
Savina - An Actor Benchmark Suite
Enabling Empirical Evaluation of Actor Libraries

Shams Imam Vivek Sarkar
shams@rice.edu vsarkar@rice.edu

Department of Computer Science, Rice University, Houston, USA.

Abstract
This short paper introduces the Savina benchmark suite for actor-
oriented programs. Our goal is to provide a standard benchmark
suite that enables researchers and application developers to com-
pare different actor implementations and identify those that de-
liver the best performance for a given use-case. The benchmarks
in Savina are diverse, realistic, and represent compute (rather
than I/O) intensive applications. They range from popular micro-
benchmarks to classical concurrency problems to applications that
demonstrate various styles of parallelism. Implementations of the
benchmarks on various actor libraries will be made publicly avail-
able through an open source release. This will allow other devel-
opers and researchers to compare the performance of their actor
libraries on these common set of benchmarks.

Categories and Subject Descriptors D.1 [Programming Tech-
niques]: Concurrent Programming; F.2 [Analysis of Algorithms
and Problem Complexity]: General

General Terms Concurrent Programming, Measurement, Perfor-
mance

Keywords Actor Model, Benchmark Suite, Java Actor Libraries,
Performance Comparison

1. Introduction
Concurrent programs have become the norm with the prolifer-
ation of multicore processors. The Actor Model (AM) of con-
currency [1] has recently gained popularity, in part due to the
success achieved by its flagship language - Erlang. The AM is
based on asynchronous message passing and offers a promising ap-
proach for developing reliable concurrent systems. With the suc-
cess of Erlang in production settings, the AM has catapulted into
the mainstream and there has been a proliferation of the devel-
opment of Actor frameworks in popular sequential languages like
C/C++ (Act++ [16]), Smalltalk (Actalk [5]), Python (Stackless
Python [31], Stage [3]), Ruby (Stage [26]), .NET (Microsoft’s
Asynchronous Agents Library [20], Retlang [22]). Scala brings Er-
lang style actor based concurrency to the JVM [10]. Since then,
many actor libraries and frameworks have been implemented to
permit actor-style programming in Java: Jetlang [23], GPars [28],
Lift [37], Scalaz [12], Akka [38], Habanero-Java [14], Function-

[Copyright notice will appear here once ’preprint’ option is removed.]

Java [9], etc. Developers can now design scalable concurrent ap-
plications on the JVM using actor libraries that automatically take
advantage of multicore processors.

It is common for researchers and developers to use benchmark
suites to help choose among different implementations. Further,
benchmarks help motivate language implementers to improve their
implementations and calibrate the competitive advantages of their
approach. While micro-benchmarks are useful, micro-benchmarks
rarely reflect the behaviour of larger real-world applications. A
standard benchmark suite that goes beyond micro-benchmarks and
allows end users to compare different implementations and use the
one that delivers the best performance for a given use-case is highly
desired. Unfortunately, such a suite does not exist as yet for actor
programming models.

This paper presents Savina, a benchmark suite for actor-
oriented programs. In this work, we are interested in developing
a standardized benchmark suite that represents various use-cases in
actor-oriented programs and allows users to do an apples-to-apples
comparison between different actor libraries. Such a suite provides
implementers of high-performance actor libraries an understanding
of what the various use-cases are. It simplifies the identification
of the issues that need to be corrected from the benchmark results
and allows them to optimize for it. The benchmarks in Savina
are diverse, realistic, and represent compute intensive applications.
They range from popular micro-benchmarks to classical concur-
rency problems to applications that demonstrate various styles of
parallelism. Implementations of the benchmarks on various actor
libraries will be made publicly available through an open source
release. This will allow other developers and researchers to com-
pare the performance of their actor libraries on these common set
of benchmarks.

The paper is organized as follows: in Section 2 we give a
brief description of the benchmarks in the Savina suite. Section 3
presents our initial experimental results for some of the bench-
marks. Section 4 discusses related work and we summarize our
conclusions and future work in Section 5.

2. Benchmarks
A benchmark suite for the evaluation of actor runtimes should
be representative of multiple use-cases and portable to many sys-
tems. The use of actors is very diverse and a good benchmark suite
should cover various important domains. The goal of this work is
to define a benchmark suite, Savina, that can be used to compare
the performance of actor-oriented libraries and languages. Savina
benchmarks are designed to be easily ported across different ac-
tor libraries (Section 3). The Savina benchmark suite focuses on
computationally intensive applications, and includes both numeric
and non-numeric problems. Savina aims to identify a representa-
tive set of actor applications which display commonly used parallel
patterns. It covers applications that include common concurrency

Submitted to AGERE! 2014 1 2014/9/8

Name Symbol Feature or Pattern being measured Source

1 Ping Pong PP Message delivery overhead Scala [29]

2 Counting Actor COUNT Message passing overhead Theron [17]

3 Fork Join (throughput) FJT Messaging throughput JGF [6], ourselves

4 Fork Join (actor creation) FJC Actor creation and destruction JGF [6], ourselves

5 Thread Ring THR Message sending; Context switching between actors Theron [19]

6 Chameneos CHAM Contention on mailbox; Many-to-one message passing Haller [11]

7 Big BIG Contention on mailbox; Many-to-Many message passing BenchErl [2]

8 Concurrent Dictionary CDICT Reader-Writer concurrency; Constant-time data structure Ourselves

9 Concurrent Sorted Linked-List CSLL Reader-Writer concurrency; Linear-time data structure Shirako et al. [24]

10 Producer-Consumer with Bounded Buffer PCBB Multiple message patterns based on Join calculus Sulzmann et al. [27]

11 Dining Philosophers PHIL Inter-process communication; Resource allocation Wikipedia [34]

12 Sleeping Barber SBAR Inter-process communication; State synchronization Wikipedia [36]

13 Cigarette Smokers CIG Inter-process communication; Deadlock prevention Wikipedia [33]

14 Logistic Map Series LOGM Synchronous Request-Response with non-interfering transactions Ourselves ([35])

15 Bank Transaction BTX Synchronous Request-Response with interfering transactions Ourselves

16 Radix Sort RSORT Static Pipeline; Message batching StreamIT [30]

17 Filter Bank FBANK Static Pipeline; Split-Join Pattern StreamIT [30]

18 Sieve of Eratosthenes SIEVE Dynamic Pipeline GPars [28]

19 Unbalanced Cobwebbed Tree UCT Non-uniform load; Tree exploration Zhao and Jamali [39]

20 Online Facility Location OFL Dynamic Tree generation and navigation Ourselves

21 Trapezoidal Approximation TRAPR Master-Worker; Static load-balancing Stage [3]

22 Precise Pi Computation PIPREC Master-Worker; Dynamic load-balancing Ourselves

23 Recursive Matrix Multiplication RMM Uniform load; Divide-and-conquer style parallelism Ourselves

24 Quicksort QSORT Non-uniform load; Divide-and-conquer style parallelism Ourselves

25 All-Pairs Shortest Path APSP Phased computation; Graph exploration Ourselves

26 Successive Over-Relaxation SOR 4-point stencil computation SOTER [32]

27 A-Star Search ASTAR Message priority; Graph exploration Ourselves

28 NQueens first N solutions NQN Message priority; Divide-and-conquer style parallelism Ourselves

Table 1: List of Savina Benchmarks divided into three categories: 7 micro-benchmarks, 8 concurrency benchmarks and 13 parallelism benchmarks.

problems, graph and tree navigation, linear algebra, and stencil
computations. The applications are compute intensive, and perform
no I/O operations in their kernels.
Savina is designed to be extended with new benchmarks to al-

low the suite to evolve and address currently uncovered domains.
In addition to comparing the performance of various runtimes, the
benchmarks allow the comparison of code and other additional fea-
tures supported by an implementation. The primary performance
metric that is output by each benchmark code is elapsed time (in
milliseconds) for running the kernel body. The source code of the
suite will be available for the purpose of: a) verifying what is ac-
tually being tested, b) porting the benchmarks to other actor lan-
guages and runtimes, c) allowing comparison of solutions for syn-
tax and elegance, and d) enabling analysis of benchmarks to further
study performance, and the impact of different features in differ-
ent actor libraries. In addition, the results from running the suite
provides end users with additional information that allows them to
choose actor libraries based on the benchmarks which closely fits
their own applications.

A brief description of the Savina applications is shown in Ta-
ble 1, which includes the name of the benchmark, the abbrevia-

tion used to refer to the benchmark, the parallel / concurrency pat-
tern represented by the benchmark, and the source of the bench-
mark. The list includes many well-known micro-benchmarks that
are already de facto standards in actor-oriented models, such as
Ping Pong, Chameneos, and Thread Ring, as well as many oth-
ers benchmarks. The benchmarks are divided into three categories:
a) micro-benchmarks, b) concurrency benchmarks, and c) paral-
lelism benchmarks.

Micro-benchmarks Micro-benchmarks are simple benchmarks
that involve simple logic dedicated to test specific features of the
actor runtimes. As seen in Table 1, there are 7 well-known pro-
grams used to analyze actor languages or libraries in Savina.
These are designed to measure overheads in message delivery, mes-
saging throughput, concurrent mailbox implementation, actor cre-
ation and destruction.

Concurrency benchmarks The AM being a model of concurrent
computation is a natural fit for exploiting concurrency in computa-
tions. The second set of benchmarks in Savina have 8 programs
and include Bounded-Buffer problem, Readers and Writers prob-
lem, and Dining-Philosophers problem among others. This set is

Submitted to AGERE! 2014 2 2014/9/8

a first step away from micro-benchmarks and towards more re-
alistic applications. It focuses on classical concurrency problems
which involves correctly coordinating non-deterministic interac-
tions among multiple actors.

Parallelism benchmarks Taking full advantage offered by a mul-
ticore machine requires the writing of parallel code. The final set
of benchmarks include 13 programs and concentrates on paral-
lelism. Parallelism in the applications is obtained by task decom-
position to effectively utilize multicores. The decomposition needs
to be converted into an actor-style computation. The benchmarks
include a wide variety of computations that display pipeline paral-
lelism, phased computations, divide-and-conquer style parallelism,
master-worker parallelism, and graph and tree navigation. The pro-
grams in this set are larger than the programs from the previous two
sets and represents more realistic parallel computations.

We are unaware of any other comprehensive benchmark suite
for actor frameworks like Savina, and have designed it to be ex-
tensible framework so that more benchmarks can be easily added
in the future. The goal is to cover a wide variety of patterns in
the benchmarks which will not only allow comparison of perfor-
mance, but also programmability of the solutions based on features
available in the actor frameworks being evaluated. We will encour-
age researchers to contribute optimized versions of Savina bench-
marks for existing as well as new actor frameworks into a com-
munity repository. We envision that the optimized versions of each
Savina benchmark program will evolve over time with increased
community contribution.

3. Experimental Results
The actor libraries used for comparison in this paper all run on the
JVM. The libraries are: Akka (AK) [38], Functional Java (FJ) [9],
GPars (GP) [28], Habanero-Java Actors (HA) [13, 15], Jetlang
(JL) [23], Jumi (JU) [7], Lift (LI) [37], Scala actors (SC) [10], and
Scalaz (SZ) [12]. All actor implementations of each benchmark use
the same algorithm and mainly involved renaming the parent class
of the actors to switch from one implementation to the other. All
implementations use the pattern matching construct to represent
the message processing body (MPB) and hence share the same
overheads for the MPB. Similarly, all actor solutions use the same
data structures for the user-written code of the benchmarks. We
did this to ensure a fair comparison of the internals of the different
frameworks.

The benchmarks were run on a 12-core (two hex-cores) 2.8
GHz Intel Westmere SMP node with 48 GB of RAM per node
(4 GB per core), running Red Hat Linux (RHEL 6.2). Each core
has a 32 kB L1 cache and a 256 kB L2 cache. The software
stack includes a Java Hotspot JDK 1.8.0, Akka 2.3.2, Function-
Java 4.1, GPars 1.2.1, Habanero-Scala 1.0, Jetlang 0.2.12, Jumi
0.1.196, Lift 2.6-M4, Scala 2.11.0, and Scalaz 7.1.0-M6. We pro-
vide a data set configuration for each benchmark in our scripts
which can be used to reproduce the results for the benchmarks
on different machines. For benchmarking, it is typically desirable
to exclude code executed during JVM startup and shutdown from
one’s measurements. Each benchmark was configured to run us-
ing thirteen worker1 threads and used the same JVM configuration
flags (-Xmx16384m -XX:+UseParallelGC -XX:+UseParallelOldGC
-XX:-UseGCOverheadLimit) and was run for twenty iterations in six
separate JVM invocations. The arithmetic mean of the best fifty ex-
ecution times (from the hundred and twenty iterations) are reported
to minimize effects of JIT and GC overheads from the reported
results. In the bar charts, the error bars represent one standard devi-
ation of the fifty execution times. Execution time is measured using

1 one worker thread gets blocked waiting after initialization

JDK’s System.nanoTime(). We have implemented 19 of the 28
benchmarks from Table 1 and present results of three benchmarks
below.

3.1 Mailbox Contention (Chameneos)

1 2 3 4 5 6 7 8

100

101

Number of meetings (in millions)

A
ve

ra
ge

E
xe

cu
tio

n
Ti

m
e

(i
n

se
cs

)i
n

lo
g

sc
al

e
AK FJ GP HA JL
JU LI SC SZ

Figure 1: The Chameneos benchmark was run with 500 chameneos (actors)
constantly arriving at a mall (another actor). There are multiples of millions
meetings between chameneos orchestrated at the mall.

The Chameneos micro-benchmark, shown in Figure 1, mea-
sures the effects of contention on shared resources while process-
ing messages. The original SC implementation was obtained from
the public Scala SVN repository [11]. The benchmark involves all
chameneos constantly sending messages to a mall actor that coordi-
nates which two chameneos get to meet. Adding messages into the
mall actor’s mailbox serves as a contention point and stress tests
the concurrent mailbox implementation. The SZ version performs
best with JL following closely. The next set of GP, HA, AK, and
JU actors are slightly slower, but competitive. The SC version pays
the penalty of generating exceptions to maintain control flow in its
react construct. In general, all the implementations scale linearly
with an increase in the input size.

3.2 Logistic Map Benchmark

0 20 40 60 80 100

AK
FJ

GP
HA
JL
JU
LI

SC
SZ

10.25

21.88

4.04

19.48

6.58

27.56

44.25

102.18

7.96

Figure 2: Results of the LogisticMap benchmark using 150 term actors
and 150 ratio actors. Each term actor is responsible for computing 150000
terms. Average execution time (x-axis) reported in seconds.

We created the Logistic Map benchmark to measure the per-
formance of actor implementations for the synchronous request-
response pattern. It computes the Logistic Map [35] using a recur-
rence relation xn+1 = rxn(1 − xn). In the benchmark there are three

Submitted to AGERE! 2014 3 2014/9/8

classes of actors: a manager actor, a set of term actors, and a set
of ratio actors. The ratio actors encapsulate the ratio r and know
how to compute the next term given the current term xn. The term
actors require a synchronous reply from the ratio actor before they
update their value of x and, only then, process the next message
from the master to compute the next term in the series. We use
non-blocking solutions for all the actors frameworks, thread block-
ing solutions take much longer time to execute and do not provide
a fair comparison as some solutions might be non-blocking. Our
solution for the AK version uses a custom extension that allows in-
dividual unstashing of messages, by default the Akka library only
allows unstashAll which introduces a lot more overhead. Fig-
ure 2 displays the results of this benchmark for the various actor
implementations. GP, JL, SZ, and AK perform the best with HA,
FJ, JU, and LI following in the next set. SC performs noticeably
poorly.

3.3 Split-Join Benchmark (Filter Bank)

0 20 40 60 80 100 120

AK
FJ

GP
HA
JL
JU
LI

SC
SZ

59.4

89.89

67.18

64.66

54.4

113.95

57.07

73.3

48.55

Average Execution Time (in secs)

Figure 3: Results of the Filter Bank benchmark results configured to use
8-way join branches. The input used 300, 000 data items and 131, 072
columns. Average execution time (x-axis) reported in seconds.

We use the Filter Bank streaming benchmark ported from the
StreamIt [30] to quantify the performance of the join pattern. Filter
Bank is used to perform multi-rate signal processing and consists
of multiple pipeline branches. On each branch the pipeline involves
multiple stages including multiple delay stages, multiple FIR fil-
ter stages, and sampling. Since Filter Bank represents a stream-
ing pipeline, it can be implemented using actors. The Branches
stage involves a split-join to combine the results of individual Bank
stages. Supporting such a join requires maintaining a dictionary to
track each sequence arriving from the different banks. The perfor-
mance of the benchmark is affected by the rate at which the mes-
sage are delivered across actors and the scheduler that determines
which actors are scheduled on the worker threads. Figure 3 com-
pares the performance of the Filter Bank benchmark against the
different actor library implementations. SZ, JL, LI, and AK per-
form best followed by HA and GP. JU performs noticeably poorly.

4. Related Work
Many actor benchmarks and benchmark suites have been designed
and are currently being used for many different purposes, but none
match our goals for a diverse set of compute intensive applica-
tions which display commonly used parallel patterns. bencherl
is a publicly available scalability benchmark suite for applica-
tions written in Erlang [2]. In contrast to other benchmark suites,
which are usually designed to report a particular performance point,
bencherl aims to assess scalability, i.e., help developers to study
a set of performance points that show how an application’s perfor-
mance changes when additional resources (e.g., CPU cores, sched-
ulers, etc.) are added. The benchmark suite comes with an initial
collection of parallel and distributed benchmarks. The Theron C++

concurrency library provides five actor micro-benchmarks [18]
with detailed performance analysis.
PARSEC [4] is a benchmark suite created to drive the design

of the new generation of multiprocessors and multicore systems.
The benchmarks included in the suite represent emerging work-
loads that implement state-of-the-art algorithms. PARSEC is similar
to Savina in the sense that it is largely automated, allowing users to
create scripts that will run the benchmarks with the requested com-
binations of input parameters. The goal of the PBBS benchmarks
is not only to compare runtimes, but also to be able to compare
code and other aspects of an implementation [25]. Like Savina,
the benchmarks in PBBS are designed to make it easy for others to
try their own implementations, or to add new benchmark problems.

The nofib suite [21] started in the early 1990s as a collection
of Haskell programs for benchmarking the implementation of the
Glasgow Haskell Compiler. It has since evolved as a benchmark
suite geared towards functional languages, oriented mostly towards
improving implementations and providing performance compar-
isons. Due to the variety of benchmarks included, another goal of
nofib has been to allow users of the language and a specific imple-
mentation to predict the performance of their own programs. Our
goals are similar in that Savina can be used to compare various
implementations of actors. Finally, there have also been attempts to
compare programming languages by defining a set of benchmarks.
The Computer Language Benchmarks Game [8] captures a broad
set of languages, it compares over 20 programming languages on a
set of 13 micro-benchmarks.

5. Summary
We’re excited to be introducing the Savina benchmark suite for
actor-oriented programs. The benchmarks in Savina are diverse,
realistic, and represent compute intensive applications. We encour-
age the community to submit open-source solutions to the bench-
marks for other actor libraries and languages. This will allow per-
formance comparison across languages and also allow judging the
elegance of the solutions.

We plan to add a few more applications into the next version of
Savina. An important issue we are not addressing with the current
release of the suite is inter-language comparisons. Future work will
focus on examining a wider range of platforms and environments,
and extending the benchmark suite to include codes which use
more complex parallel algorithms. We will be making revisions on
an ongoing basis in order to fix bugs or expand the scope of the
benchmark suite.

References
[1] G. Agha. Actors: a model of concurrent computation in distributed

systems. MIT Press, Cambridge, MA, USA, 1986. ISBN 0-262-
01092-5.

[2] S. Aronis, N. Papaspyrou, K. Roukounaki, K. Sagonas, Y. Tsiouris,
and I. E. Venetis. A Scalability Benchmark Suite for Erlang/OTP.
In Proceedings of the Eleventh ACM SIGPLAN Workshop on Erlang
Workshop, Erlang ’12, pages 33–42, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1575-3. doi: 10.1145/2364489.2364495.
URL http://doi.acm.org/10.1145/2364489.2364495.

[3] J. Ayres and S. Eisenbach. Stage: Python with Actors. In Pro-
ceedings of the 2009 ICSE Workshop on Multicore Software Engi-
neering, IWMSE ’09, pages 25–32, Washington, DC, USA, 2009.
IEEE Computer Society. ISBN 978-1-4244-3718-4. doi: http://
dx.doi.org/10.1109/IWMSE.2009.5071380. URL http://dx.doi.
org/10.1109/IWMSE.2009.5071380.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Bench-
mark Suite: Characterization and Architectural Implications. In Pro-
ceedings of the 17th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’08, pages 72–81, New

Submitted to AGERE! 2014 4 2014/9/8

http://doi.acm.org/10.1145/2364489.2364495
http://dx.doi.org/10.1109/IWMSE.2009.5071380
http://dx.doi.org/10.1109/IWMSE.2009.5071380

York, NY, USA, 2008. ACM. ISBN 978-1-60558-282-5. doi:
10.1145/1454115.1454128. URL http://doi.acm.org/10.1145/
1454115.1454128.

[5] J.-P. Briot. Actalk: A Testbed for Classifying and Designing Actor Lan-
guages in the Smalltalk-80 Environment, pages 109–129. Cambridge
University Press, 1989. URL http://web.yl.is.u-tokyo.ac.
jp/members/briot/actalk/papers/actalk-ecoop89.ps.Z.

[6] EPCC. The Java Grande Forum Multi-threaded Benchmarks, 2001.
URL http://www2.epcc.ed.ac.uk/computing/research_
activities/java_grande/threads/s1contents.html.

[7] Esko Luontola. Jumi Actors. http://jumi.fi/actors.html, 2011.
URL http://jumi.fi/actors.html.

[8] B. Fulgham. The Computer Language Benchmarks Game. http:
//shootout.alioth.debian.org/, 2009.

[9] functionaljava.org. functionaljava: A Library for Functional Pro-
gramming in Java, 2010. URL https://code.google.com/p/
functionaljava/.

[10] P. Haller and M. Odersky. Scala Actors: Unifying thread-based and
event-based programming. Theoretical Computer Science, 410(2–
3):202–220, 2009. ISSN 0304–3975. Distributed Computing Tech-
niques.

[11] Haller, Philipp. chameneos-redux.scala — FishEye: browsing
scala-svn, 2011. URL https://codereview.scala-lang.org/
fisheye/browse/scala-svn/scala/branches/translucent/
docs/examples/actors/chameneos-redux.scala?hb=true.

[12] L. Hupel and typelevel.org. scalaz: Functional programming for Scala,
2010. URL http://typelevel.org/projects/scalaz/.

[13] S. Imam and V. Sarkar. Integrating Task Parallelism with Actors. In
Proceedings of the ACM international conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’12,
pages 753–772, NY, USA, 2012. ACM. ISBN 978-1-4503-1561-6.

[14] S. Imam and V. Sarkar. Habanero-Java Library: a Java 8 Framework
for Multicore Programming. In 11th International Conference on
the Principles and Practice of Programming on the Java Platform,
PPPJ’14. ACM, New York, NY, USA, 2014.

[15] Imam, Shams and Sarkar, Vivek. Habanero-Scala: Async-Finish Pro-
gramming in Scala. In Scala Days 2012, April 2012.

[16] D. Kafura. ACT++: Building a Concurrent C++ with Actors. J.
Object Oriented Program, 3:25–37, April 1990. ISSN 0896-8438.
URL http://dl.acm.org/citation.cfm?id=90482.90493.

[17] A. Mason. The CountingActor benchmark. http://www.
theron-library.com/index.php?t=page&p=countingactor,
2012.

[18] A. Mason. Theron performance. http://www.theron-library.
com/index.php?t=page&p=performance, 2012.

[19] A. Mason. The ThreadRing benchmark. http://www.
theron-library.com/index.php?t=page&p=threadring,
2012.

[20] Microsoft Corporation. Asynchronous Agents Library. http:
//msdn.microsoft.com/en-us/library/dd492627.aspx,
2013. URL http://msdn.microsoft.com/en-us/library/
dd492627.aspx.

[21] W. Partain. The nofib Benchmark Suite of Haskell Programs.
In J. Launchbury and P. Sansom, editors, Functional Program-
ming, Glasgow 1992, Workshops in Computing, pages 195–202.
Springer London, 1993. ISBN 978-3-540-19820-8. doi: 10.1007/
978-1-4471-3215-8 17. URL http://dx.doi.org/10.1007/
978-1-4471-3215-8_17.

[22] Rettig, Mike. retlang: Message based concurrency in .NET. http:
//code.google.com/p/retlang/, 2010. URL http://code.
google.com/p/retlang/.

[23] Rettig, Mike. jetlang: Message based concurrency for Java, 2014.
URL http://code.google.com/p/jetlang/.

[24] J. Shirako, N. Vrvilo, E. G. Mercer, and V. Sarkar. Design, Verifi-
cation and Applications of a New Read-write Lock Algorithm. In
Proceedings of the Twenty-fourth Annual ACM Symposium on Par-
allelism in Algorithms and Architectures, SPAA ’12, pages 48–57,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1213-4. doi:
10.1145/2312005.2312015. URL http://doi.acm.org/10.1145/
2312005.2312015.

[25] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola,
H. V. Simhadri, and K. Tangwongsan. Brief Announcement: The
Problem Based Benchmark Suite. In Proceedings of the Twenty-
fourth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’12, pages 68–70, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1213-4. doi: 10.1145/2312005.2312018.
URL http://doi.acm.org/10.1145/2312005.2312018.

[26] J. Sillito. Stage: Exploring Erlang Style Concurrency in Ruby. In
Proceedings of the 1st international workshop on Multicore soft-
ware engineering, IWMSE ’08, pages 33–40, New York, NY, USA,
2008. ACM. ISBN 978-1-60558-031-9. doi: http://doi.acm.org/
10.1145/1370082.1370092. URL http://doi.acm.org/10.1145/
1370082.1370092.

[27] M. Sulzmann, E. S. L. Lam, and P. V. Weert. Actors with Multi-headed
Message Receive Patterns. In Proceedings of the 10th International
Conference on Coordination Models and Languages, volume 5052 of
COORDINATION’08, pages 315–330. Springer, 2008. ISBN 3-540-
68264-3, 978-3-540-68264-6.

[28] The GPars team. The GPars Project - Reference Documentation, 2014.
URL http://www.gpars.org/guide/.

[29] The Scala Programming Language. pingpong.scala, 2012. URL
http://www.scala-lang.org/node/54.

[30] W. Thies and S. Amarasinghe. An Empirical Characterization of
Stream Programs and Its Implications for Language and Compiler
Design. In Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’10, pages
365–376, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0178-
7. doi: 10.1145/1854273.1854319. URL http://doi.acm.org/10.
1145/1854273.1854319.

[31] C. Tismer. Continuations and Stackless Python. In Proceedings of the
8th International Python Conference, 2000.

[32] UIUC. SOTER project, 2012. URL http://osl.cs.uiuc.edu/
soter/.

[33] Wikipedia, The Free Encyclopedia. Cigarette smokers prob-
lem, 2014. URL http://en.wikipedia.org/wiki/Cigarette_
smokers_problem.

[34] Wikipedia, The Free Encyclopedia. Dining philosophers prob-
lem, 2014. URL http://en.wikipedia.org/wiki/Dining_
philosophers_problem.

[35] Wikipedia, The Free Encyclopedia. Logistic map, 2014. URL http:
//en.wikipedia.org/wiki/Logistic_map.

[36] Wikipedia, The Free Encyclopedia. Sleeping barber prob-
lem, 2014. URL http://en.wikipedia.org/wiki/Sleeping_
barber_problem.

[37] WorldWide Conferencing, LLC. Lift Framework - LiftActor,
2014. URL http://liftweb.net/api/26/api/#net.liftweb.
actor.LiftActor.

[38] D. Wyatt. Akka Concurrency - Building reliable software in a multi-
core world. Artima Incorporation, USA, 2013.

[39] X. Zhao and N. Jamali. Load Balancing Non-uniform Parallel Compu-
tations. In Proceedings of the 2013 Workshop on Programming Based
on Actors, Agents, and Decentralized Control, AGERE! ’13, pages
97–108, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2602-
5. doi: 10.1145/2541329.2541337. URL http://doi.acm.org/10.
1145/2541329.2541337.

Submitted to AGERE! 2014 5 2014/9/8

http://doi.acm.org/10.1145/1454115.1454128
http://doi.acm.org/10.1145/1454115.1454128
http://web.yl.is.u-tokyo.ac.jp/members/briot/actalk/papers/actalk-ecoop89.ps.Z
http://web.yl.is.u-tokyo.ac.jp/members/briot/actalk/papers/actalk-ecoop89.ps.Z
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads/s1contents.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads/s1contents.html
http://jumi.fi/actors.html
http://jumi.fi/actors.html
http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
https://code.google.com/p/functionaljava/
https://code.google.com/p/functionaljava/
https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/branches/translucent/docs/examples/actors/chameneos-redux.scala?hb=true
https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/branches/translucent/docs/examples/actors/chameneos-redux.scala?hb=true
https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/branches/translucent/docs/examples/actors/chameneos-redux.scala?hb=true
http://typelevel.org/projects/scalaz/
http://dl.acm.org/citation.cfm?id=90482.90493
http://www.theron-library.com/index.php?t=page&p=countingactor
http://www.theron-library.com/index.php?t=page&p=countingactor
http://www.theron-library.com/index.php?t=page&p=performance
http://www.theron-library.com/index.php?t=page&p=performance
http://www.theron-library.com/index.php?t=page&p=threadring
http://www.theron-library.com/index.php?t=page&p=threadring
http://msdn.microsoft.com/en-us/library/dd492627.aspx
http://msdn.microsoft.com/en-us/library/dd492627.aspx
http://msdn.microsoft.com/en-us/library/dd492627.aspx
http://msdn.microsoft.com/en-us/library/dd492627.aspx
http://dx.doi.org/10.1007/978-1-4471-3215-8_17
http://dx.doi.org/10.1007/978-1-4471-3215-8_17
http://code.google.com/p/retlang/
http://code.google.com/p/retlang/
http://code.google.com/p/retlang/
http://code.google.com/p/retlang/
http://code.google.com/p/jetlang/
http://doi.acm.org/10.1145/2312005.2312015
http://doi.acm.org/10.1145/2312005.2312015
http://doi.acm.org/10.1145/2312005.2312018
http://doi.acm.org/10.1145/1370082.1370092
http://doi.acm.org/10.1145/1370082.1370092
http://www.gpars.org/guide/
http://www.scala-lang.org/node/54
http://doi.acm.org/10.1145/1854273.1854319
http://doi.acm.org/10.1145/1854273.1854319
http://osl.cs.uiuc.edu/soter/
http://osl.cs.uiuc.edu/soter/
http://en.wikipedia.org/wiki/Cigarette_smokers_problem
http://en.wikipedia.org/wiki/Cigarette_smokers_problem
http://en.wikipedia.org/wiki/Dining_philosophers_problem
http://en.wikipedia.org/wiki/Dining_philosophers_problem
http://en.wikipedia.org/wiki/Logistic_map
http://en.wikipedia.org/wiki/Logistic_map
http://en.wikipedia.org/wiki/Sleeping_barber_problem
http://en.wikipedia.org/wiki/Sleeping_barber_problem
http://liftweb.net/api/26/api/#net.liftweb.actor.LiftActor
http://liftweb.net/api/26/api/#net.liftweb.actor.LiftActor
http://doi.acm.org/10.1145/2541329.2541337
http://doi.acm.org/10.1145/2541329.2541337

	Introduction
	Benchmarks
	Experimental Results
	Mailbox Contention (Chameneos)
	Logistic Map Benchmark
	Split-Join Benchmark (Filter Bank)

	Related Work
	Summary

