
Efficient TCTL Model Checking Algorithm for Timed Actors

E. Khamespanah
University of Tehran, Tehran,

Iran
Reykjavik University,
Reykjavik, Iceland

e.khamespanah@ut.ac.ir

R. Khosravi
University of Tehran

Tehran, Iran
r.khosravi@ut.ac.ir

M.Sirjani
Reykjavik University
Reykjavik, Iceland
marjan@ru.is

ABSTRACT
Non-Polynomial time complexity of model checking algo-
rithms for TCTL properties in dense time is one of the obsta-
cles against using model checking for timed systems. Alter-
natively, polynomial time algorithms are suggested for model
checking discrete time models presented as Duration Time
Graphs (DTG) versus a subset of TCTL formula (TCTL≤,≥).
While TCTL≤,≥ can be model checked in polynomial time, the
problem of model checking for exact time condition (TCTL=)
is an NP-Hard problem unless certain conditions hold. In this
work we tackle model checking of timed actors using DTG.
At the first step, we propose a reduction technique by fold-
ing all the instantaneous transitions, resulting folded timed
transition system (FTS). At the second step, we show how the
FTS of timed actors with discrete time can be mapped to a
DTG. Then, we show when the necessary conditions hold for
the FTS of timed actors and hence there is an O(n2) algorithm
for model checking of complete TCTL properties (including
TCTL≤,≥ and TCTL=) which have small constant time quan-
tifiers. We use a set of case studies to illustrate the impact of
using this technique in different application domains.

Categories and Subject Descriptors
D.2.4 [SOFTWARE ENGINEERING]: Software/Program Ver-
ification - Assertion checkers, Formal methods, Model check-
ing.

Keywords
Actor Model, Timed Rebeca, Model Checking, TCTL, Discrete
Time Transition System, Duration Transition Graph

1. INTRODUCTION
Using timed actors1 for modeling and analysis of real-time

systems with asynchronous message passing is one of the

1We use “timed actor” and “discrete timed actor” in this
paper interchangeably.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AGERE ’14 Portland, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

well-known approaches. Although there are some works on
verification of timed actors [10, 7], the lack of efficient model
checking algorithm has limited the use of model checking for
verification of timed actors.

Most of the works on model checking of real-time systems
are done for Alur and Dill’s Timed Automata [3]. As a result,
there exists a deep theoretical knowledge and large number of
practical experiences for the systems which can be specified
by timed automata. Based on established theoretical works
the model checking algorithms of timed automata are at least
in PSPACE-hard class for TCTL properties [2]. Timed model
checkers like UPPAAL only support a subset of TCTL that
can be model checked efficiently [4].

On the contrary, wider range of TCTL properties can be ef-
ficiently analyzed for simpler families of timed models. One
simplification is done in [8, 6] by assuming that each transi-
tion takes exactly one time unit. Later, a small extension is
added to this work by allowing existence of instantaneous
transition (zero time transitions) in [13]. Finally Timed Tran-
sition Graph (TTG) [5] and Duration Transition Graph (DTG)
[12] extended the former works by associating discrete time
duration to the transitions. Although TTG and DTG are less
expressive than timed automata, there are efficient model
checking algorithms for them. DTG is expressive enough to
being used as the semantics of discrete timed actors, as we
used here.

In this work we use the algorithm of [12] for model check-
ing of timed actors. To this aim, in Section 4, we show that
the semantics of discrete timed actors, shown as Timed Tran-
sition Systems (TTS), can be captured as a DTG and hence
the algorithm of [12] can be used for model checking of
it. Although the proposed model checking algorithm effi-
ciently works for TCTL≤,≥ properties, model checking against
TCTL= properties remains NP-complete. We propose a new
approach based on [15] for model checking of TCTL= proper-
ties for Timed Rebeca models. Timed Rebeca is an extension
of Rebeca [19, 18] with time features for modeling and ver-
ification of time-critical systems. Rebeca is an actor-based
language for modeling concurrent and reactive systems with
asynchronous message passing. An introduction to Timed
Rebeca and its formal semantics is presented in Section 2 and
TCTL model checking of DTGs is presented in Section 3. The
results of applying the approach of this work is depicted in
Section 5 to illustrate the impact of the approach in verifica-
tion of timed actors.

The current work will add an efficient tool for model check-
ing TCTL properties of Timed Rebeca models to the existing
rich toolset of Rebeca. A short overview of the previous ap-

proaches are presented in the following as related works.
Related Work. A tool is developed for model checking Timed
Rebeca by transforming Timed Rebeca models to timed au-
tomata. The resulted timed automata are model checked
against TCTL properties using UPPAAL toolset. Timed au-
tomata are used as back-end timed model of different high-
level modeling languages and UPPAAL is used as a success-
ful back-end model checker. But in case of Timed Rebeca,
because of the inefficiency of modeling asynchronous com-
munication among actors by synchronized communication
of timed automata, model checking results in state space ex-
plosion even for middle-sized case studies [11].

In another work, Floating Time Transition System (FTTS) is
defined as an event-based semantics for Timed Rebeca mod-
els in [11]. Focusing on the analysis of Timed Rebeca based
on the key features of actors, being event-driven and iso-
lated, results in a significant amount of state space reduction
in FTTS. However, FTTS cannot be used for model checking
state-based TCTL formulas. States in FTTS contain the local
times of each rebec, in addition to values of their state vari-
ables and the bag of their received messages. The local times
of rebecs in a state can be different from each other, and there
is no unique value for time in each state. This is only admis-
sible where we are not interested in the state of all the rebecs
at a specific point of time, e.g. checking for deadlock freedom
and deadline misses, or any other event-based property.

Another tool is developed for mapping Timed Rebeca to
Real-Time Maude. This enables a formal model-based method-
ology which combines the convenience of intuitive model-
ing in Timed Rebeca with formal verification in Real-Time
Maude. Real-Time Maude is supported by a high-performance
toolset providing a spectrum of analysis methods, includ-
ing simulation through timed rewriting, reachability analy-
sis, and (untimed) linear temporal logic (LTL) model check-
ing as well as timed CTL model checking. As described in
[16], a reduction technique is applied to the generated Real-
Time Maude models to avoid state space explosion. Mainly,
a number of statements (which are related to the instan-
taneous statements of Timed Rebeca except sending mes-
sage) are “group together” and execute them in one “atomic”
rewrite step. This approach significantly improves the perfor-
mance of the model checking in comparison with the “stan-
dard” approaches (i.e. each action is performed by a rewrite
step). While Real-time Maude provides us with a wide range
of analysis tools, our current work only covers the TCTL
model checking. The experimental results show that our new
tool outperform Real-Time Maude in TCTL model checking.
In the reduction technique of our current work, we group
together instantaneous statements including sending mes-
sages. This results in more reduction on the size of state
spaces.

There are also analysis tools for Timed Rebeca models us-
ing simulation techniques. In [14], the simulation engine
of Erlang is used to generate a number of traces and verify
them. Using this approach, state space explosion is avoided;
however, it does not guarantee the correctness of model.
Contributions. In a nutshell, the contributions of this paper
can be summarized to proposing a technique for efficient
TCTL model checking of timed actors by:

• Proposing Folded Timed transition System by applying
a reduction technique on Timed transition System used
as the semantics of timed actors

• Proving that the Folded Timed Transition System is a
DTG which is used for model checking against TCTL≤,≥
properties

• Using a modified version of pseudo-polynomial time
algorithm of finding the Exact Path Length in weighted
graphs for model checking against TCTL= properties

2. TIMED REBECA
Timed Rebeca is an extension of Rebeca [19] with time fea-

tures for modeling and verification of time-critical systems.
We illustrate Timed Rebeca language constructs using a sim-
plified version of ticket service example in Figure 1.

A Timed Rebeca model consists of a number of reactive
classes, each describing the type of a certain number of actors
(called rebecs in Timed Rebeca. In this paper we use rebec and
actor interchangeably). In the ticket service model, we have
three reactive classes TicketService, Agent, and Customer.
Each reactive class declares a set of state variables. The local
state of each actor is defined by the content of its message bag
and values of its state variables. Following the actor model,
the communication in the model takes place by asynchronous
messages passing among actors. Each actor has a set of known
rebecs to which it can send messages to. For example, an ac-
tor of type TicketService knows an actor of type Agent (line
2), to which it can send messages (line 12). Reactive classes
declare the messages to which they can respond. The way an
actor responds to a message is specified in a message server.
An actor can change its state variables through assignment
statements (e.g., line 13), make decisions through conditional
statements (not appearing in our example), and communicate
with other actors by sending messages (e.g., line 12). The pe-
riodic behavior is modeled by actors sending messages to
themselves (e.g., line 38). Since the communication is asyn-
chronous, each actor has a message bag from which it takes the
next incoming message. The ordering of message in a mes-
sage bag is based on the arrival times of messages. An actor
takes the first message from its message bag, executes the
corresponding message server in an isolated environment,
and then takes the next message (or waits for the next mes-
sage to arrive) and so on. The message server may have
nondeterministic assignment statement which is used to model
nondeterminism in the behavior of a message server.

Finally, the main block is used to instantiate the actors of
the system. In the ticket service model, three actors are cre-
ated receiving their known rebecs and the arguments to their
constructor upon instantiation (lines 42-44).

Timed Rebeca adds three primitives to Rebeca to address
timing issues: delay, deadline and after. A delay statement
models passing of time for an actor during execution of a
message server (line 14). Note that all other statements are
assumed to execute instantaneously. The keywords after and
deadline can be used in conjunction with a method call. The
term after n indicates that it takes n units of time for the
message to be delivered to its receiver. For example, the
periodic task of requesting a new ticket is modeled in line 45
by the customer sending a try message to itself and letting
the receiver (itself) to take it from its message bag only after 30
units of time. The term deadline n shows that if the message
is not taken in n units of time, it will be purged from the

1 reactiveclass TicketService {
2 knownrebecs {Agent a;}
3 statevars {
4 int issueDelay, nextId;
5 }
6 TicketService(int myDelay) {
7 issueDelay = myDelay;
8 nextId = 0;
9 }

10 msgsrv requestTicket() {
11 delay(issueDelay);
12 a.ticketIssued(nextId);
13 nextId = nextId + 1;
14 }
15 }

16 reactiveclass Agent {
17 knownrebecs {
18 TicketService ts;
19 Customer c;
20 }
21 msgsrv requestTicket() {
22 ts.requestTicket()
23 deadline(5);
24 }
25 msgsrv ticketIssued(byte id) {
26 c.ticketIssued(id);
27 }
28 }
29 reactiveclass Customer {
30 knownrebecs {Agent a;}

31 Customer() {
32 self.try();
33 }
34 msgsrv try() {
35 a.requestTicket();
36 }
37 msgsrv ticketIssued(byte id) {
38 self.try() after(30);
39 }
40 }
41 main {
42 Agent a(ts, c):();
43 TicketService ts(a):(3);
44 Customer c(a):();
45 }

Figure 1: The Timed Rebeca model of ticket service system.

receiver’s message bag automatically. For example, lines 26-
27 indicates a requestTicket message to the ticket service
must be started to execute before five units from sending the
message.

2.1 Semantics of Timed Rebeca In Timed
Transition System

At the first step of presenting the semantics of Timed Re-
beca, we formalize the definition of a number of primitive
concepts in Timed Rebeca. A rebec ri with the unique iden-
tifier i is defined as the tuple (Vi,Mi,Ki) where Vi is the set of
its state variables, Mi is the set of its message servers, and Ki
is the set of its known rebecs. The set of all the values of the
state variables of ri is denoted by Valsi. For a Timed Rebeca
modelM, there is a universal set Iwhich contains identifiers
of all the rebecs ofM.

A (timed) message is defined as tmsg = ((sid, rid,mid), ar, dl),
where rebec rsid sends the message mmid ∈ Mrid to rebec rrid.
This message is delivered to the rebec rrid at ar ∈ N0 as its
arrival time and the message should be served before dl ∈ N0
as its deadline. For the sake of simplicity, we ignore the
parameters of the messages here.

Each rebec ri has a message bag Bi which can be defined as
a multiset of timed messages. Bi stores the timed messages
which are sent to ri. The set of possible states of Bi is denoted
by Bagsi.

Timed transition system is generally the standard semantic
framework for discrete timed systems, and we define the TTS
of Timed Rebeca in this section.

Timed Transition System of the Timed Rebeca model M
is a tuple of TTS = (S, s0,Act,→,AP,L) where S is the set of
states, s0 is the initial state, Act is the set of action, and→ is
the transition relation. AP is the set of atomic propositions
and L is a labeling function in form of L : S→ 2AP.

States. A state s ∈ S consists of the local states of the rebecs,
together with the current time of the state. The local state of
rebec ri in state s is defined as the tuple (Vs,i,Bs,i, pcs,i, ress,i),
where

• Vs,i ∈ Valsi is the values of the state variables of ri

• Bs,i ∈ Bagsi is the message bag of ri

• pcs,i ∈ {null} ∪ (Mi ×N) is the program counter, tracking
the execution of the current message server (null if ri is
idle in s)

• ress,i ∈N0 is the resuming time, if ri is executing a delay
in s

So, state s ∈ S can be defined as the following where nows ∈N
is the current time of s.∏

i∈I

(
Vs,i,Bs,i, pcs,i, ress,i

)
,nows

Initial State. s0 is the initial state of the Timed Rebeca model
Mwhere the state variables of the rebecs are set to their initial
values (according to their types), the initialmessage is put
in the bag of all rebecs having such a message server, the
program counters of all rebecs are set to null, and the time of
the state is set to zero.

Actions. There are three possible types of actions: send-
ing a message tmsg = ((sid, rid,mid), ar, dl) (as defined in Sec-
tion 2.1), executing a statement by an actor (which we con-
sider as an internal transition τ), and progress of n ∈N units
of time. Hence, the set of actions is defined as

Act =
⋃
i∈I

((I × i ×Mi) ×N ×N) ∪ {τ} ∪N

Transition Relations. Before defining the transition relation,
we introduce the notation Es,i which denotes the set of enabled
messages of rebec ri in state s which contains the messages
which their arrival time is less than or equal to nows. The tran-
sition relation→⊂ S×Act×S is defined such that (s, act, t) ∈→
if and only if one of the following conditions holds.

1. (Taking a message for execution) In state s, there exists
ri such that pcs,i = null and there exists tmsg ∈ Es,i. Here,

we have a transition of the form s
tmsg
−→ t. This transition

results in extracting tmsg from the message bag of ri,
setting pct,i to the first statement of the message server
corresponding to tmsg, and setting rest,i to nowt (which
is the same as nows). Note that Vt,i remains the same as
Vs,i. These transitions are called taking-event transitions.

2. (Internal action) In state s, there exist ri such that pcs,i ,
null and ress,i = nows. The statement of message server
of ri specified by pcs,i is executed and one of the fol-
lowing cases occurs based on the type of the statement.
Here, we have a transition of the form s τ

→ t.

(a) Non-delay statements: the execution of the state-
ment may change the value of a state variable of
rebec ri or sending a message to other rebecs. Here,
pct,i is set to the next statement (or null if there is
no more statements). All other elements of t is the
same as those of s.

(b) Delay statement with parameter d ∈ N: the ex-
ecution of delay statement sets rest,i to nows + d.
All other elements of the state remain unchanged.
Particularly, pct,i = pcs,i because the execution of
delay statement is not yet complete. The value of
the program counter will set to the next statement
after completing the execution of delay (as will be
shown in the third case).

These transitions are called internal transitions.

3. (Progress of time) If in state s none of the conditions in
cases 1 and 2 hold, meaning that @ri ·((pcs,i = null∧Es,i ,
∅) ∨ (pcs,i , null ∧ ress,i = nows)), the only possible
transition is via progress of time. In this case, nowt is set
to nows + d where d ∈ N is the minimum value which
makes one of the aforementioned conditions become
true. The transition is of the form s d

→ t. For any rebec
ri, if pcs,i , null and ress,i = nowt (the current value of
pcs,i points to a delay statement), pct,i is set to the next
statement (or to null if there are no more statements).
These transitions are called time transitions. Note that
when such a transition exists, there is no other outgoing
transition from s and it called progress-of-time state.

Atomic Propositions. In General, atomic propositions are
used to formalize temporal characteristics of states. In case of
Timed Rebeca, atomic propositions intuitively express simple
known facts about the value of state variables of rebecs in
states of the model under consideration.

Labeling Function. Function L : S → 2AP relates a set of
atomic propositions to each state, shown by L(s) for a given
state s. L(s) intuitively relates the atomic propositions which
are satisfied in state s.

3. TIMED MODEL CHECKING FOR DIS-
CRETE TIME SYSTEMS

As mentioned in Section 1, there are many timed mod-
els for modeling of discrete time systems which can be model
checked efficiently (in polynomial-time). Usually, these timed
models are based on Kripke Structures (KS). Using KS, the
elapsing of time is handled by events. Duration transition
graph (DTG) is defined as an extension of KS for handling
real-time aspects of systems in a way that model checking re-
mains efficient (polynomial-time) [12]. A duration transition
graph is a transition system which assigns duration to each
transition. A duration is shown by an interval between two
natural numbers. Figure 2 is an example of DTG to model
the academic activities of a researcher.

Definition 1 (Duration Transition Graph). A duration
transition graph is a tuple of DTG = (S, s0,Act,→,AP,L) where S
is the set of states, s0 is the initial state, Act is the set of action, and
→⊆ S×Act× ρ× S is the transition relation such that ρ is a finite
(ρ = [n,m] · n,m ∈ N) or right-open infinite (ρ = [n,∞) · n ∈ N)
interval. AP is the set of atomic propositions and L is a labeling
function in form of L : S→ 2AP.

some integer constant, set a lower or upper bound for durations, while “= c”
requires a precise value. TCTL is the extension of CTL with all three types
of constraints, and we write TCTL≤,≥ for the fragment of TCTL where the
“=c” constraints are forbidden. Other classical temporal logics (e.g., CTL∗ or
LTL) can be extended in the same way, and we call TCTL∗, TLTL≤,≥, etc.,
the resulting formalisms.

Model checking TCTL over Kripke structures can be done in time 2 O(|S|3 ·
|ϕ|) [EMSS92]. This is in sharp contrast with model checking over Timed Au-
tomata (PSPACE-complete [ACD93]) and with model checking CTL extended
by freeze variables (PSPACE-complete over KSs [LST03]).

Thus it appears that, for timed properties of timed systems, polynomial-time
model checking is possible if one picks the right logic (e.g., TCTL) and the
adequate models (e.g., KSs).

Our contribution. In this article, we aim at defining extensions of KSs
for handling real-time aspects in such a way that model checking remains
efficient (polynomial-time). We propose and study durational transition graphs
(DTGs), a very natural extension of KSs. As illustrated in Fig. 1, a DTG
is a KS where transitions have possible durations specified by an interval

New
Idea

Draft
Written

Submis−
sion

Wait for
Submi.

Notif.
Accept

Final
Version

Publication

Notif.
Reject

Revised
Draft[7,45]

0
0

[25,50] [25,50]

[0,7]
[50,110]

1

[0,10]

0

[0,∞)

[0,∞)

[0,366]

Fig. 1. A DTG modeling publications by one researcher (time in days)

of integers. Such structures generalize the models where every transition is
considered as taking 0 or 1 time unit and provide a higher-level viewpoint. For
example, steps having long durations can be modeled without long sequences
of transitions. Also, the size of a DTG is mostly insensitive to a change of
time scale. We study two semantics for DTGs. Indeed time elapsing can be
interpreted in different manner: Either transitions are atomic, and time elapses
abruptly, all in one step — then the duration of a transition can be seen as a

2 In such statements, |S| denotes the size of the structure, and |ϕ| the length of the
temporal formula.

3

Figure 2: A DTG modeling publications by one researcher
(time in days) [12].

In the above definition, the meaning of transition between
two state can be interpreted in two different ways, called jump
semantics and continuous semantics. For a given transition
(s, act, [n,m], s′) the mentioned semantics are interpreted as
the following.

Jump Semantics using this semantics, moving from state s to
s′ takes an integer time d ∈ [n,m]. Hence, if the system
is in state s at time t, then it is in state s′ at time t + d and
there is no position for times t + 1, t + 2, · · · , t + d − 1.
The idea of this semantics is the same as the semantics
of Timed Transition Graph [5]

Continuous Semantics using this semantics, the system waits
for d − 1 units of time (d ∈ [n,m]) in state s before per-
forming action act. The idea of this semantics is the
same as the semantics of timed automata of Alur [3]
and the semantics of Timed Rebeca as described in Sec-
tion 2.

Using DTG, there is a polynomial-time model checking
algorithm for TCTL properties; however, model checking of
TLTL or TCLT∗ properties remains PSPACE-complete.

Timed CTL (TCTL) is a real-time variant of CTL aimed
to express properties of timed systems. In TCTL, the until
modality is equipped with a time constraint such that the
TCTL formula Φ Uρ Ψ holds for state s if and only if Ψ holds
in state s′while Φ holds in all states from s to s′ and time differ-
ence between s and s′ satisfies condition ρ. In the following,
its interpretation for DTGs is presented [12].

Definition 2 (Syntax of TCTL). A TCTL formula is formed
according to the following grammar:

Φ ::= p | ¬Φ | Φ1 ∧Φ2 | ∃ϕ | ∀ϕ

where p is an atomic proposition and ϕ is a path formula. A path
formula in TCTL is formed according the the following grammar:

ϕ ::= X Φ | Φ U∼c Φ

where c is a natural number and ∼∈ {<,≤,=,≥, >}.

Definition 3 (Semantics of TCTL). The following clauses
show that when a given TCTL formula Φ holds for state s of DTG =
(S, s0,Act,→,AP,L). Here, we assumed that Path(DTG, s0) rep-
resents a set of timed path of DTG from the state s0 in form of

π ∈ Path(DTG, s0) ∧ π = s0
d0
→ s1

d1
→ · · · .

• s |= ∃X Φ⇔ ∃π ∈ Path(DTG, s) · s1 |= Φ

• s |= ∀X Φ⇔ ∀π ∈ Path(DTG, s) · s1 |= Φ

• s |= ∃Φ1U∼cΦ2 ⇔ ∃π ∈ Path(DTG, s) ∧ ∃n ≥ 0 · (sn |=
Φ2∧

∑
i∈[0,n) di satisfies condition∼c∧(∀ 0 ≤ j < n · s j |= Φ1)

• s |= ∀Φ1U∼cΦ2 ⇔ ∀π ∈ Path(DTG, s) ∧ ∃n ≥ 0 · (sn |=
Φ2∧

∑
i∈[0,n) di satisfies condition∼c∧(∀ 0 ≤ j < n · s j |= Φ1)

In the following we introduce the model checking algo-
rithm of DTGs against TCTL≤,≥ properties according to [12].
The modified version of this algorithm is used for model
checking of Timed Rebeca models.

Let DTGM = (S, s0,Act,→,AP,L) be a DTG. The extended
version of standard CTL model checking algorithm is used to
support ∃Φ1U∼cΦ2 and ∀Φ1U∼cΦ2 subformulas. The follow-
ing two cases show that how the extension works for timed
subformula ξ = ∃Φ1U∼cΦ2.

• ξ = ∃Φ1U≤cΦ2: Assume that DTGM is reduced to
subgraph DTGsub

M
= (S′, s′0,Act,→′,AP′,L′) where only

states satisfying ∃Φ1UΦ2 are kept. In addition, the
value of lower bound of duration intervals are assumed
as the weight of each transition of DTGsub

M
. This way,

any state s ∈ S′ is in s |= ξ relation iff running single
source shortest path algorithm from state s ∈ S′ results in
finding a path from s to s′ where s′ |= Φ2 and the weight
of the path is not bigger than c.

• ξ = ∃Φ1U≥cΦ2: In this case, we assumed that we have
DTGsub

M
the same as the case one. Here s ∈ S′ is in s |= ξ

relation iff one of the following condition holds.

– there is a longest acyclic path from s to a state
which satisfies Φ2

– there is a path with cycle inside path from s to a
state which satisfies Φ2

Both of these cases can be checked in polynomial time.
Formulas in form of ∀Φ1U∼cΦ2 can be transformed to their

equivalent formulas with∃U∼c operator. Therefore, the above
cases can be used to verify them.

4. TCTL MODEL CHECKING OF TIMED
REBECA

For TCTL model checking of Timed Rebeca models, at the
first step, we propose a reduction technique to reduce the size
of timed transition systems, called “folding instantaneous
transitions”. The model checking algorithms of this paper
works for reduced timed transition systems (folded timed
transition system or FTS in short). We model check TCTL≤,≥
properties using the algorithms of [12]. To this aim, we prove
that FTS of a Timed Rebeca model is a DTG. Therefore, we can
use polynomial-time algorithms for model checking of Timed
Rebeca models against TCTL≤,≥. Then, we show that the ap-
proach of [15] can be used to have an efficient algorithm for
model checking of TCTL= properties in FTS. Finally, we dis-
cuss that using FTS, the model checking algorithm of Timed
Rebeca models against TCTL properties reduced to an O(n2)
problem for a wide range of TCTL properties.

Figure 3: Example of how the folding instantaneous transi-
tions reduction works.

4.1 Folding Instantaneous Transitions
Folding instantaneous transitions is a reduction technique

that eliminates instantaneous transitions from the state space.
Applying this reduction technique results in a transition sys-
tem (FTS) which has only progress-of-time transitions. The
main idea behind FTS is the fact that in timed actor systems
with continuous semantics the residual time in states with
instantaneous transitions are zero. Therefore, if we are look-
ing for correctness of properties which are defined by state
propositions (not action propositions) only the progress-of-
time states can be considered. It means that the environment
observes the value of state variables in the state before start-
ing the first instantaneous transition and the state after the
last instantaneous transition.

Regarding to the continuous semantics of Timed Rebeca
and as we are looking for model checking against TCTL prop-
erties with state propositions, folding instantaneous transi-
tion reduction is applicable for TTS of Timed Rebeca mod-
els. In Timed Rebeca, taking-event and internal transitions
are instantaneous and sequence of taking-event and internal
transitions are surrounded by progress-of-time transitions (it
is assumed that the system does not have Zeno behavior).
Figure 3 shows a FTS (in the right side) corresponding to
the timed transition system (in the left side) of a Timed Re-
beca model. In the figure, the states with bold borders are
progress-of-time states. We assumed that after progress of
time by d1 time units, one actor starts doing a new action
(shown by taking-event transition a) and two other actors
continue their previously started actions (shown by internal
transitions τb and τc).

For formal definition of FTS of Timed Rebeca models, at the
first step, we need to define a function which finds the nearest
progress-of-time states from a given state. For a given timed
transition system TTSM = (S, s0,Act,→,AP,L) a set of nearest

progress-of-time states from a given state s ∈ S is shown by
npts(s). Each state s′ ∈ npts(s) is a progress-of-time state to
which there is a path π = s, s1, s2, · · · , sn, s′ where none of
s1, s2, · · · , sn are progress-of-time state. Algorithm 10 shows
the details of finding npts. As we assumed that the Timed
Rebeca models are Zeno free, all the cycles of TTSM have at
least one progress-of-time state. Therefore, the while loop in
line 3 of Algorithm 10 terminates in polynomial time. Based
on Zeno freedom assumption, in Algorithm 10 each transition
of the system’s transition system is traversed at most once in
while loop; hence, the order of the algorithm is O(n2) where
n is the number of states.

Algorithm 1: npts(s) finds the nearest progress-of-time
states of a given state s

Input: State s from a timed transition system
Output: Set of nearest progress-of-time states

1 Π← ∅
2 Γ← {s}
3 while Γ , ∅ do
4 remove s′ from Γ
5 if IS_PROGRESS_OF_TIME(s′) then
6 Π← Π ∪ {s′}
7 else
8 Γ← Γ ∪ SUCCESSORS(s′)

9 return Π
10 using Breadth-First Search

Using the definition of npts, the FTS of a Timed Rebeca
model is defined based on TTS of that model as the following.

Definition 4 (Folded Timed Transition System). For a
given timed transition system TTSM = (S, s0,Act,→,AP,L), folded
timed transition system is defined as a tuple of FTSM = (S′, s′0,Act′,
↪→,AP′,L′) where:

• S′ ⊆ S, s′0 = s0, AP′ = AP, and L′ = L

• All the members of S′ are progress-of-time states except the
initial state.

• For two states s′1, s
′

2 ∈ S′ there is (s′1, act′, s′2) ∈↪→ if and only
if s′2 ∈ npts(s′1). The value of act′ is the same as the outgoing
progress-of-time transition of s′1. In case of s′1 = s′0, act′ is set
to a progress-of-time transition with duration zero.

For creating a FTS of a given Timed Rebeca model, at the
first step, the timed transition system of the Timed Rebeca
model is created. Then, using a modified version of Breadth-
First Search algorithm the FTS is created, as shown in Algo-
rithm 2. The algorithm starts from the initial state of TTS and
includes its nearest progress-of-time states as the successors
of the initial states. Then it continues in the same way to find
the successors of the newly added states.

Lemma 1. The FTS of a given TTS can be created by an algo-
rithm with time complexity of O(n2) where n is the number of the
states of TTS.

Proof. The loop in line 10 traverses progress-of-time tran-
sitions and the other transitions are traversed by function npts

Algorithm 2: FTS(TTSM) creates FTS from a given TTS
Input: Timed transition system

TTSM = (S, s0,Act,→,AP,L)
Output: Folded timed transition system of modelM

1 S′ ← {s0}

2 Act′ ← ∅
3 ↪→← ∅
4 AP′ ← AP
5 L′ ← L
6 Π← {s0}

7 while Π , ∅ do
8 remove s from Π
9 NPTS← npts(s)

10 foreach element s′ of NPTS do
11 ↪→←↪→ ∪{(s, act′, s′)}
12 if s′ < S′ then
13 S′ ← S′ ∪ {s′}
14 Π← Π ∪ {s′}

15 return (S′, s0,Act′, ↪→,AP,L)

in line 9 of the algorithm. Therefore, each transition of the
TTS is traversed once. This way, the order of the algorithm is
the same as the number of the transitions of the TTS which is
O(n2).

4.2 Model Checking for TCTL≤,≥ Properties
A general overview of the model checking algorithm for

DTGs against TCTL≤,≥ properties is presented in Section 3.
We can use the proposed algorithm for model checking of
Timed Rebeca models because of the fact that FTSs of Timed
Rebeca models are DTG.

Lemma 2. The FTSs of Timed Rebeca models are DTG.

Proof. For a given Timed Rebeca modelM, its FTS is de-
fined as FTSM = (S′, s′0,Act′, ↪→,AP′,L′). The only difference
between DTG and FTS is in the semantics of their transition
relations. Each transition of DTG has an action label and
time duration; however, transition relations of FTS are only
progress-of-time. So, FTSM can be assumed as a DTG where
the actions of transitions are τ transitions.

This way, we use the polynomial-time algorithm of [12]
for model checking of Timed Rebeca models against TCTL≤,≥
properties.

Corollary 1. There is an O(n2) algorithm for model checking
of Timed Rebeca models against TCTL≤,≥ properties.

4.3 Model Checking for TCTL= Properties
As known in graph theory, there is no polynomial algo-

rithm for finding exact path length (EPL) between two nodes
of a graph and finding EPL is NP-Hard (using reduction from
finding the EPL between two states to subset-sum problem
[9]). Using the same approach, the authors in [12] showed
that the problem of model checking for exact time condition is
a NP-Hard problem. Therefore, there is no polynomial-time
algorithm for model checking of TCTL; however, its TCTL≤,≥
subset can be model checked in polynomial-time.

But, as discussed in [15] there is a pseudo-polynomial al-
gorithm for finding the EPL between two nodes of weighted

graphs. The order of the algorithm is O(W2n3 + |k|min (|k|,W)
n2), where n is the number of nodes, W is the biggest absolute
value of any edge weight, and k is the target weight. The
algorithm works in the following two phases.

• Preprocessing: In this phase, graphs are processed with
a relaxation algorithm. As a result, the weights edges
of different paths are set to values with the same signs.
Note that, the proposed algorithm works for graphs
with positive, negative, and zero weighted edges. The
complexity of this phase is O(W2n3).

• Finding-Path: At the second phase, the EPL between
two nodes is found in the relaxed graph. The complex-
ity of this phase is O(|k|min (|k|,W)n2).

In case of finding the EPL in FTS of Timed Rebeca models,
W is the biggest time duration in the FTS. Hence, based on
the semantics of Timed Rebeca, the value of W is limited to
the maximum value which is used as the parameter of delay
and after. The value of k is the same as the time quantifier of
the given TCTL= formula (e.g. for TCTL= formula ∃Φ1U=5Φ2
k equals to five). Finding EPL is a polynomial-time algorithm
if W and k have upper bound constant values. There is no
limitation on the value of W as it can be dynamically set by
timed statements of Timed Rebeca. However, for wide range
of TCTL properties, the time quantifier of TCTL= formulas
are small constant values (in comparison to the size of the
transition system). Based on this fact, there is a polynomial
time model checking algorithm for Timed Rebeca models
against TCTL= formulas with small constant time quantifiers
as we will show in the following lemma.

Lemma 3. There is an O(n2) algorithm for model checking of
Timed Rebeca models against TCTL= properties with small constant
time quantifiers.

Proof. As the reduced FTS of Timed Rebeca models has
only progress-of-time transitions, the weight of all the tran-
sitions are positive natural numbers and there is no need for
relaxation algorithm with cost of O(W2n3). Therefore, the
complexity of the model checking algorithm is reduced to
O(|k|min (|k|,W) n2).

On the other hand, the time quantifiers assumed to be small
constant integer values. Therefore, the algorithm looks for ex-
act path between two states with constant value. Hence, the
value of k is constant in its corresponding finding EPL prob-
lem. Having constant value for k, the value of min (|k|,W) is at
most k. As a result, the time complexity of finding exact path
length in the state space is reduced from O(|k|min (|k|,W) n2)
to O(n2).

Theorem 1. Model checking of Timed Rebeca models against
TCTL properties with small constant time quantifiers is an O(n2)
problem.

Proof. This follows directly from Lemma 1, Corollary 1,
and Lemma 3.

5. EXPERIMENTAL RESULTS
We provided five different case studies in different sizes to

illustrate how efficiently the reduction technique works. The
host computer of model checking toolset was a desktop com-
puter with 1 CPU (2 cores) and 8GB of RAM storage, running
Mavericks OS X 10.9.4. The selected case studies are Ticket

Service, simplified version of 802.11 Wireless Protocol, Wireless
Sensor and Actuator Networks (WSAN), simplified version of
Scheduler of Hadoop, and model of NoC system with 64 cores.
The Timed Rebeca code of the case studies and the model
checking toolset are accessible from Rebeca homepage [1].

Details of Ticket Service case study is explained in Section 2.
Catching the deadline of issuing the ticket is the main prop-
erty of this model. We created different sizes of ticket service
model by varying the number of customers, which results in
three to ten rebecs in the model. In case of simplified version
of 802.11 Wireless Protocol, we modeled three wireless nodes
which are communicating via a medium. The medium sets
random back-off time when more than one node starts to
send data, to resolve data collision in the medium. Deadlock
avoidance is the main property of this model. In the third
case study, a WSAN is modeled as a collection of actors for
sensing, radio communication, data processing, and actua-
tion. In WSAN applications, scheduling challenge is diffi-
cult as the wireless sensor platforms —which typically use
event-driven operating systems— do not provide real-time
scheduling guarantees. Deadline hit is verified as the main
property of this model. As the forth case study, we mod-
eled a simplified version of the behavior of MapReduce of
Hadoop system, called YARN. We modeled one client which
submits jobs to YARN resource manager. The resource man-
ager distributes the submitted job among application masters
and application masters split the job into some tasks and dis-
tribute tasks among some nodes. This model has 32 rebecs
and verified to ensure that all the jobs are services before their
deadlines. Finally, we used model of the traffic of packets in
NoC systems. This model was published in [17] and we used
one of its versions with mesh of 8x8 cores.

Table 1 shows the results of model checking of the four case
studies. As shown in the table, the state space size of the FTS
is at least two times smaller than the TTS in all the case studies.
However, avoiding interleaving of concurrent instantaneous
actions in 8x8 NoC results in up to 92% reduction in the state
space size.

6. CONCLUSION
In this paper we proposed a new reduction technique, fold-

ing instantaneous transitions, which significantly reduces the
state space of timed actor models. Beside reducing the size
of the state space, applying the reduction technique enables
efficient TCTL model checking of the models. Formerly, we
had to translate timed actor models to Real-Time Maude for
TCTL model checking. Using the work of this paper, we
apply model checking technique on a reduced state space
which results in supporting bigger transition system. In ad-
dition, the work of this paper outperforms time consumption
of TCTL model checking in comparison to using Real-Time
Maude.

Experimental evidence supports our theoretical observa-
tion that the reduction technique results in smaller state space
in general. In case of models with many concurrently execut-
ing actors, the reduced state space is up to 92% smaller than
its original timed transition system. Therefore, we can effi-
ciently model check more complicated models against com-
plete TCTL properties under certain conditions. In addition,
our technique and the proofs are applicable for model check-
ing of any discrete time real-time model with continuous
semantics against TCTL properties with propositions on the
values of state variables.

Problem Size State Space Size
Reduced State

Space Size
Percentage of

Reduction

Ticket Service

2 customers 77 10 87%
3 customers 360 39 89%
4 customers 1825 184 90%
5 customers 10708 1045 90%
6 customers 73461 6996 90%
7 customers 581962 54019 91%

WSAN - 1920 818 57%
Yarn - 533 172 68%
8x8 NoC - 74192 6068 92%

Table 1: The size of state spaces in different case studes.

Acknowledgments
The work on this paper has been partially supported by the
project “Timed Asynchronous Reactive Objects in Distributed
Systems: TARO” (nr. 110020021) of the Icelandic Research
Fund.

7. REFERENCES
[1] Rebeca Home Page. http://www.rebeca-lang.org.
[2] L. Aceto and F. Laroussinie. Is your model checker on

time? on the complexity of model checking for timed
modal logics. Journal of Logic and Algebraic Programming,
52-53:7–51, 2002.

[3] R. Alur and D. L. Dill. A Theory of Timed Automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[4] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and
W. Yi. UPPAAL - a Tool Suite for Automatic
Verification of Real-Time Systems. In R. Alur, T. A.
Henzinger, and E. D. Sontag, editors, Hybrid Systems,
volume 1066 of Lecture Notes in Computer Science, pages
232–243. Springer, 1995.

[5] S. V. Campos and E. M. Clarke. Theories and
experiences for real-time system development. chapter
Real-time Symbolic Model Checking for Discrete Time
Models, pages 129–145. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 1994.

[6] S. V. A. Campos, E. M. Clarke, W. R. Marrero,
M. Minea, and H. Hiraishi. Computing quantitative
characteristics of finite-state real-time systems. In RTSS,
pages 266–270. IEEE Computer Society, 1994.

[7] F. S. de Boer, M. M. Jaghoori, C. Laneve, and
G. Zavattaro. Decidability problems for actor systems.
In M. Koutny and I. Ulidowski, editors, CONCUR,
volume 7454 of Lecture Notes in Computer Science, pages
562–577. Springer, 2012.

[8] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan.
Quantitative temporal reasoning. volume 4, pages
331–352, 1992.

[9] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[10] M. Geilen, S. Tripakis, and M. Wiggers. The earlier the
better: a theory of timed actor interfaces. In
M. Caccamo, E. Frazzoli, and R. Grosu, editors, HSCC,
pages 23–32. ACM, 2011.

[11] E. Khamespanah, Z. S. Kaviani, R. Khosravi, M. Sirjani,
and M.-J. Izadi. Timed-Rebeca Schedulability and

Deadlock-Freedom Analysis Using Floating-Time
Transition System. In SPLASH. ACM, 2012.

[12] F. Laroussinie, N. Markey, and P. Schnoebelen. Efficient
timed model checking for discrete-time systems.
Theoretical Computer Science, 353(1-3):249–271, 2006.

[13] F. Laroussinie, P. Schnoebelen, and M. Turuani. On the
expressivity and complexity of quantitative
branching-time temporal logics. Theoretical Computer
Science, 297(1-3):297–315, 2003.

[14] B. Magnusson. Simulation-Based Analysis of Timed
Rebeca Using TeProp and SQL. Master’s thesis,
Reykjavï£¡k University, School of Computer Science,
Iceland, 2012.
http://rebeca.cs.ru.is/files/MasterThesisBrynjarMagnu
sson2012.pdf.

[15] M. Nykänen and E. Ukkonen. The exact path length
problem. J. Algorithms, 42(1):41–53, 2002.

[16] Z. Sabahi-Kaviani, R. Khosravi, M. Sirjani, P. C.
Ölveczky, and E. Khamespanah. Formal semantics and
analysis of timed rebeca in real-time maude. In
C. Artho and P. C. Ölveczky, editors, FTSCS, volume
419 of Communications in Computer and Information
Science, pages 178–194. Springer, 2013.

[17] Z. Sharifi, M. Mosaffa, S. Mohammadi, and M. Sirjani.
Functional and performance analysis of
network-on-chips using actor-based modeling and
formal verification. ECEASST, 66, 2013.

[18] M. Sirjani and M. M. Jaghoori. Ten Years of Analyzing
Actors: Rebeca Experience. In G. Agha, O. Danvy, and
J. Meseguer, editors, Formal Modeling: Actors, Open
Systems, Biological Systems, volume 7000 of Lecture Notes
in Computer Science, pages 20–56. Springer, 2011.

[19] M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer.
Modeling and Verification of Reactive Systems using
Rebeca. Fundam. Inform., 63(4):385–410, 2004.

