
Submitted to the 4th International Workshop on Programming based on Actors, Agents, and Decentralized Control

Selectors: Actors with Multiple Guarded Mailboxes

Shams Imam Vivek Sarkar
shams@rice.edu vsarkar@rice.edu

Department of Computer Science, Rice University, Houston, USA.

Abstract
The actor programming model is based on asynchronous message
passing and offers a promising approach for developing reliable
concurrent systems. However, lack of guarantees to control the
order in which messages are processed next by an actor makes
implementing synchronization and coordination patterns difficult.
In this work, we address this issue by introducing our extension to
the actor model called selectors. Selectors have multiple mailboxes
and each mailbox is guarded i.e. it can be enabled or disabled
to affect the order in which messages are processed. The view of
having guarded mailboxes is inspired by condition variables where
a thread checks whether a condition is true before continuing its
execution.

Selectors allow us to simplify writing of synchronization and
coordination patterns using actors such as a) synchronous request-
reply, b) join patterns in streaming applications, c) supporting pri-
orities in message processing, d) variants of reader-writer concur-
rency, and e) producer-consumer with bounded buffer. We present
solutions to each of these patterns using selectors. Selectors can
also be implemented efficiently – we evaluate the performance of
our library implementation of selectors on benchmarks that exhibit
such patterns and we compare our implementation against actor-
based solutions using Scala, Akka, Jetlang, Scalaz, Functional-
Java and Habanero actor libraries. Our experimental results for the
benchmarks show that using selector-based solutions simplify pro-
grammability and deliver performance improvements ranging from
1.1× to 2× compared to other actor-based solutions.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming

General Terms Actor Model, Asynchronous Messaging, Guarded
Mailboxes, Synchronization, Coordination

Keywords Actor Model, Selector, Guarded Mailboxes, Syn-
chronous Receive, Split-Join Pattern, Message Priorities, Reader-
Writer Concurrency, Producer-Consumer with Bounded Buffer

1. Motivation
With the advent of the multicore era, it is clear that improvements
in application performance will primarily come from increased par-
allelism. Programming models that utilize multiple cores offer a
scalable solution for the future where core counts are expected to
increase. The Actor Model (AM) [1, 10, 11] of concurrency has

[Copyright notice will appear here once ’preprint’ option is removed.]

recently gained popularity, mainly due to the success achieved by
its flagship language - Erlang [3]. The AM offers a promising ap-
proach for developing reliable concurrent systems. Actors provide
a programming model that gives stronger guarantees about concur-
rent code such as data race freedom and location transparency when
compared to traditional shared-memory-based abstractions such as
fork-join tasks. The key idea is to encapsulate mutable state and
use asynchronous messaging to coordinate activities among actors.
This implies that the sender does not wait for a message to be re-
ceived upon sending it; it immediately continues execution after
issuing the send.

Despite being a model of concurrent computation, the AM is
not a silver bullet - not all concurrent programming problems are
best solved by the AM. Synchronization mechanisms are needed in
concurrent programming to control the order in which messages are
processed so as to preserve the integrity of objects [32]. However,
for developers who are new to the AM, understanding and man-
aging such synchronization and coordination in an asynchronous
model might be harder than in the shared-memory model. Coordi-
nation patterns involving multiple actors are particularly difficult.
The property of no shared state and asynchronous communication
can make implementing coordination protocols harder than using
established constructs like locks [30]. Solutions for such proto-
cols to support synchronization constraints may require the actor
to buffer messages and resend the messages to itself until the mes-
sage is processed [21]. The resulting code is a petri dish of code that
intertwines both algorithmic logic and synchronization constraints.
In addition, recycling of messages in the mailbox is expensive due
to additional overhead from message sending and maintenance of
internal buffers. There is, hence, a need for an abstraction to sup-
port synchronization and coordination mechanisms that integrate
well with the AM.

In this work, we describe our extension to the AM to address
this issue. We believe that this is a powerful extension, analogous
to that of adding condition variables [12] to semaphores. Our ex-
tension, called selectors, allows actors to have multiple mailboxes
(Section 2). While messages can be sent to any specific mailbox of
the selector, each of these mailboxes are guarded. The guard refers
to the ability to manage which mailboxes are searched for process-
ing the next message of the selector in response to the selector pro-
cessing its current message. With selectors, the major change to
using regular actors is that along with the message, the send oper-
ation receives an additional argument, the recipient mailbox name.
We briefly describe our library based implementation of selectors
in Scala in Section 2.1 and evaluate performance against other pop-
ular actor frameworks that run on the Java Virtual Machine (JVM).

The selectors model allows us to simplify writing of common
synchronization / coordination patterns using actors such as a) syn-
chronous request-reply [13], b) join patterns in streaming appli-
cations [2], c) supporting priorities in message processing [23],
d) variants of reader-writer concurrency [39], and e) producer-
consumer with bounded buffer [38]. Each of these patterns are fur-

Submitted to AGERE! 2014 1 2014/9/30



ther described in Section 3, Section 4, Section 5, Section 6, and
Section 7, respectively in the following format. We first summa-
rize the difficulties with an actor-based solution. Next, we present
selector-based solutions to each of these patterns. Finally, we pro-
vide performance results for the selector-based and actor-based so-
lutions. Our experimental results for the benchmarks show using
selector-based solutions deliver significant improvements in perfor-
mance compared to actor-based solutions. The remaining sections
in the paper include Section 8 which discusses related work and
Section 9 where we summarize our conclusions and identify op-
portunities for possible future work.

2. Selectors: Actors with Guarded Mailboxes
We have extended the basic AM and call our extension Selectors.
Like an actor, a selector is defined as an object that has the capa-
bility to process incoming messages. Selectors continue to encap-
sulate their local state and process one message at a time (as shown
in Figure 1). Thus the benefits of modularity from the AM are still
preserved and the data locality properties of the AM continue to
hold. Selectors differ from actors in in two main ways:

• Selectors have multiple mailboxes to receive messages, senders
specify which mailbox a message is targeted to. The sender can
be any entity: an actor or a selector. As with actors, sending
messages to any of the mailboxes is a non-blocking operation.
Messages can be concurrently added to different mailboxes
without synchronization and thereby reducing contention.
• Each mailbox maintains a boolean guard which is used to in-

ternally enable or disable the mailbox while the selector is pro-
cessing messages. The guard does not affect which mailbox can
receive messages; it only affects which mailboxes are inspected
to select the next message to be processed. Attempting to enable
an active mailbox and to disable an inactive mailbox are consid-
ered to be no-ops, not errors. It is an error if all the mailboxes
become disabled while no message is actively being processed1.

We observe that a standard actor can just be viewed as a selector
with a single mailbox.

Figure 1: Decomposition of a selector: guarded mailboxes, local state, and
message processing logic.

Our extension to actors is inspired by condition variables [12]
where a thread checks whether a condition is true before continu-
ing its execution. The thread simply waits for an event that changes
the state of the condition variable and enables the waiting thread to
continue execution. Similarly, selectors check conditions (guards)
on their mailboxes and only process messages from active mail-
boxes. The selector waits for particular mailboxes to become ac-
tive (state change) before considering messages from the activated

1 Alternatively, we can treat this case like an exit operation (after which
new messages can accumulate but will never be processed).

mailboxes for processing. Logically, every condition variable is as-
sociated with one (or more) boolean condition expressions. Simi-
larly, every mailbox is guarded with one (or more) boolean condi-
tion expressions that control when it is enabled.

Life Cycle of a Selector The life cycle of a selector is similar to
that of an actor. As shown in Figure 2, a selector is in one of the
following three states:

• new: An instance of the selector (including its mailboxes) has
been created; however, the selector is not yet ready to process
messages from its mailboxes. Other entities can send messages
to the selector at any of its mailboxes. Initially all the mailboxes
of the selector are enabled.
• started: A selector moves to this state from the new state when

it has been started using the start operation. It can now re-
ceive asynchronous messages and process messages from any
active mailbox one at a time. During processing of a message,
the selector can enable or disable any of its mailboxes. After
completing processing of a message, a message can be selected
from any active mailbox to be processed next. While processing
a message, the selector should continually receive any messages
sent to it without blocking the sender. There is no restriction
on the order in which the selector decides to process incom-
ing messages from active mailboxes, thereby leading to non-
determinism.
• terminated: The selector moves to this state from the started

state when it has been terminated and will not process any mes-
sages in its mailboxes or new messages sent to it. A selector
signals termination by using the exit operation on itself while
processing a message. Any messages sent to a terminated selec-
tor will be ignored. A terminated selector may not be restarted.

Figure 2: Life cycle of a selector.

Sending messages to a Selector All messages sent to selectors
are asynchronous, meaning that the sender continues processing
before any reply is received. At its simplest, the send operation
receives two arguments: the target mailbox name and the actual
message to send. Selectors offer flexibility in determining the target
mailbox of a message; it may be decided in two ways:

• By the sender: The sender can directly specify the target mail-
box as an argument in the send operation. The sender may have
received the mailbox name in a message or the name could be
globally known.
• By the recipient selector: The recipient can abstract away the

decision making of which target mailbox to use from the sender.
In such scenarios, the sender just invokes the send operation
with the message (just like sending messages to actors). The
selector can then introduce logic to introspect the message and
its internal state to decide the recipient target mailbox.

A selector can choose to use a combination of both schemes where
recipient mailboxes are decided by the sender for some messages,
while the recipient selects the target mailboxes for the remaining
messages.

Declarative Guards Selectors can be further enhanced by intro-
ducing explicitly declared predicated guard expressions on mail-
boxes (making selectors more functional in nature). These guard
expressions are registered for each mailbox after the selector in-
stance has been created and may be updated later. The selector

Submitted to AGERE! 2014 2 2014/9/30



runtime ensures the mailboxes are enabled or disabled at the end
of processing each message based on the result of evaluating the
predicate. This avoids the use of imperative enable and disable
operations on mailboxes. This style of using declarative guards also
separates the message processing logic from the logic to enable or
disable mailboxes. The trade-off is that the style introduces addi-
tional overhead of possibly redundant computations of the guard
expressions for each mailbox. Section 7 presents an example use
case where declarative guards can be used to simplify selector-
based solutions.

2.1 Implementation and Micro-benchmarks
Actors, being a model of computation, can be used to emulate se-
lectors. However, doing so would require hand-coded implementa-
tions of mailboxes as part of the actor’s local state, and would re-
quire messages to be recycled or resent. On the other hand, actors
can be considered a special case of selectors with just one mailbox
that is always enabled. Hence, any actor-based solution to a pattern
is also a valid selector-based solution. We chose to implement se-
lectors using the lower-level constructs described in our previous
work on actors [15] and we can use the finish construct for de-
tecting termination of selectors. Our implementation of selectors
is an extension to the actors implementation in the Habanero-Java
library [16] and we rely on Java’s ForkJoinPool to manage the
worker threads.

The selector maintains a list of mailboxes; each individual mail-
box is implemented as a concurrent linked-list. Each node in the list
is a pair of values consisting of a) the actual message, and b) a state
field to track whether this message is pending, is being actively
processed, or has been processed. As messages are sent to the se-
lector’s mailboxes, a chain of these pairs are built. As each worker
picks up a message to process, the state field is updated accordingly
to avoid duplicate processing of the message by other concurrent
worker threads. Each node in the list is ready for garbage collec-
tion once the message inside the node is processed. The size of the
mailbox is only limited by the amount of available memory.

Once the selector has been started (via the call to start()),
it registers a callback to schedule a task as soon as a message be-
comes available in an active mailbox. A worker thread eventually
executes this task, the task then tries to process as many avail-
able messages from a particular selector by traversing messages
in active mailboxes until there are no more messages to process.
Once such a state is reached the worker thread then goes ahead
and tries to execute other ready tasks (selectors with pending mes-
sages) from its work queue. Before the worker thread is let go, if
the selector has not terminated, a callback is registered that trig-
gers an asynchronous task whenever a new message is sent to an
active mailbox of the selector. In this scheme if a selector has no
work to do, it doesn’t consume any worker thread cycles as there
are no thread-blocking operations. Hence, this solution scales well
as worker threads are never blocked and are busy doing effective
work in the processing of messages. Worker threads become idle
only when there is no pending work (tasks in the work queue).

Number of Mailboxes In our model of selectors, the number of
mailboxes used can be determined dynamically (based on the dis-
tinct mailbox names used in the send operations). However in our
implementation, the number of mailboxes to use by a given selec-
tor is configured during initialization. Each mailbox in a selector is
identified by a unique id, a non-negative integer starting at zero. A
boolean array is also maintained to track the value of the guard con-
dition whether a given mailbox is active or inactive. This boolean
array simplifies the implementation of enabling or disabling mail-
boxes, making it a constant time operation. Using invalid mailbox
ids in send operations results in a runtime error.

Message Selection Policy In our current implementation, mes-
sages are selected using a fixed priority cooperative scheduling al-
gorithm [36]. Mailboxes are given priorities using the ordering id
of the enumeration values. This scheduling technique ensures that
at any given time, the worker thread picks a message from the low-
est numbered mailbox of all those messages that are currently ready
to be processed. Since the mailbox is implemented as a linked-list,
this also ensures that the message picked is the oldest message in
the chosen mailbox. One drawback of our scheduling policy is that
messages in higher numbered mailboxes are vulnerable to “star-
vation” and could wait an indefinite amount of time before being
processed. An alternative solution, that can help address starvation
issues, would be to randomly select messages from an active mail-
box to process next. Since our benchmarks (Section 2.1.1) are un-
affected by starvation issues, we leave this implementation and op-
tions for other message selection policies as possible future work.
We observe that there is a possibility of a message remaining indef-
initely in a mailbox’s queue in pure actor models that do not require
FIFO processing of messages.

2.1.1 Performance Evaluation
The actor libraries used for comparison with our implementation,
Habanero Selector (HS), all run on the JVM. The libraries are:
Scala actors (SC) [7], Akka (AK) [33], Functional Java (FJ) [6],
Jetlang (JL) [27], Scalaz (SZ) [14], and Habanero Actors (HA) [15,
19]. SC provides event-based actors which allow multiple actors
to run on a thread. AK is a framework for building event-driven
applications on the JVM and has support for highly performant
lightweight actors. SC has been deprecated since version 2.10 and
replaced by AK in the standard distribution of Scala since version
2.11.0. FJ is an open source Java library for applying functional
programming concepts (including concurrency abstractions) and is
intended for use in production applications. JL provides a low-level
messaging API in Java that can be used to build actors with the
responsibility of ensuring the single message processing rule dele-
gated to the user. SZ has an actor implementation that has a simple
API and minimizes latency and maximizes throughput of message
passing. HA API is inspired by SC event-based actors, however it
does not use exceptions to maintain control flow and uses a push-
based linked-list implementation using Java’s AtomicReference
for its mailbox. HS is our implementation of selectors using the
mailbox implementation from HA. All actor implementations of
each benchmark use the same algorithm and mainly involved re-
naming the parent class of the actors to switch from one implemen-
tation to the other. All implementations use the pattern matching
construct (instead of if-then-else and instanceof checks) to
represent the message processing body (MPB) and hence share the
same overheads for the MPB. Similarly, all actor solutions use the
same data structures for the user-written code of the benchmarks.
We did this to ensure a fair comparison of the internals of the dif-
ferent libraries.

The benchmarks were run on a 12-core (two hex-cores) 2.8
GHz Intel Westmere SMP node with 48 GB of RAM per node (4
GB per core), running Red Hat Linux (RHEL 6.2). Each core has
a 32 kB L1 cache and a 256 kB L2 cache. The software stack
includes a Java Hotspot JDK 1.8.0, Habanero-Scala 1.0 (con-
tains both actors and selectors), Scala 2.11.0, Akka 2.3.2, Func-
tionJava 4.1, Jetlang 0.2.12, and Scalaz 7.1.0-M6. Each bench-
mark was configured to run using thirteen worker threads (the
main thread gets blocked after initialization waiting for the com-
putation to complete). We used the same JVM configuration
flags (-Xmx16384m -XX:+UseParallelGC -XX:+UseParallelOldGC
-XX:-UseGCOverheadLimit) and each benchmark was run for twenty
iterations in six separate JVM invocations. The arithmetic mean of
the best fifty execution times (from the hundred and twenty iter-

Submitted to AGERE! 2014 3 2014/9/30



ations) are reported to minimize effects of JIT and GC overheads
from the reported results. In the bar charts, the error bars represent
one standard deviation of the fifty execution times.

2.1.2 Message Throughput (ForkJoin)

0 5 10 15 20 25 30

HS32
HS16
HS8
HS1
HA
SZ
JL
FJ

AK
SC

29.64
9.5

6.42
6.24

5.39
2.63

8.92
5.21
5.05

24.6

Average Execution Time (in seconds)

Figure 3: The Fork-Join benchmark using 60 actors, each actor was sent
400,000 messages in its mailbox. For the selector versions, the messages
were sent round robin to each of the mailboxes.

The results of the actor variant of the Java Grande Forum
Fork-Join benchmark [5] are shown in Figure 3. This mi-
crobenchmark measures messaging throughput, the rate at which
messages are processed by the implementation. Each actor does a
minimal amount of work processing one message before it termi-
nates. Among the actor implementations, SZ, AK, FJ, and HA ver-
sions have competitive performance, while JL and SC are slightly
slower. HS shares the same implementation scheme as HA, but dif-
fers in the way messages are searched from the mailboxes and per-
forms slower than HA. In effect this slowdown reveals the overhead
of message lookup due to the introduction of multiple mailboxes
and the checking of guards compared to the Habanero actors im-
plementation. Comparing the single mailbox version (HS1) against
HA reveals this overhead to be at about 16%. As the number of
mailboxes increases, this overhead also increases which is why the
HS versions with 8, 16 and 32 (HS8, HS16 and HS32 respectively)
mailboxes perform worse than the 1 mailbox version.

2.1.3 Mailbox Contention (Chameneos)

0 10 20 30 40 50 60 70

HS32
HS16
HS8
HS1
HA
SZ
JL
FJ

AK
SC

7.01
6.92
7.76

14.13
13.81

7.19
8.95

31.41
15.46

62.96

Average Execution Time (in seconds)

Figure 4: The Chameneos benchmark was run with 500 chameneos (actors)
constantly arriving at a mall (another actor). There are 8,000,000 meetings
between chameneos orchestrated at the mall.

The Chameneosmicrobenchmark, shown in Figure 4, measures
the effects of contention on shared resources while processing mes-
sages. The original SC implementation was obtained from the pub-
lic Scala SVN repository [9]. The benchmark involves all Chame-
neos constantly sending messages to a mall actor that coordinates
which two Chameneos get to meet. Adding messages into the mall
actor’s mailbox serves as a contention point and stress tests the con-
current mailbox implementation. The SC version pays the penalty

of generating exceptions to maintain control flow in its react con-
struct. On the other hand, the AK version is competitive with HA,
JL, and SZ. There are no guards applied to the mailboxes in the
HS* versions. The messages in the mall selector are processed from
the first mailbox before searching the second mailbox for messages
and so on, this is not necessarily the order in which the messages
were received by the selector. The HS version with one mailbox
(HS1) has similar performance as HA as they are effectively sim-
ilar implementations. The HS* versions with more than one mail-
box benefit from having multiple mailboxes as it reduces the syn-
chronization contention while Chameneos actors concurrently send
messages to the mall selector. In general, increasing the number of
mailboxes improves performance of this microbenchmark. Eventu-
ally the overheads of searching messages should start dominating
and having higher number of mailboxes should start giving poorer
performance (HS32 performs slightly poorer than HS16).

3. Synchronous Request-Response Pattern
The synchronous request-response pattern [13, 25] occurs when a
requestor sends a request message to a replier system which re-
ceives and processes the request, ultimately returning a message in
response. In the AM, the notion of synchronous request-response
occurs when an actor sends another actor a message and stalls fur-
ther processing of messages until it receives a reply to its message.
As the AM is asynchronous, this pattern requires two asynchronous
messages, a request and a response. While being conceptually el-
egant, this pattern is hard to implement efficiently, because the re-
questor actor’s single mailbox must handle both the reply message
and new messages sent to it from other actors. An option is to use
pattern matching on the set of pending messages to implement the
receive operation, but this can be expensive to implement due to
the increase in time while searching for the next message to pro-
cess from the mailbox.

1 class ReqRespActor extends ScalaActor {
2 def act() {
3 loop {
4 react {
5 case m: SomeMessage =>
6 // a case where we want a response
7 val req = new SomeRequest(m)
8 anotherActor.send(req)
9 receive {

10 case someReply: SomeReply =>
11 ...
12 }
13 case ... => // logic for other messages
14 } } } }

Figure 5: Using Scala actors to solve the Request-Response Pattern using
thread-blocking receive.

The synchronous message passing style available in Scala actors
(using receive at line 9 in Figure 5) provides programmers with
a convenient way of doing messaging round-trips [7]. When the
actor receives a message that is not matched, it will stay in the
mailbox of the actor and is retried when a new receive block
is entered. Using receive makes the actor heavyweight, since
receive blocks the underlying thread while the actor is suspended
waiting for a reply message. Another practical option to support
this feature, to avoid complications in the processing of existing
messages, is implemented using some notion of blocking explicitly
and usually limits scalability. For example, the ask pattern (line 7
of Figure 6) uses a thread blocking await on the future’s value
(line 8). The responding actor completes the future when it sends
a response after processing the message thereby unblocking the
previously mentioned thread.

Submitted to AGERE! 2014 4 2014/9/30



1 class ReqRespActor extends AkkaActor {
2 def receive = {
3 case m: SomeMessage =>
4 // a case where we want a response
5 val req = new SomeRequest(this, m)
6 implicit val timeout = Timeout(600 seconds)
7 val aFuture = ask(anotherActor , req)
8 val someReply = Await.result(aFuture, Inf)
9 ...

10 case ... => // logic for other messages
11 } }

Figure 6: Using Akka actors to solve the Request-Response Pattern. The
ask pattern uses a thread blocking await on the future’s value until the
responding actor completes the future by sending a reply.

It is cumbersome to support synchronous reply in a non-
blocking manner since it requires preventing the actor from pro-
cessing other messages in its mailbox. A non-blocking solution
involves stashing the messages an actor receives until it finds the
reply message. Once the reply message has been found and pro-
cessed, the stashed messages need to be unstashed into the actor’s
mailbox to resume processing of these messages. While a user can
code this pattern manually, Akka provides the become and become
operations and Stash trait to enable this pattern [33]. The issue
with this solution is in the overhead introduced to maintain the
stash of messages when the actor is in a reply-blocked state and the
adding of messages back into the mailbox when the actor exits the
reply-blocked state. There is additional overhead if the unstashed
messages need to be prepended to the head of the mailbox.

Request-Response with Selectors With selectors, we can define
two mailboxes one to receive regular messages and another one to
receives synchronous response messages. Figure 7 has an example
code snippet showing how selectors can be used with regular actors
to handle the request-response pattern. The selector has two mail-
boxes: REGULAR used to receive normal messages and REPLY used
to receive synchronous responses. Whenever a selector is expect-
ing a synchronous response, it disables the regular mailbox (line 9)
thereby ensuring that the next message it processes will be from its
reply mailbox. When the selector disables the regular mailbox, we
say the selector is in a reply-blocked state and is awaiting a response
from the responding entity. When the message is processed by the
responder, it replies by sending a message to the reply mailbox of
the selector. The selector can then process this response message
and enable the regular mailbox to move out of the reply-blocked
state (line 14) and continue processing other messages sent to it.

3.1 Synchronous Reply Benchmarks
We created two synthetic benchmarks to measure the perfor-
mance of selectors against other actor implementations for the
synchronous request-response pattern. The first benchmark com-
putes the Logistic Map [22, 37] using a recurrence relation xn+1 =
rxn(1 − xn). In the benchmark there are three classes of actors: a
manager actor, a set of term actors, and a set of ratio actors. The
ratio actors encapsulate the ratio r and know how to compute the
next term given the current term xn. The term actors require a syn-
chronous reply from the ratio actor before they update their value
of x and, only then, process the next message from the master to
compute the next term in the series. In the selector-based solution,
the term actors are instead selectors and the ratio actors always send
messages to the workers in their reply mailboxes. Figure 8 displays
the results of this benchmark while comparing the selector-based
solution against non-blocking actor-based solutions. The HS solu-
tions is at least 1.6× faster than any of the actor solutions. Note that
our solution for the AK version uses a custom extension that allows
individual unstashing of messages, by default the Akka library only
allows unstashAllwhich introduces a lot more overhead. Further,

1 class ReqRespSelector extends Selector {
2 def process(theMsg: AnyRef) {
3 theMsg match {
4 case m: SomeMessage =>
5 // a case where we want a response
6 val req = new SomeRequest(this, m)
7 anotherActor.send(req)
8 // move to reply-blocked state
9 disable(REGULAR)

10 case someReply: SomeReply =>
11 // process the reply (from REPLY mailbox)
12 ...
13 // resume processing regular messages
14 enable(REGULAR)
15 } } }
16 class ResponseActor extends Actor {
17 def process(theMsg: AnyRef) {
18 theMsg match {
19 case m: SomeRequest =>
20 val reply = compute(m.data)
21 // send to response mailbox
22 sender().send(REPLY, reply)
23 ...
24 } } }

Figure 7: Using Selectors to solve the Request-Response Pattern without
blocking. In this example the responding entity is an actor and is sending
the reply message to the REPLY mailbox (line 22).

the selector version was at least 12% smaller (177 lines compared
to 202 lines) than all other actor versions.

0 2 4 6 8 10 12 14

HS
HA
SZ
JL
FJ

AK

4.02
13.14

7.96
6.58

13.57
10.25

Figure 8: Results of the LogisticMap benchmark using 150 term actors/se-
lectors and 150 ratio actors. Each term actor is responsible for computing
150000 terms. The AK version, which uses blocking ask pattern, runs in
over 46 seconds. SC version is not shown on the graph. The SC version,
which uses blocking receive, runs in over 300 seconds. The SC version,
which uses (non-blocking) manual stashing, runs in over 100 seconds. Av-
erage execution time (x-axis) reported in seconds.

The second benchmark performs bank transactions between
accounts by updating the balances atomically (i.e. the account
doesn’t process other messages while a transaction is in flight). The
source account first decrements its balance and then needs to syn-
chronously wait for the recipient actor to complete participating in
the transaction by incrementing its balance with the same amount.
During a single transaction, the source account needs to wait for the
recipient actor to complete any active transactions it is participat-
ing in. The selector version was 10% smaller (153 lines) compared
to other actor versions (170 lines in SC version, solutions of other
actor variants required a few more lines). The performance results
for the benchmark are displayed in Figure 9. SC, AK, JL, SZ and
HA are all based on the same principle of stashing and unstash-
ing individual messages in the mailbox. The HS solution uses the
selector-based technique described in Figure 7 that relies on en-
abling and disabling mailboxes. In addition, the REPLY mailbox is
looked up first to allow messages participating in an active transac-
tion to be processed with a preference (see Section 5). This allows
the HS version to be over 2× faster than the actor versions.

4. Join Patterns in Streaming Applications
Since actors can be used to pipeline messages, they are a good fit for
certain streaming applications. The pipeline parallelism can be ex-

Submitted to AGERE! 2014 5 2014/9/30



0 5 10 15 20 25 30 35

HS
HA
SZ
JL
FJ

AK

10.81
21.78

34.43
26.87

26.35
27.85

Figure 9: Results of the Bank Transaction benchmark using 1, 000 bank
accounts and 10 million transactions. The SC version, which uses thread-
blocking receive, runs in over 200 seconds and is not displayed in the
graph. The SC version, which uses manual stashing of messages runs in
over 100 seconds. Average execution time (x-axis) reported in seconds.

ploited by connecting actors in a data flow chain to form producer-
consumer pairs and ensuring FIFO order in processing of messages.
In such a pipeline network, producers asynchronously propagate
data to consumers as data becomes available. However, the join
pattern [2, 20] where messages from two or more data streams are
combined together into a single message is cumbersome to mimic
using actors. The join is also commonly used in the split-join pat-
tern where a parallel set of streams, which diverge from a common
splitter and converge to a common joiner [31]. Traditional joins are
blocking as they need to match inputs from each of the sources and
wait until all corresponding inputs become available. An example
of an aggregator is shown in Figure 10 where the adder actor is
adding streams of corresponding values from three sources.

Figure 10: Actor network simulating a join pattern. Source-1, Source-2,
and Source-3 are producers for data streams. The Adder actor aggregates
corresponding data items from each of the three sources and sums them up.

The lack of guarantee on which message is processed next,
for example by taking the sender of the message into account,
makes implementing this pattern troublesome. Complexity is also
introduced due to the need for an additional dictionary to keep
track of all items in-flight from the various sequence numbers.
Supporting the join pattern also requires tagging messages with
the source and sequence number information. This information is
then used to aggregate the messages from the various sources in
a dictionary indexed by the sequence number from each of the
different sources. When items from all its sources for the oldest
(lowest) sequence number is received, the aggregator actor can
then reduce the items into a single value and forward it to the
consumer in the network. The actor also needs to remove entries
from the dictionary for sequences which have been aggregated to
avoid memory leaks.

Akka provides support for the aggregator pattern [34]. The
implementation allows match patterns to be dynamically added
to and removed from an actor from inside the message handling
logic. However, the implementation does not match the sender of
the message which is required to support the join pattern. As such,
enforcing the requirement that one message is received from each
data stream source requires additional logic.

Join Pattern with Selectors Supporting the join pattern requires
tagging the messages with source and sequence numbers in an
actor-based solution. The requirement for sequence numbers goes
away if messages from a sender are processed in the order in which
they were sent as the aggregator can implicitly build the sequence
numbers for each sender. However, requiring that corresponding
items from each source are paired up still requires additional logic
such as maintaining a dictionary of received items for each se-
quence. Figure 11 presents two selector-based solutions for the ex-
ample problem introduced in Figure 10. The solutions require that
the senders send their messages in the correct mailboxes, this can
be enforced in one of two ways: a) wrapping the send logic in the
selector to forward messages from sources to specific mailboxes,
or b) configuring the sources with specific mailbox names during
initialization so that source entities send only to specific mailboxes.

1 // process items in any order
2 class AdderAnyOrder(...) extends Selector {
3 var items = Array[Int](numSrcs)
4 var srcMatched = 0
5 def process(theMsg: AnyRef) {
6 theMsg match {
7 case im: ItemMessage =>
8 items(im.sourceId) = im.intValue()
9 // disable the current mailbox

10 disable(im.sourceId)
11 srcMatched += 1
12 if (srcMatched == numSrcs) {
13 val joinResult = computeJoin(items)
14 nextInChain.send(joinResult)
15 // reset locals
16 items = Array[Int](numSrcs); srcMatched = 0
17 // enable all mailboxes for next seq
18 enableAll()
19 } } } }

21 // process items in round-robin order
22 class AdderRoundRobinOrder(...) extends Selector{
23 var items = Array[Int](numSrcs)
24 var srcMatched = 0
25 // expect item from first source
26 disableAllExcept(0)
27 def process(theMsg: AnyRef) {
28 theMsg match {
29 case im: ItemMessage =>
30 items(im.sourceId) = im.intValue()
31 // disable the current mailbox
32 disable(im.sourceId)
33 srcMatched += 1
34 if (srcMatched == numSrcs) {
35 val joinResult = computeJoin(items)
36 nextInChain.send(joinResult)
37 // reset locals
38 items = Array[Int](numSrcs); srcMatched = 0
39 }
40 //enable round-robin mailbox for next seq
41 enable(srcMatched)
42 } } }

Figure 11: Using Selectors to solve the Join Pattern problem of Fig-
ure 10. The aggregator selector versions (AdderSelectorAny and
AdderSelectorRoundRobin) maintain one mailbox for each source. For
simplicity we assume sources are identified by consecutive integers starting
at 0.

In the first solution, the AdderAnyOrder selector accepts an
item (message) from any of the pending sources in the current se-
quence and does not enforce any order in the receipt of items from
sources. As an item is received from a source, the corresponding
mailbox is disabled (line 10) to disallow processing items from
that source which do not belong to the current sequence. Hence,
the set of active mailboxes shrinks and represents the set of sources
which do not have a representative item in the current sequence.
When items from all sources have been received for the current se-

Submitted to AGERE! 2014 6 2014/9/30



quence (line 12), the result is computed (line 13) and forwarded
to the next entity in the network (line 14) and all mailboxes are
enabled (line 18) to start processing the next sequence.

In the second solution, the AdderRoundRobinOrder selec-
tor initially disables all the mailboxes except the first mailbox
(lines 26) in anticipation of processing an item from the first source.
As each item is received, the current mailbox is disabled (line 32)
and the mailbox of the next source in round-robin order is enabled
(line 41). When one message has been received from each of the
sources in the current sequence (line 34), the result is computed
(line 35) and forwarded to the next entity in the network (line 36).
The currently active mailbox then is the mailbox corresponding to
the first source so that processing of items from the next sequence
begins.

4.1 Split-Join Benchmark (Filter Bank)
We use the Filter Bank benchmark ported from StreamIt [31] to
quantify the performance of the join pattern. Filter Bank is used
to perform multi-rate signal processing and consists of multiple
pipeline branches. On each branch the pipeline involves multiple
stages including multiple delay stages, multiple FIR filter stages,
and sampling. Since Filter Bank represents a streaming pipeline,
it can be implemented using actors or selectors. The Branches
stage involves a split-join to combine the results of individual Bank
stages. This join can be efficiently implemented using selectors as
there is no need to maintain a dictionary to track each sequence
arriving from the different banks. Figure 12 compares the perfor-
mance of two selector implementations (HS-AnyOrder and HS-
RoundRobin described in Figure 11) of the Filter Bank benchmark
against actor implementations. The selector versions are at least
28% faster than the actor implementations in AK, SC, FJ, JL, SZ,
and HA as overheads from maintaining the dictionary do not exist.
The HSAO solution is 338 lines, HSRR is 343 lines while the actor-
based solutions are at least 362 lines. The HS-AnyOrder (HSAO)
version with selectors is slightly faster than the HS-RoundRobin
(HSRR) version as expected with a lack of order guarantee. On
benchmarks where there are more joining edges (Filter Bank has
only 8), the unordered versions are expected to perform even bet-
ter.

0 10 20 30 40 50 60 70 80 90 100

HSAO
HSRR

HA
SZ
JL
FJ

AK
SC

33.75
34.86

64.66
48.55

54.4
89.89

59.4
73.3

Figure 12: Results of the Filter Bank benchmark results configured to use
8-way join branches. The input used 300, 000 data items and 131, 072
columns. Average execution time (x-axis) reported in seconds.

We implemented the Adder-Join microbenchmark (similar to
Figure 10) where a single entity randomly populates messages
into the different mailboxes of the Adder selector. This enables
us to stress test the two implementations (HSRR and HSAO).
The results are displayed in Figure 13. We see that the HSRR
variant performs better than the HSAO variant for 4-way and 8-way
split-joins when using 24 million numbers to add. This is because
enforcing the round-robin order simplifies finding the next message
to process and helps avoid redundant search on other mailboxes.
The performance is close between the two variants for for 12-
way splits. The HSAO versions starts performing clearly better
from 36-way splits as the round-robin evaluation order enforces

an order which constrains the throughput. HSAO version benefits
from processing messages for a given sequence out of order and
hence earlier compared to the round-robin version.

2 4 6 8 10 12 14 16 18 20 22 24 26

7

8

9

10

11

Number of joins in Adder selector

A
ve

ra
ge

E
xe

cu
tio

n
Ti

m
e

(i
n

se
cs

)

HSRR HSAO

Figure 13: Results of the AdderJoin microbenchmark, configured to add 24
million numbers.

5. Supporting Priorities in Message Processing
In the priority pattern [23], messages with a higher priority are pro-
cessed before those with a lower priority even if they were sent ear-
lier. This pattern is useful in applications that offer different quality
of service guarantees to individual clients where messages from
important clients are given higher priorities. The priority pattern
is also useful while implementing recursive data structure traversal
algorithms where nodes deeper in the recursion tree are expected
to produce results with higher probability. When solving divide-
and-conquer style algorithms using master-worker pattern with ac-
tors, the master actor divides the work among the worker actors
for load balancing and the worker actors report newly generated
subproblems back to the master. The master should schedule larger
subproblems for processing with higher priority as these subprob-
lems should give rise to more work for the workers and improve
the available parallelism. Normally actors do not support priori-
ties while processing messages. Mimicking priorities in an actor
based solution is quite cumbersome as messages sent to actors are
stored in a single mailbox. One actor-based solution is to use a pri-
ority queue to store messages in the mailbox and require the user to
provide some means of comparing the messages sent to the actor.
However, this approach adds to overhead in the concurrent mailbox
implementation.

Message Priorities in Selectors With selectors, we can support
priorities for message processing non-intrusively without changing
the message processing body (i.e. the process() method). The
solution relies on the fact that selectors have multiple mailboxes,
each mailbox is used to store messages of a given priority. This
scheme requires that messages be categorized by priority. The cat-
egorization enables determining the target mailbox for the message
in the send operation and can be enforced either by the sender or
by the recipient selector. The mailboxes are then sorted by priority
and the selector configured to always process an available message
from the highest priority message. For example, consider a selector
with MAILBOX-0, MAILBOX-1, MAILBOX-2 and so on. At the end of
each message processing cycle, the selector checks the mailboxes
in their priority order for available messages to process. This en-
sures the highest priority message is processed before any lower
priority ones. The solution allows supporting as many priority lev-
els as deemed necessary by the problem in hand. Note that we do

Submitted to AGERE! 2014 7 2014/9/30



not rely on enabling or disabling particular mailboxes to support
priorities.

5.1 Message Priority Benchmarks
We use variants of the NQueens and A∗ benchmarks to measure
the performance of the message priority pattern. In the NQueens
benchmark (Figure 14), the goal is to find the first 1.5 million so-
lutions on a board of size 15 × 15. The divide-and-conquer style
is used with master-worker style actors/selectors, the workers re-
port solutions to the master. The master requests the workers to
terminate as soon as the 1.5 million solutions are found. Subprob-
lems deeper in the recursion tree are processed with higher priority
by the workers. These priorities help in guiding the execution to
processing the request which is likely to yield a solution earlier
compared to random processing of messages. The AK solution that
uses a priority queue comes closest to the HS solution, but the over-
head from maintaining the concurrent priority queue limits perfor-
mance. All the other actor solutions use regular mailboxes and do
not support message priorities, they rely on the message order pro-
vided by their respective implementations. The HS solution is at
least 1.7× faster than any of the actor-based solutions. Some of the
performance gain also comes from being able to process the worker
termination signal earlier and avoiding performing redundant work
once the required number of solutions have been found.

0 5 10 15 20 25 30 35 40 45

HS

HA

SZ

JL

FJ

AK

SC

16.41

33.98

32.01

31.09

36.49

29.13

40.54

Figure 14: Messages with Priorities: NQueens - Find 1.5 million solutions.
Board size 15. Sequential threshold 5. 24 workers. Average execution time
(x-axis) reported in seconds.

In the A∗ benchmark (Figure 15), a randomly generated 3-D
grid is searched for a path to a target node from an initial source
node. The heuristic of euclidean distance to the goal node is used as
the priority to promote processing of nodes closer to the goal node
to find the solution. The JL solution performs best among the actor-
based solutions (faster than the AK priority mailbox version). The
HS solution is still about 13% faster than JL and over 17% faster
than the other actor-based solutions. The main benefit in this case
comes from attempting to process nodes closer to the target node
and hence increasing the probability of finding the solution quicker.

0 5 10 15 20 25 30 35 40

HS

HA

SZ

JL

FJ

AK

SC

27.85

34.68

35.96

32.03

33.97

33.86

34.71

Figure 15: Messages with Priorities: A∗ Search. Grid size 150 × 150 × 150
with 24 workers. Average execution time (x-axis) reported in seconds.

6. Reader-Writer Concurrency
In the ReadersWriters problem [4, 39], there are multiple entities
accessing a resource, some reading and some writing. In addition,
there is the natural constraint that no entity may access the resource

for reading or writing while another process is in the act of writing
to it. There are two additional variants:

• The first readers-writers problem: the constraint is added that no
reader request shall be kept waiting if the resource is currently
opened for reading.
• The second readers-writers problem: the constraint is added that

no writer request, once added to the message queue, shall be
kept waiting longer than absolutely necessary.

Messages do not have dynamic priorities in actors; this makes it
hard to support the variants where messages are processed out of
natural order. In addition, since message processing is serialized
in actors, implementation of truly concurrent data structures with
actors is non-trivial. As an example, consider a group of actors of
which one is a trivial dictionary actor (example from [28]) that re-
sponds to read and write requests. The other actors are clients of the
dictionary: one actor does updates (writer), while the others only
consult the dictionary (readers). The implementation of the dictio-
nary with actors is easy because the programmer does not need to
be concerned with data races: reads and writes to the dictionary
are ensured to be executed in mutual exclusion. However, when
the number of readers increases the resulting application performs
badly precisely because of the benefits of serial execution (lack of
data races) of requests to the dictionary actor: there are no means
to process read-only messages in parallel and thus the dictionary
actor becomes the bottleneck.

Reader-Writer Concurrency with Selectors We extend previous
work on intra-actor parallelism [15] on actors to support asyn-
chronous tasks with selectors. The async keyword is used to cre-
ate a parallel task inside a selector’s message processing body to
process read requests in parallel. Figure 16 shows the template
for a reader-writer selector. The DataDrivenControl (DDC) con-
struct [18] is used to notify when all current in-flight read tasks have
completed (inside the decrementReaderAndSetDdc() method).
We maintain a single mailbox for both the write messages and the
read messages (i.e. WRITE and READ refer to the same mailbox).
Once a read message is processed, it bumps a counter that tracks
the in-flight readers (in line 12) and spawns an asynchronous task
to process the read message (in line 16). Once this task completes
the counter is decremented to notify the selector that there is one
less active reader task (in line 19). If there are no in-flight read-
ers we can process a write request immediately (line 25). Other-
wise, when a write message comes in, we disable all mailboxes
thus preventing the selector from processing any subsequent mes-
sages (line 27). Note that disabling all the mailboxes is not an er-
ror as the write message is still being processed. We wait for the
in-flight readers to complete and register a callback to trigger the
asynchronous processing of the write message (line 29). Once the
write message processing is completed, we can enable all the mail-
boxes (in line 32) and the selector continues processing subsequent
messages.

The scheme presented solves the readers-writers problem where
the messages are processed in the order they appear in the mail-
boxes. This scheme can further be fine-tuned to solve both the first
readers-writers problem and the second readers-writers problem us-
ing the support available for priorities in message processing Sec-
tion 5. No change is required to the process() method from Fig-
ure 16. For the two variants we need to maintain two mailboxes,
one for write messages and one for read messages (i.e. WRITE and
READ now refer to different mailboxes). Each write message then
ends up disabling all the mailboxes before starting and enabling all
the mailboxes after completing the processing of the write message.
We only need to add support for priorities to these mailboxes. For
the first readers-writers problem, the read mailbox gets higher pri-

Submitted to AGERE! 2014 8 2014/9/30



1 class ReadWriteSelector extends Selector {
2 def sendWrite(theMsg: AnyRef) {
3 send(WRITE, new WriteMessage(theMsg));
4 }
5 def sendRead(theMsg: AnyRef) {
6 send(READ, new ReadMessage(theMsg));
7 }
8 def process(theMsg: AnyRef) {
9 theMsg match {

10 case ReadMessage(messageBody) =>
11 // another reader tasks is becoming active
12 int activeReaders = incrementReader()
13 if (activeReaders == 1) {
14 readersDdcRef.set(new DDC())
15 }
16 async { // process read asynchronously
17 processRead(messageBody)
18 // notify that reader is no longer active
19 decrementReaderAndSetDdc()
20 } }
21 case WriteMessage(messageBody) =>
22 val readerDdc = readersDdcRef.get()
23 if (readerDdc.valueAvailable()) {
24 // no readers active, safe to process
25 processWrite(messageBody)
26 } else {
27 disable(READ, WRITE) // disable mailboxes
28 // wait for in-flight readers to complete
29 readerDdc.addResumable(() => {
30 processWrite(messageBody)
31 // resume processing read/write messages
32 enable(READ, WRITE)
33 })
34 } } }

Figure 16: Using Selectors to solve the Reader-Writer Concurrency prob-
lem. For simplicity concurrency constraints elided in the code snippet.

ority than the write mailbox ensuring all available read messages
are processed whenever they appear in the mailbox. For the sec-
ond readers-writers problem, the write mailbox gets higher priority
than the read mailbox ensuring writes are processed as soon as they
appear in the mailbox (after in-flight readers have completed). As
a result we can now support three variants of the reader-writers
problem: a) arrival order (AO); b) first readers-writers (RF); and
c) second readers-writers (WF).

6.1 Reader-Writer Benchmarks

0 10 20 30 40 50

HSAO

HSRF

HSWF

HA

SZ

JL

FJ

AK

SC

12.06

12.51

10.71

20.28

11.26

21.86

27.27

16.33

49.18

Figure 17: Reader/Writer Concurrency: Dictionary. Dictionary size 400K
items with 24 workers and write percent of 10. Average execution time (x-
axis) reported in seconds.

We use a concurrent dictionary (CD) (Figure 17) and a con-
current sorted linked-list (CSLL) (Figure 18) data structure bench-
marks to measure the performance of selectors versus actor-based
solutions for reader-writer concurrency. We mix read (lookup by
item for CD and lookup by element in CSLL) and write (key-value
pair put for CD and element addition for CSLL) requests into the
actor/selector representing the concurrent data structure. Pure actor
solutions exhibit no concurrency, whereas the HS and HA solu-
tions exhibit intra-actor concurrency. HS solutions allow concur-

rency from read requests based on AO and also support the RF
and WF policies. The intra-selector parallelism in HS* solutions in
general allow them to execute much faster than the actor-based so-
lutions. The read and write operations in the CD benchmarks take
O(1) time while in the CSLL benchmark they take O(N) time, this
affects which of the RF and AO variants perform better. Note that
creating and scheduling additional tasks for intra-actor and intra-
selector parallelism involves some overhead. When read operations
involve comparatively fewer operations and offer a fine granular-
ity of work, we cannot entirely overcome the tasking overhead via
computation. As a result, in the CD benchmark which does O(1)
work in read operations, the SZ version which has low mailbox
contention for the dictionary actor (as seen in Section 2.1.3) can
perform competitively with the HS* versions.

0 10 20 30 40 50 60 70 80

HSAO

HSRF

HSWF

HA

SZ

JL

FJ

AK

SC

12.53

11.64

9.11

58.79

59.47

56.43

68.29

53.19

79.41

Figure 18: Reader/Writer Concurrency: Sorted List. List size is 15K items
with 24 workers and write percent of 10. Average execution time (x-axis)
reported in seconds.

7. Producer-Consumer Pattern
The producer-consumer with a bounded-buffer is a classic example
of a multi-process synchronization problem [12, 38]. In this prob-
lem, producers push work into the buffer as it is produced while
consumers pull work from the buffer when they are ready. In an
actor-based solution to this problem, producers, consumers and the
buffer are modeled as actors. The buffer actor acts like a man-
ager and needs to keep track of at least the following scenarios:
a) whether the data buffer is full or empty; b) when consumers re-
quest work from an empty buffer, the consumers are put in a queue
until work is available; c) when producers are ready to produce
data and the buffer is full, the producers are put in a queue until
space is available in the data buffer; d) notify producers to produce
more work when space becomes available in the data buffer. The
buffer actor needs to maintain additional queues for the available
consumers and producers since there is no way to disable the pro-
cessing of particular messages and this convolutes the logic of the
buffer actor. A simpler scheme where messages from producers or
consumers were avoided from being processed when the data buffer
is full or empty, respectively, would greatly simplify the buffer actor
implementation. Using the pattern matching option remains expen-
sive to implement due to increase in time while searching for the
next message to process from the mailbox.

Producer-Consumer with Selectors In a selector-based solution
to this problem, we can maintain a selector for the buffer while the
producers and consumers continue to be modeled as actors. The
buffer selector maintains two mailboxes, one to receive messages
from producers and another to receive messages from consumers.
Then we can disable processing messages from consumers when
the buffer becomes empty, and disable processing messages from
producers when the buffer becomes full. Additionally, the buffer
selector can provide declarative guards to enable or disable the
mailboxes thus easing programming effort. The guard operation is
used to register a boolean guard condition on a given mailbox. After

Submitted to AGERE! 2014 9 2014/9/30



each message is processed, the guard for each mailbox is evaluated
and the mailbox is enabled or disabled depending on whether
the guard evaluated to true or false, respectively.

1 class BufferSelector extends DeclarativeSelector {
2 def registerGuards() {
3 // disable producer msgs if buffer might overflow
4 guard(MBX_PRODUCER ,
5 (theMsg) => dataBuffer.size() < thresholdSize)
6 // disable consumer msgs when buffer empty
7 guard(MBX_CONSUMER ,
8 (theMsg) => !dataBuffer.isEmpty())
9 }

10 def doProcess(theMsg: AnyRef) {
11 theMsg match {
12 case dm: ProducerMsg =>
13 // store the data in the buffer
14 dataBuffer.add(dm)
15 // request producer to produce next data
16 dm.producer.send(ProduceDataMsg.ONLY)
17 case cm: ConsumerMsg =>
18 // send data item to consumer
19 cm.consumer.send(dataBuffer.poll())
20 tryExit()
21 case em: ProdExitMsg =>
22 numTerminatedProducers += 1
23 tryExit()
24 } } }

Figure 19: Using Selectors to solve solve the Producer-Consumer with
Bounded-Buffer Pattern. The Buffer selector maintains two mailboxes,
one to receive messages from producers and another to receive mes-
sages from consumers. The use of declarative guards separates the enable
and disable logic of mailboxes into the guard registration method,
registerGuards.

Figure 19 presents such a solution that uses declarative guards
to isolate the message processing logic from the logic to enable
or disable mailboxes. Whenever data is available in the buffer, the
mailbox for messages from consumers is enabled (line 7) to pro-
cess consume request messages. Whenever a data item is consumed
by a consumer, the buffer is guaranteed space and the mailbox for
messages from producers is enabled to process messages from pro-
ducers (line 4) to fill the populate the buffer with data. This scheme
avoids having to maintain separate collections of available produc-
ers and consumers in a purely actor-based solution and simplifies
the logic of the buffer selector.

7.1 Producer Consumer with Bounded Buffer Benchmark

0 10 20 30 40 50

HSD
HSI
HA
SZ
JL
FJ

AK
SC

7.19
6.88

19.33
6.65

8.03
28.51

14.63
48.52

Figure 20: Results of the Bounded Buffer benchmark on bounded buffer
size of 6000. There were 5000 producer actors each producing up to 1000
messages. There were 2000 consumer actors. Average execution time (x-
axis) reported in seconds.

In the actor-based solution to the producer-consumer with
bounded-buffer, the buffer actor is like the mall actor in the Chame-
neos benchmark (Section 2.1.3), so this benchmark also includes
measurement of the mailbox contention overhead. The actor-based
solutions have the additional overhead from maintaining additional
data structures (adding and removing elements in collections) for

the available producers and consumers in the buffer actor. In the
selector-based solution, we avoid the need for additional collec-
tions by relying on enabling or disabling mailboxes. There are two
selector versions, one which uses the declarative guard style (HSD)
and another which uses an imperative style (HSI) with manual
enable and disable calls. The process method of the buffer se-
lector in the HSI version is about 22% smaller (25 lines) compared
to the process method of the buffer actor in the actor versions
(32 lines). The process and registerGuard HSD version (22
lines) is further smaller than the HSI version. As seen in Figure 20,
the HS* versions now performs similar to the JL and SZ versions
(despite having overheads in mailbox contention). Importantly, the
HS* performs much better than HA (in the Chameneos benchmark
they had similar performance). The HSD version performs about
4.5% slower than the HSI version, this measures the cost of the
declarative abstraction where all mailboxes need to be enabled or
disabled after each message is processed. As in the Chameneos
benchmark, FJ and SC perform much slower compared to the other
actor implementations.

8. Related Work
Tomlinson and Singh propose an extension to the AM to control
the order in which messages are processed so as to preserve the in-
tegrity of objects [32]. They introduce the concept of enabled-sets
that define the messages that may be executed in the new state. This
idea is similar to the implementation of Scala actors by Haller [7]
where the pattern matching clause on messages can be modified
dynamically. As mentioned in Section 3, this is expensive to imple-
ment due to increased time in searching for the next message to pro-
cess from the mailbox. In contrast, our approach allows enabling or
disabling one of possibly many mailboxes, to control which mes-
sages are processed next. It is also efficient to implement as active
mailboxes with messages can be found quickly.

Akka provides support for the aggregator pattern [34], however,
their implementation does not match the sender of the message
which is required to support the join pattern. Ensuring matching
of senders requires extra tagging of messages as in a pure actor so-
lution. On the other hand, with selectors, we can elegantly enforce
the requirement that one message is received from each data stream
source participating in the join (Section 4).

Sulzmann et al. [29], Plociniczak et al. [26] and Haller et al [8]
have proposed an extension to actors with receive clauses con-
taining multiple message patterns based on Join calculus (not nec-
essarily the same as the split-join pattern). This allows expression
of join patterns by specifying an exhaustive list of messages that
participate in the join, requiring that messages contain their source
actor information, and including guards to restrict pattern match-
ing. This offers a high-level way of synchronizing messages for
processing at the cost of increased processing time (compared to
our selector extension) in resolving a match in the receive clause
for a message. To support other general Join calculus patterns, our
extension may require the user to explicitly manage the state from
the partial matches as each message from the active mailboxes are
consumed.

The SALSA actor-oriented language [35] has supported two-
level priority message sends since version 0.6.2. In SALSA, regu-
lar messages are placed at the end of the mailbox queue. Priority
messages are placed at the front of the actor’s mailbox, instead of
the end. Nystrom presents a solution for supporting priority pro-
cessing of messages in Erlang using nested non-blocking receive
operations [24]. The nesting code structure convolves the pattern-
matching code for supporting messages with multiple levels of pri-
orities. In their technique, since priorities are based on pattern-
matching of individual messages, their solution is inefficient if
mailboxes contain many pending messages. As stated in [24], the

Submitted to AGERE! 2014 10 2014/9/30



performance penalty of their approach keeps increasing as they
support additional priority levels. Sulzmann et al. [29] also sup-
port priorities in their model with similar syntax. They concede that
enforcing priorities manually via otherwise and nested receive
statements leads to clumsy code. In contrast to these approaches,
our extension prioritizes messages by the mailbox in which they
reside and high-priority messages are selected using constant-time
operations. The message processing logic in our solution is unaf-
fected by the priority scheme.

Scholliers et al. have proposed the notion of Parallel Actor
Monitors (PAM) [28] to extend the AM with support for intra-
actor parallelization. PAM can easily solve the symmetric reader-
writer problem where messages are processed in the arrival order
they appear in the mailbox, but it does not support priorities of
messages. Our support for priorities enables us to solve the three
variants to the reader-writer problem as discussed in Section 6.

9. Summary
We have introduced our extension to the AM called selectors. Se-
lectors have multiple mailboxes and each mailbox is guarded i.e.
it can be enabled or disabled to affect the order in which mes-
sages are processed. As opposed to using actors, selectors allow us
to simplify writing of multiple synchronization and coordination
patterns including: a) synchronous request-reply; b) join patterns
in streaming applications; c) supporting priorities in message pro-
cessing; d) variants of reader-writer concurrency; and e) producer-
consumer with bounded buffer. We provided descriptions for solu-
tions to some of these patterns using selectors and also included our
results for benchmarks exhibiting these patterns. Our results con-
firm that selector-based solutions for benchmarks exhibiting these
patterns are simpler and execute much faster than actor-based so-
lutions. In the future, we plan explore additional computational
patterns that can be expressed easily using selectors. For example,
nondeterministic finite automata can be expressed easily using se-
lectors where each input symbol is sent to a different mailbox. This
should facilitate implementing multiple message patterns based on
Join calculus using selectors.

10. Availability
Public distributions of the selectors implementation in Habanero-
Java library, including documentation and code examples, are avail-
able for download at http://wiki.rice.edu/confluence/
display/PARPROG/HJ+Library. We also plan to make source
code of the selectors benchmarks available as part of the Savina
Benchmark Suite [17].

11. Acknowledgments
We thank Karthik Murthy and Alina Sbı̂rlea for their valuable feed-
back on early drafts of this paper. We are very grateful to the anony-
mous reviewers for their insightful comments and suggestions to
clarify the contents of the paper. The paper has been substantially
improved based on these suggestions.

References
[1] G. Agha. Actors: a model of concurrent computation in distributed

systems. MIT Press, Cambridge, USA, 1986. ISBN 0-262-01092-5.
[2] Apache Software Foundation. Apache Camel: Aggregator, 2004. URL
https://camel.apache.org/aggregator2.html.

[3] J. Armstrong. Concurrency Oriented Programming in Erlang. Chal-
lenge, November 2002.

[4] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent Control with
&Ldquo;Readers&Rdquo; and &Ldquo;Writers&Rdquo;. Commun.
ACM, 14(10):667–668, October 1971. ISSN 0001-0782.

[5] EPCC. The Java Grande Forum Multi-threaded Benchmarks, 2001.
URL http://www2.epcc.ed.ac.uk/computing/research_
activities/java_grande/threads/s1contents.html.

[6] functionaljava.org. functionaljava: A Library for Functional Pro-
gramming in Java, 2010. URL https://code.google.com/p/
functionaljava/.

[7] P. Haller and M. Odersky. Scala Actors: Unifying thread-based and
event-based programming. Theoretical Computer Science, 410(2–
3):202–220, 2009. ISSN 0304–3975. Distributed Computing Tech-
niques.

[8] P. Haller and T. Van Cutsem. Implementing Joins Using Extensible
Pattern Matching. In Proceedings of the 10th International Confer-
ence on Coordination Models and Languages, COORDINATION’08,
pages 135–152, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 3-
540-68264-3, 978-3-540-68264-6.

[9] Haller, Philipp. chameneos-redux.scala — FishEye: browsing
scala-svn, 2011. URL https://codereview.scala-lang.org/
fisheye/browse/scala-svn/scala/branches/translucent/
docs/examples/actors/chameneos-redux.scala?hb=true.

[10] C. Hewitt, P. Bishop, and R. Steiger. Artificial Intelligence A Universal
Modular ACTOR Formalism for Artificial Intelligence. Proceedings
of the 3rd International Joint Conference on Artificial Intelligence,
Stanford, CA, August 1973.

[11] Hewitt, Carl and Baker, Henry G. Actors and Continuous Functionals.
Technical report, Massachusetts Institute of Technology, Cambridge,
MA, USA, February 1978.

[12] C. A. R. Hoare. Monitors: An Operating System Structuring Concept.
Commun. ACM, 17(10):549–557, Oct. 1974. ISSN 0001-0782.

[13] G. Hohpe and B. Woolf. Enterprise Integration Patterns -
Request-Reply, 2003. URL http://www.eaipatterns.com/
RequestReply.html. [Online; accessed 3-April-2014].

[14] L. Hupel and typelevel.org. scalaz: Functional programming for Scala,
2010. URL http://typelevel.org/projects/scalaz/.

[15] S. Imam and V. Sarkar. Integrating Task Parallelism with Actors. In
Proceedings of the ACM international conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’12,
pages 753–772, NY, USA, 2012. ACM. ISBN 978-1-4503-1561-6.

[16] S. Imam and V. Sarkar. Habanero-Java Library: a Java 8 Framework
for Multicore Programming. In 11th International Conference on
the Principles and Practice of Programming on the Java Platform,
PPPJ’14. ACM, NY, USA, 2014.

[17] S. Imam and V. Sarkar. Savina - An Actor Benchmark Suite. In 4th
International Workshop on Programming based on Actors, Agents,
and Decentralized Control, AGERE! 2014, October 2014. Position
paper.

[18] Imam, Shams. DataDrivenControl, 2014. URL http:
//www.cs.rice.edu/˜vs3/hjlib/doc/edu/rice/hj/runtime/
forkjoin/DataDrivenControl.html.

[19] Imam, Shams and Sarkar, Vivek. Habanero-Scala: Async-Finish Pro-
gramming in Scala. In Scala Days 2012, April 2012.

[20] S. Inc. Complex Event Processing: Ten Design Patterns. White paper,
Sybase - An SAP Company, Apr 2001. URL http://m.sybase.
com/files/White_Papers/CEP-10-Design-Patterns-WP.pdf.

[21] I. A. Mason and C. L. Talcott. Actor Languages. Their Syntax,
Semantics, Translation, and Equivalence. Theor. Comput. Sci., 220
(2):409–467, June 1999. ISSN 0304-3975.

[22] R. M. May. Simple mathematical models with very complicated
dynamics. Nature, 261(5560):459–467, June 1976.

[23] Microsoft Developer Network. Priority Queue Pattern, 2014. URL
http://msdn.microsoft.com/en-us/library/dn589794.
aspx. [Online; accessed 3-April-2014].

[24] J. H. Nystrom. Priority Messaging Made Easy. In Proceedings of
the 2007 SIGPLAN Workshop on ERLANG Workshop, ERLANG ’07,
pages 65–72, NY, USA, 2007. ACM. ISBN 978-1-59593-675-2.

Submitted to AGERE! 2014 11 2014/9/30

http://wiki.rice.edu/confluence/display/PARPROG/HJ+Library
http://wiki.rice.edu/confluence/display/PARPROG/HJ+Library
https://camel.apache.org/aggregator2.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads/s1contents.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads/s1contents.html
https://code.google.com/p/functionaljava/
https://code.google.com/p/functionaljava/
https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/branches/translucent/docs/examples/actors/chameneos-redux.scala?hb=true
https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/branches/translucent/docs/examples/actors/chameneos-redux.scala?hb=true
https://codereview.scala-lang.org/fisheye/browse/scala-svn/scala/branches/translucent/docs/examples/actors/chameneos-redux.scala?hb=true
http://www.eaipatterns.com/RequestReply.html
http://www.eaipatterns.com/RequestReply.html
http://typelevel.org/projects/scalaz/
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/runtime/forkjoin/DataDrivenControl.html
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/runtime/forkjoin/DataDrivenControl.html
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/runtime/forkjoin/DataDrivenControl.html
http://m.sybase.com/files/White_Papers/CEP-10-Design-Patterns-WP.pdf
http://m.sybase.com/files/White_Papers/CEP-10-Design-Patterns-WP.pdf
http://msdn.microsoft.com/en-us/library/dn589794.aspx
http://msdn.microsoft.com/en-us/library/dn589794.aspx


[25] Oracle. Understanding Interaction Patterns, 2011. URL
http://docs.oracle.com/cd/E17904_01/doc.1111/e17363/
chapter05.htm.

[26] H. Plociniczak and S. Eisenbach. JErlang: Erlang with Joins. In
D. Clarke and G. Agha, editors, Proceedings of the 12th International
Conference on Coordination Models and Languages, volume 6116 of
COORDINATION’10, pages 61–75. Springer Berlin Heidelberg, 2010.
ISBN 978-3-642-13413-5. doi: 10.1007/978-3-642-13414-2 5.

[27] Rettig, Mike. jetlang: Message based concurrency for Java, 2014.
URL http://code.google.com/p/jetlang/.

[28] C. Scholliers, ı. Tanter, and W. De Meuter. Parallel Actor Monitors:
Disentangling Task-level Parallelism from Data Partitioning in the
Actor Model. Sci. Comput. Program., 80:52–64, Feb. 2014.

[29] M. Sulzmann, E. S. L. Lam, and P. V. Weert. Actors with Multi-headed
Message Receive Patterns. In Proceedings of the 10th International
Conference on Coordination Models and Languages, volume 5052 of
COORDINATION’08. Springer, 2008. ISBN 978-3-540-68264-6.

[30] S. Tasharofi, P. Dinges, and R. E. Johnson. Why Do Scala Devel-
opers Mix the Actor Model with Other Concurrency Models? In
Proceedings of the 27th European Conference on Object-Oriented
Programming, ECOOP’13, pages 302–326, Berlin, Heidelberg, 2013.
Springer-Verlag. ISBN 978-3-642-39037-1.

[31] W. Thies and S. Amarasinghe. An Empirical Characterization of
Stream Programs and Its Implications for Language and Compiler
Design. In Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’10, pages

365–376, NY, USA, 2010. ACM. ISBN 978-1-4503-0178-7.
[32] C. Tomlinson and V. Singh. Inheritance and Synchronization with

Enabled-Sets. In Conference Proceedings on Object-oriented Pro-
gramming Systems, Languages and Applications, OOPSLA ’89, pages
103–112, NY, USA, 1989. ACM. ISBN 0-89791-333-7.

[33] Typesafe Inc. Actors - Akka Documentation, 2014. URL http:
//doc.akka.io/docs/akka/2.3.2/scala/actors.html.

[34] Typesafe Inc. Aggregator Pattern - Akka Documentation, 2014.
URL http://doc.akka.io/docs/akka/snapshot/contrib/
aggregator.html.

[35] C. Varela and G. Agha. Programming Dynamically Reconfigurable
Open Systems with SALSA. ACM SIGPLAN Notices, 36(12):20–34,
Dec. 2001. ISSN 0362-1340.

[36] Wikipedia, The Free Encyclopedia. Fixed-priority pre-emptive
scheduling, 2014. URL http://en.wikipedia.org/wiki/
Fixed-priority_pre-emptive_scheduling. [Online; accessed
28-September-2014].

[37] Wikipedia, The Free Encyclopedia. Logistic map, 2014. URL http:
//en.wikipedia.org/wiki/Logistic_map.

[38] Wikipedia, The Free Encyclopedia. ProducerConsumer Problem,
2014. URL http://en.wikipedia.org/wiki/Producer%E2%80%
93consumer_problem. [Online; accessed 3-April-2014].

[39] Wikipedia, The Free Encyclopedia. ReadersWriters Problem,
2014. URL http://en.wikipedia.org/wiki/Readers%E2%80%
93writers_problem. [Online; accessed 3-April-2014].

Submitted to AGERE! 2014 12 2014/9/30

http://docs.oracle.com/cd/E17904_01/doc.1111/e17363/chapter05.htm
http://docs.oracle.com/cd/E17904_01/doc.1111/e17363/chapter05.htm
http://code.google.com/p/jetlang/
http://doc.akka.io/docs/akka/2.3.2/scala/actors.html
http://doc.akka.io/docs/akka/2.3.2/scala/actors.html
http://doc.akka.io/docs/akka/snapshot/contrib/aggregator.html
http://doc.akka.io/docs/akka/snapshot/contrib/aggregator.html
http://en.wikipedia.org/wiki/Fixed-priority_pre-emptive_scheduling
http://en.wikipedia.org/wiki/Fixed-priority_pre-emptive_scheduling
http://en.wikipedia.org/wiki/Logistic_map
http://en.wikipedia.org/wiki/Logistic_map
http://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem
http://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem
http://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem
http://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem

	Motivation
	Selectors: Actors with Guarded Mailboxes
	Implementation and Micro-benchmarks
	Performance Evaluation
	Message Throughput (ForkJoin)
	Mailbox Contention (Chameneos)


	Synchronous Request-Response Pattern
	Synchronous Reply Benchmarks

	Join Patterns in Streaming Applications
	Split-Join Benchmark (Filter Bank)

	Supporting Priorities in Message Processing
	Message Priority Benchmarks

	Reader-Writer Concurrency
	Reader-Writer Benchmarks

	Producer-Consumer Pattern
	Producer Consumer with Bounded Buffer Benchmark

	Related Work
	Summary
	Availability
	Acknowledgments

