Modeling: Actors, Open
Systems, Biological Systems, volume 7000 of Lecture Notes
in Computer Science, pages 20–56. Springer, 2011.

[29] M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer.
Modeling and Verification of Reactive Systems using
Rebeca. Fundam. Inform., 63(4):385–410, 2004.

