
From Actor Event-Loop to Agent
Control-Loop – Impact on Programming

Alessandro Ricci
University of Bologna, Italy

a.ricci@unibo.it

Abstract
Event-loops and control-loops are the main control archi-
tectures adopted respectively in actors and in agents. These
architectures have a strong impact on the principles and dis-
cipline that can be adopted to design and program actors and
agents. In this paper we develop this point, considering some
main models/languages/technologies – ActorFoundry, Akka
Actors, SALSA, AmbientTalk on the actor side and Jason
and ALOO on the agent side – discussing and comparing
them.

1. Introduction
The event-loop and the control-loop are two main control
architectures adopted in literature to define the runtime be-
haviour of actors and agents. Actually, these architectures
have been deployed in various computer science contexts, in
different forms and complexity. A main example is given by
operating systems, where event-loops have been largely used
to define the control architecture of GUI-based applications.
More recent examples include web applications – both at the
client side, ruling the execution of JavaScript scripts, and at
the server side, adopted by technologies such as Node.js –
and mobile applications – adopted e.g. by the Android plat-
form ruling the execution of activities. Control-loops have
been adopted in Autonomic Computing [19] to define the
behaviour of autonomic entities, based on the MAPE cycle-
and, more generally, in self-adaptive system design [5]. Gen-
erally speaking, they are used to define the execution cycle
of computing systems – being them full applications or indi-
vidual components – that must be autonomous, from a con-
trol point of view, and must be capable to react to changes

[Copyright notice will appear here once ’preprint’ option is removed.]

in their surrounding environment, and act accordingly, given
some design objective.

With actors and agents, event-loops and control-loops are
brought down to the computational model of the basic first-
class abstractions adopted to design the active part of pro-
grams, so that a system or application is organized in terms
of a possibly large number of active entities whose execution
is loop-based. The properties of the computational model of
e.g. actors based on event-loops have been already remarked
in literature (e.g. in [21]). What we believe is missing is an
analysis and discussion about how the adoption of such con-
trol architectures could impact on the programming model,
and more generally on the programming principles and dis-
cipline promoted to design first-class entities encapsulating
control and featuring degrees of reactivity and proactivity.
This need is particularly relevant as soon as we consider
the programming of complex actors or agents, whose be-
haviour could be articulated and then it becomes important
to have clear principles and mechanisms fostering properties
in terms of modularity, encapsulation, extensibility, abstrac-
tion. This importance can be recognised in particular in the
practice, where these models and technologies – actor-based
in particular – are more and more adopted in the mainstream
as an alternative to multi-threaded programming to develop
concurrent/distributed/reactive programs.

Accordingly, the contribution of this paper is, first, to pro-
vide a common abstract and informal description of loop-
based control architectures spanning from actors (Section 2)
to agents (Section 3), considering state-of-the-art languages
and technologies, in order to ease the discussion of their
properties and their comparison; then, to provide a first dis-
cussion of the impact on programming, analysing some fea-
tures and the drawbacks that – we believe – depend on the
control architecture adopted.

2. Actors based on Event-Loops
In literature and in the practice, there are two basic ways to
implement actors: without an explicit receive – like in the
original model – and with an explicit receive. Examples for
the former case include ActorFoundry [18], SALSA [30],
Akka [1]. Examples for the latter case include Erlang [2]

1 2014/8/16



and Scala Actors as defined in [12]. Even if these could be
considered equivalent from the computational model point
of view, the two different programming models lead to actor
programs with a quite different organization and shape.

Event-loops are the main approach adopted to define the
control architecture of actors in the former case. The be-
haviour of an actor can be abstractly represented by an infi-
nite loop (Algorithm 1) composed essentially by three main
stages:

Algorithm 1 Abstract Version of a Basic Actor Event Loop
1: loop
2: msg ← WAITFORMSG()
3: h← SELECTMSGHANDLER(msg)
4: args← GETMSGARGS(msg)
5: EXECUTEMSGHANDLER(h, args)

6: end loop

First, a message is retrieved from the mailbox, when avail-
able (line 2); then, a proper handler or method associated to
the message is selected (line 3); finally, the selected handler
– if any – is executed, before cycling again (line 4-5). Three
key points of the model are:

• pure reactive behaviour — an actor starts working only if
there is a message in the mailbox;
• a macro-step (or run-to-completion [29]) semantics —

the execution of a message handler is atomic, i.e. can be
represented as a computational step atomically changing
the internal state of the actor, and its external environment
by delivering new messages or creating new actors.
• strict no-blocking discipline — handlers cannot block

or engage infinite loops: they must be necessarily finite
computations manipulating the internal state of the actors
and using asynchronous primitives to send messages and
create new actors.

From a design and programming point of view, this model
promotes a decomposition based on behaviours similar to
the state pattern [11]. On the one side, this makes it particu-
larly effective for implementing actors that can be properly
modelled as reactive state machines. Transitions in a state
are triggered by the receipt of a message and the atomic ex-
ecution of the message handler represents the effect of the
transitions, changing atomically the state. On the other side,
the implementation of more activity/procedure-oriented, hi-
erarchical behaviours, possibly involving patterns of syn-
chronous and asynchronous interactions – is quite problem-
atic and calls the adoption of further mechanisms to preserve
a level of modularity.

The problem in this case is the fragmentation of the code
in handlers, which does not necessarily corresponds to a
good modularization from the point of view of organiza-
tion of the wanted behavior. That is, a designer is forced
to decompose the behaviour following the message flows,

eventually using self-sending of messages to structure ar-
ticulated, long-term activities without tampering reactivity.
This is clearly a programming trick, decreasingly the level
of abstraction used to describe the strategy identified at the
design level. It produces similar effects to the goto for se-
quential programs [10], tampering program understanding.

As a concrete example, we consider here a well-known
problem in concurrent programming, the dining philoso-
phers. Philosophers must feature a behaviour in which re-
peatedly alternate thinking with eating, and for the latter they
need to properly interact with their environment—efficiently
acquiring and using their couple of forks in a mutual exclu-
sive way. The simplest solution to avoid deadlocks is to ac-
quire the forks (labelled with a numerical id) always in the
same order, so that the N − 1 philosopher using the forks
tagged as N − 1 (left) and 0 (right) collects first the fork
0 and then, after this succeeded, the N − 1 one. In a well-
modularised solution the behaviour of the philosopher is de-
composed in four main parts: thinking, acquiring forks, eat-
ing, releasing forks:

process Philosopher(Fork f1, Fork f2) {
loop {

think()
acquireForksInOrder(f1,f2)
eatUsingForks(f1,f2)
releaseForks(f1,f2)

}
}

The modules should be as loosely coupled as possible and
well-separated, so that e.g. thinking and eating should not
need to know anything about the strategy to adopt to ac-
quire/realease forks.

Figure 1 shows a solution in ActorFoundry [18] and in
Figure 3 in Akka [1], adapted from a version called “dining
hakkers” available in the Akka distribution. In both cases,
forks are modelled as actors—the Akka version adopts a so-
lution based on busy waiting. In the former, the philosopher
behaviour is decomposed into message handlers that corre-
spond to the different states in which the actor can be. In the
latter, the philosopher is more explicitly decomposed into
state/behaviours, using a become mechanism to make tran-
sitions. In both cases, it is evident the fragmentation of the
philosopher behaviour into a set of handlers that depends on
the message flow.

This problem can be mitigated by the use of continua-
tions [13], specifying the message to be replied when send-
ing a request message, that is the handler to be executed
when the request has been completed. Figure 2 shows the
philosopher in SALSA [30] as reported in [31]. SALSA sup-
ports different forms of continuations directly in the lan-
guage. In this case, it is possible to specify sequences – or
patterns – of actions in the same handler In the philosopher,
for instance, in the method gotRight, if also the right chop-
stick has been acquired, then first an “eating” message is
printed on standard output and release messages are sent to
chopstick actors; then a “thinking” message is printed to out-

2 2014/8/16



public class PhiloActor extends Actor {
private int nForksAcquired;
private ActorName firstFork, secondFork;

@message public void start(ActorName[] forks,
Integer leftFork, Integer rightFork) {

if (leftFork < rightFork){
firstFork = forks[leftFork]; secondFork = forks[rightFork];

} else {
firstFork = forks[rightFork]; secondFork = forks[leftFork];

}
send(this.self(), "think");

}
@message public void think(){ send(this.self(),"hungry"); }
@message public void hungry(){
nForksAcquired = 0; send(firstFork, "acquire",this.self());

}
@message public void gotFork(){
nForksAcquired++;
if (nForksAcquired < 2){
this.send(secondFork, "acquire",this.self());

} else {
this.send(self(), "eat");

}
}
@message public void eat(){ send(self(), "sated"); }
@message public void sated(){
send(firstFork, "release",this.self());
send(secondFork, "release",this.self());
send(self(), "think");

}
}

Figure 1. A Dining Philosopher in ActorFoundry.

behavior Philosopher {
Chopstick left, right;

Philosopher{Chopstick left, Chopstick right){
this.left = left; this.right = right;

}
boolean pickLeft(){ left <- get(self) @ currentContinuation; }
boolean pickRight(){ right <- get(self) @ currentContinuation; }
void eat(){
pickLeft() @
gotLeft(token);

}
void gotLeft(boolean leftOk){
if (leftOk) {

pickRight() @
gotRight(token);

} else eat();
}
void gotRight(boolean rightOk){
if (rightOk) {
join {
standardOutput <- println ("eating...");
left <- release();
right <- release();

} @ standardOutput <- println ("thinking...") @
eat();

} else gotLeft(true);
}

}

Figure 2. A Dining Philosopher in SALSA, as reported in
[31].

put, and finally the cycle is started again by self-sending an
eat message.

2.1 Integration with OOP and Impact on Modularity
A further aspect that impacts on the programming of actors
based on event-loops is the model adopted to integrate ac-

class Hakker(name: String, left: ActorRef,
right: ActorRef) extends Actor {

import context._

// thinking behaviour
def thinking: Receive = {
case Eat =>
become(hungry)
left ! Take(self)
right ! Take(self)

}

def hungry: Receive = {
case Taken(‘left‘) =>
become(waiting_for(right, left))

case Taken(‘right‘) =>
become(waiting_for(left, right))

case Busy(fork) =>
become(denied_a_fork)

}

def waiting_for(forkToWaitFor: ActorRef,
otherFork: ActorRef): Receive = {

case Taken(‘forkToWaitFor‘) =>
become(eating)
system.scheduler.scheduleOnce(5.seconds, self, Think)

case Busy(fork) =>
otherFork ! Put(self)
startThinking(10.milliseconds)

}

def denied_a_fork: Receive = {
case Taken(fork) =>
fork ! Put(self)
startThinking(10.milliseconds)

case Busy(fork) =>
startThinking(10.milliseconds)

}

// eating behaviour
def eating: Receive = {
case Think =>
left ! Put(self)
right ! Put(self)
startThinking(5.seconds)

}

// All hakkers start in a non-eating state
def receive = {
case Think =>
startThinking(5.seconds)

}

private def startThinking(duration: FiniteDuration): Unit = {
become(thinking)
system.scheduler.scheduleOnce(duration, self, Eat)

}
}

Figure 3. A Dining Hakker (Philosopher) in Scala using the
Akka framework, as reported in Akka distribution.

tors and objects. In the model underlying the approaches dis-
cussed in previous subsection, actors and objects are essen-
tially two independent levels. It is true that in OOP frame-
works like ActorFoundry and Akka, actors are implemented
in terms of OOP API – so, for instance, defining actors by
extending existing library classes or existing actor classes.
However this is just an implementation-level choice: the two
levels are conceptually independent and objects are solely
used to represent the data structures that are manipulated and
exchanged by actors.

3 2014/8/16



A different integrating approach has been introduced with
the VAT model [21], where actors (called VAT) are con-
tainers of objects and message passing, at the programming
level, occurs among the objects themselves. Besides the E
language [21], the model has been adopted also by other
actor-based language/systems such as AmbientTalk [8], and
approaches based on active objects such as JCoBox [27] and
ABS [16], extending the basic Creol model [15].

This choice strongly impacts on the way in which the
behaviour of an actor is designed and programmed. The
behaviour of an actor is decomposed in terms of objects,
directly exchanging messages with other objects, possibly
hosted in other actors. When created, the actor hosts a single
object (called actor’s behaviour), functioning as a public
interface to the actor, whose far reference is returned to the
actor creator. The event-loop in this case is a refinement of
the basic one (see Algorithm 2), where a heap is used to keep
track of the objects inside the actor and message dispatch
occurs by first locating the object target of the message, and
then invoking the corresponding method, which is run to
completion.

Algorithm 2 Abstract Version of an Actor Event Loop
1: loop
2: msg ← WAITFORMSG()
3: o← LOCATEOBJECT(msg)
4: m← GETMETHOD(msg)
5: args← GETMETHODARGS(msg)
6: CALLMETHOD(obj,m, args)

7: end loop

The processing of an asynchronous message to completion,
that may involve a chain of synchronous method calls among
objects inside the hosting actor, backed by a stack – is called
turn.

In this model the promoted programming style is more
similar to the classic OOP one, integrated with asynchronous
message passing and strictly no-blocking behaviour. Con-
tinuation Passing Style (CPS) is heavily adopted as mecha-
nism to manage asynchronous computations, based on non-
blocking futures. This leads to a quite different shape for
actors, compared to the one based on states/behaviours. As
an example, Figure 4 shows a snipper of the the philosopher
implemented in AmbientTalk, available in AmbientTalk dis-
tribution. Here a single room actor is used to manage forks,
that are collected with a single request. The plan of the over-
all behaviour is encapsulated in the method live, where fu-
tures and continuations are used to manage the interactions
first to get the forks, and then to eat, and finally to release
the forks and start again the cycle.

On the one side, compared to behaviour based actors, this
programming style reduces fragmentation, making it possi-
ble to encapsulate in a method of an object inside an ac-
tor the application logic possibly involving articulated in-
teraction – synchronous and asynchronous – with other ob-

actor: { |i,name,room|
...
def live() {
when: think() becomes: { |doneThinking|
when: room<-pickUp(i)@FutureMessage becomes: { |forks|
when: eat(forks) becomes: { |doneEating|
room<-putDown(i)@OneWayMessage;
continuation();
nil;

}
}

}
};
def think() { ... };
def eat(forks) { ... }
// asynchronous continuation of the ’live’ method
def continuation := { self<-live() };

live();
}

Figure 4. A snippet of a Dining Philosopher implemented
in AmbientTalk (AT).

jects. On the other side, the massive use of CPS and nested
futures/callbacks makes programming challenging, as wit-
nessed by other fields where event-loops and CPS are heav-
ily exploited, such as web programming. In the philosopher
example, the nested continuations included in the body of
the live method recalls the “pyramids of doom” raised by
nested callbacks in asynchronous programming.

A further, more methodological-oriented, reflection is
about the principles and guidelines for designing programs,
in this case. In previous cases, actors are the main blocks
to be used to structure a program, each further decompos-
able in terms of behaviours or states. Here instead, passive
objects – and not actors – are the fine-grained blocks to be
used, like in OOP – in fact, every interaction is among ob-
jects and the communication between actors must be explic-
itly conceived as the communication between objects inside
them. So a question is: what’s the methodology and princi-
ple that could drive the design of programs in this case. It
is not purely actor-based, but it is not even pure OO, since
here we deal with concurrency and distribution as first-class
aspects. This could be subject of further investigation and
development in literature.

3. From Event-Loops to Control-Loops
In literature, control-loops have been introduced and adopted
in different contexts – from control theory, to AI and soft-
ware engineering – in particular to define the control ar-
chitecture of autonomous/autonomic components (devices,
agents, robots,..) interacting with some kind of environment.
In the case of autonomic computing [19], the control-loop
ruling the behaviour of an autonomic component is called
MAPE and is composed by four conceptual stages which
are repeatedly executed – Monitor, Analyse, Plan and Exe-
cute. In the case of Agent-Oriented Programming as defined
originally in [28], it is used to define the abstract architec-
ture of intelligent agents, so as to bring together proactivity

4 2014/8/16



– that is, acting towards the achievement of some goal – and
reactivity – to promptly react to relevant events occurring
in the environment. The reasoning cycle of BDI intelligent
agents [23] is a control-loop, based on three macro-stages
– sense, plan, act – that are executed at each cycle of the
loop. Different variants of this cycle have been implemented
in practical agent programming languages/frameworks, such
as Jason [4], AgentFactory [26], 2APL [9], GOAL [14]—all
these mainly in the context of Distributed Artificial Intelli-
gence.

Besides that context, in our previous works we started ex-
ploring the value of this kind of control-loop also for defin-
ing the behaviour of agents adopted as fine-grained first-
class abstractions in concurrent and distributed program-
ming, comparable to actors. Agents in the simpAL [25] lan-
guage and in its most recent evolution called ALOO [24] em-
bed a simplified variants of the BDI reasoning cycle, sharing
many characteristics and features with actors’ event-loops.

Said this, in the following we discuss the properties of
control-loops from a programming point of view, taking
Jason and ALOO as reference cases..

3.1 Control-Loops in Intelligent Agents
Jason is a concrete implementation and extension of the
AgentSpeak(L) language [22]. It has been conceived to be
a practical language to implement intelligent BDI-based
agents, adopting Prolog and logic programming as back-
ground language to represent data structures. An agent in
Jason is an autonomous entity – owning a logical control
flow – functioning as a reactive planning system, reacting to
events perceived from the environment where it is immersed
and doing actions on that environment in order to achieve
some assigned goal(s), possibly exchanging messages with
other agents. It is programmed in terms of goals – represent-
ing the tasks that can be allocated to the agent – beliefs –
Prolog-like facts and rules used to represent the internal/hid-
den agent state, including the information about the current
perceived state of the environment – and plans – which en-
capsulate the procedural knowledge to be used to react to
events like changes to beliefs, new goals to achieve or goal
failures. Details about Jason programming model can be
found here [3, 4].

Algorithm 3 shows an abstract simplified version of the
Jason control-loop. The knowledge state of the agent is rep-
resent by its belief base B, which contains both facts about
private state of the agent and its beliefs about the current ob-
servable state of the environment. The plan library PlanLib
contains the description of the set of plans that the agent can
use to achieve goals. I is the set of agent ongoing intentions,
i.e. the ongoing plans in execution (that corresponds to the
concrete activities that the agent is carrying on).

Lines 3-4 represent the sense stage of the loop. The cur-
rent state of the environment is perceived in terms of a set
of percepts ρ, and these are used to update the belief base
of the agent, i.e. its beliefs about the state of the environ-

Algorithm 3 Simplified version of the AgentSpeak(L)/Jason
control-loop

1: B ← B0; PlanLib← PlanLib0 ; Ev ← {} ; I ← {}
2: loop
3: ρ← SENSEENV()
4: BELUPDATE(ρ,B,Ev)
5: if Ev is not empty then
6: ev ← FETCHEVENT(Ev)
7: p← SELECTPLAN(ev,B, P lanLib)
8: if ev is an env change or a new goal to achieve then
9: I ← I ∪ {NEWINT(p, ev)}

10: else if ev is a sub-goal to achieve then
11: PUSHPLAN(currInt, p, ev)
12: end if
13: end if
14: if I is not empty then
15: currInt← SELECTINTENTION(I)
16: a← FETCHNEXTACTION(currInt)
17: EXECACTION(a, currInt,B, I, P lanLib)
18: end if
19: end loop

ment. In this simplified version, these percepts include also
the messages sent by other agents. The updates of the belief
base generate a new set of events which are added to set of
events Ev. In Jason, events in general can be related either
to a change in the environment, or a new goal/subgoal to
achieve – either self-allocated or allocated by another agent.
The plan stage is given by lines 5-13. If the set of events is
not empty, then one event ev is fetched and a relevant and
applicable plan p is selected for dealing with the event ev,
given current agent beliefs B and current set of plans avail-
able in the plan library PlanLib. Then, a new intention is
added to the intention set I if the event ev is about an envi-
ronment change or a new independent goal to achieve. Oth-
erwise, if the event is about a sub-goal to achieve, mean-
ing that it is a sub-goal of current plan in execution, then
the plan p is pushed on the plan stack associated to the cur-
rent intention. The effect is similar to a procedure call: the
current plan in execution is suspended until the sub-goal is
achieved—that is, the new plan p is completed with success.
Finally, in the act stage (lines 14-18), one intention among
the ongoing intentions I is scheduled to be the current inten-
tion currInt, from which the next action a to be executed
is fetched. The action is executed—affecting either the agent
state (if it is an internal action) or the environment (if it is an
external action).

By comparing the control-loop implemented in Jason
and event-loops discussed in previous section, it is possi-
ble to recognise some important similarities. In particular,
the sense stage in this control-loop corresponds to message
fetching in event-loops, the plan stage to message handler se-
lection and the act stage to handler execution. Like in event-
loops, also in control-loops the following features hold:

5 2014/8/16



• no low-level race conditions can occur inside the agent,
since there is only one logical control flow accessing/-
modifying the agent state. This access is staged, so that
in the sense stage it is updated, in the plan stage it is read,
and finally in the act stage it is read or updated, depend-
ing on the action executed;
• no low level deadlocks can occur since the control flow

executing the cycle is never blocked. Even when the exe-
cution of a plan is suspended because an agent is waiting
for e.g. the completion of some action to execute the next
one, it can always react to other events, instantiating new
intentions.

Besides, there are some differences that – we will see – have
a relevant impact on programming. In particular, in control-
loops:

• the run-to-completion semantics is relaxed, in fact plans
selected in the plan stage (and corresponding new cre-
ated intentions) are not necessarily run to completion be-
fore the next cycle, but through multiple cycles, executing
only one atomic action at each cycle and possibly man-
aging multiple intentions;
• if there are no events to process, the cycle is not blocked:

it may go on selecting and performing actions following
the current intention(s);
• a preemptive scheduling schema is adopted to carry on

multiple plans—instead of a cooperative one, as adopted
in container-based actors and active objects. However,
like in actors, as already said, no low level race condition
can occur, since individual actions are executed atomi-
cally;
• a plan in execution can be blocked or suspended—this

happens each time an environment/external action is ex-
ecuted (waiting for its completion before executing the
next one) or by means of predefined .suspend internal
actions that allows for suspending ongoing intentions.
However, as mentioned before, the agent per se is not
blocked: the agent execution cycle is always running,
eventually reacting to events relevant for the agent.

From a programming model point of view, this kind of
control-loop promotes a decomposition of the behaviour
based on plans as hierarchical procedural abstractions, so a
quite different approach with respect to the state/behaviour-
based one promoted by the basic actor model. As an ex-
ample, Figure 5 shows the dining philosopher implemented
in Jason. The behaviour is given by a set of plans, logi-
cally organized in a hierarchical fashion. The agent reacts
to the initial goal !boot(F1,F2), by instantiating a plan
(lines 1-3) in which first it sorts out the forks to be used
(!sort forks(...) sub-goal) and then starts an end-less
living activity (!!living independent goal). In Jason, !G
and !!G specify respectively a subgoal and an indepen-
dent goal G to be achieved, the latter case creating a new

1 +!boot(F1,F2)
2 <- !sort_forks(F1,F2);
3 !!living.
4

5 +!sort_forks(F1,F2) : F1 <= F2
6 <- +first(F1); +second(F2).
7

8 +!sort_forks(F1,F2) : F1 > F2
9 <- +first(F2); +second(F1).

10

11 +!living
12 <- !think;
13 !acquireRes;
14 !eat;
15 !releaseRes;
16 !!living.
17

18 +!acquireRes : first(F1) & second(F2)
19 <- acquireFork(F1); acquireFork(F2).
20

21 +!releaseRes: first(F1) & second(F2)
22 <- releaseFork(F1); releaseFork(F2).
23

24 +!think <- println("Thinking").
25 +!eat <- println("Eating").

Figure 5. A Dining Philosopher implemented in Jason.

intention. The plan for living (lines 11-16) accounts for a
sequence of subgoals, first think, then acquire forks, eat,
and then release forks before starting again with the same
activity. In the plan for acquiring the forks (lines 18-19),
the agent interacts with the environment by performing the
acquireRes actions in order. The shape of the resulting
program is as simple as the one typically found in multi-
threaded programming, even if here the control architecture
is completely different.

On the one side, this model makes it more natural com-
pared to event-loop based approaches the design and imple-
mentation of activity/process oriented behaviours that need
to integrate some kind of reactivity. On the other side, this re-
quires a more complex control architecture, in which e.g. a
stack must be be used for each plan in execution. Event-loop
based actors may use a single stack to manage synchronous
method calls among objects in a single turn—however the
model ensures that the stack is always empty when the loop
is going to wait for the next message to be served.

A simple example of integration between proactivity and
reactivity is given by an extension of the dining philosopher
problem with a further specification that, besides repeatedly
thinking and eating, a philosopher must be able to promptly
react to an alarm notified by the environment and then start-
ing an evacuation plan. In Jason, this could be done quite
flexibly by extending the agent program with a couple of
further plans:

+alarm <- .drop_all_intentions; !evacuate.

+!evacuate <- ...

in which the agent reacts to new belief alam perceived
from the environment (that could be replaced by a message
sent by another agent), and then drops all ongoing inten-
tions (.drop all intentions is a primitive internal ac-

6 2014/8/16



tion) and instantiates an new !evacuate goal. Apparently,
this kind of flexibility is not that easy to be achieved in basic
event-loop based models—where it could require to explic-
itly modify each actor state/behaviour to add an handler to
react to the alarm message. Instead, this could be done more
easily in container-based event-loops, since the alarm mes-
sage could be sent to some specific object inside the actor,
without the need to change the other objects hosted by the
same actor container.

3.2 Control-Loops for Agents in Object-Oriented
Concurrent Programming

The capability of flexibly integrating reactivity and
proactivity makes this kind of control-loop interesting
also in the context of concurrent programming, where
the integration of event-driven/asynchronous and thread-
oriented/synchronous programming is still an issue today.
Accordingly, we adopted a simplified version of the sense-
plan-act control-loop as control architecture of agents in sim-
pAL [25] and in the more recent ALOO [24] language.

In ALOO in particular the objective is explore the exten-
sion of classic sequential object-oriented programming with
an agent-oriented abstraction layer to address concurrency
and featuring agents with a minimal sense-plan-act loop. In
ALOO, objects are used to model any kind of passive en-
tity / data structure which is dynamically created, possibly
shared and used by agents. Agents, on the other hand, are
used to model fine-grained active entities in charge of ful-
filling some task, by dynamically using and observing ob-
jects. Fine-grained means that a program in execution can
host as many agents as objects—they are like lightweight
actors/processes in languages such as Erlang. The set of ob-
jects represent the environment where agents are logically
situated, providing them the actions that they can do – cor-
responding to object operations – and perceptions – corre-
sponding to changes to object observable properties. Dif-
ferently from objects, agents don’t need to be garbage col-
lected: they terminate as soon as (if) they complete their task.

The detailed description of ALOO programming model is
out of the scope of this paper: in the following we provide
just the essential elements that are useful to support the
discussion. To help this description, we consider the source
code of a philosopher agent in ALOO, shown in Figure 6,
that will be discussed also after presenting the control loop.

The structure and behaviour of an agent in ALOO is
defined by agent scripts (e.g. Philosopher agent script
in Figure 6), similar to classes, containing a set of plans
and of variables defining the global agent state, shared by
plans in execution (e.g. first and second variables, in the
Philosopher agent script). Like in Jason, plans contain
the recipes that the agent can use to achieve its task(s), and
the term intention is used to refer to a plan in execution.
At runtime, an agent is created with a task to do and it
terminates when/if it completes the main intention created
to fulfill that task.

1 task DiningTask {
2 leftFork, rightFork: Fork
3 alarm: boolean
4 }
5

6 agent-script Philosopher {
7 public-tasks: DiningTask;
8 Fork first, second;
9

10 plan-for DiningTask {
11 if (this-task.leftFork.id < this-task.rightFork.id){
12 first = this-task.leftFork; second = this-task.rightFork
13 } else {
14 first = this-task.rightFork; second = this-task.leftFork
15 };
16 {
17 [] => {
18 do Think();
19 do AcquireForks();
20 do Eat();
21 do ReleaseForks()
22 }
23 }
24 }
25 plan-for Think() { this-env.out.println("Thinking") }
26 plan-for Eat() { this-env.out.println("Eating") }
27 plan-for AcquireForks() { first.acquire() ; second.acquire() }
28 plan-for ReleaseForks() { first.release() ; second.release() }
29 }

Figure 6. A Dining Philosopher implemented in ALOO.

A plan (e.g. lines 10-24) is defined by the type of tasks for
which it can be used (e.g. DiningTask) and a body, specify-
ing how to achieve that kind of tasks1. The body of a plan is
given by a set of action rules and local variables, structured
in blocks { ... }, defining their scope. Action rules2 drive
the selection of actions3, specifying when an action can be
collected in a cycle to be executed. Action rule blocks can be

1 Tasks in ALOO are uniformly represented by objects, as instances of
classes whose interface (type) must be an extension of a predefined Task

interface. To shorten the declaration and denotation of task objects, some
syntactic sugar is provided. The construct task T { ... } (e.g. lines 1-
4) implicitly defines an interface T extending Task with a corresponding
default class implementing T. Objects in ALOO extends normal objects
with observable properties, which are declared in the interface along with
operation signatures. So DiningTask objects (as defined in lines 1-4) have
three observable properties: leftFork, rightFork, and alarm.
2 Each action rule has the general form [ +e | c ] => a #l , specify-
ing that the action a – labelled as l – can be selected to be executed each
time an event e occurs and the condition over agent state c holds. Events
are related either to changes to observable properties of objects that the
agent is observing or changes to the execution state of actions of the block.
Either the event or the condition can be omitted, meaning that the action
can be selected independently from – respectively – the happening of some
specific event or from the current action state. The [] => a rule (e.g. lines
19-25) means that the action a can be always selected. Some syntactic sugar
is provided to directly encode set of rules representing sequence of actions:
they can be written as a chain of actions (omitting the condition part) using
the semicolon separator, like a sequence of statements in the case imperative
programs (e.g. lines 20-25).
3 Actions can be external – i.e. invoking method on objects, given their
references – or internal, e.g. assigning a value to a variable. Actions related
to method execution are carried asynchronously, by a different control flow
from the control-loop; the completion or failure of actions is perceived
by the agent as asynchronous events. Among the internal actions, the do

action instantiate a new sub-task to be achieved (e.g. line 20, 21, 22, 23),
specifying the object that represents the new task to accomplish. The do

7 2014/8/16



nested, by specifying actions that are blocks themselves4. Fi-
nally, the definition of an action rule block can include also
the declaration of those (object) observable properties that
the agent needs to observe inside the block5—the updated
value of observed observable property is stored in local read-
only variables called beliefs that can be accessed inside the
block. Beliefs are used also to keep track of the execution
state of actions.

The control-loop in ALOO is shown in Algorithm 4. S

Algorithm 4 ALOO control-loop
1: S ← S0; PlanLib← PlanLib0 ; Ev ← {}
2: p← SELECTPLAN(AssignedTask, P lanLib)
3: I ← {NEWINT(p,AssignedTask)}
4: while I is not empty do
5: currInt← SELECTINTENTION(I)
6: ev ← FETCHEVENT(Ev, currInt)
7: UPDATEBEL(currInt, ev)
8: if ev is about a new sub-task t todo then
9: p← SELECTPLAN(t, P lanLib)

10: PUSHPLAN(currInt, p, t)
11: else if ev is about a new task t todo then
12: p← SELECTPLAN(t, P lanLib)
13: I ← I ∪ {NEWINT(p, t)}
14: end if
15: al ← COLLECTACTIONS(currInt, S, ev)
16: for all a in al do
17: EXECACTION(a, currInt, S, I, P lanLib)
18: end for
19: end while

represents the agent global state (variables), I the set of
ongoing plans in execution (i.e., intentions), Ev is the event
queue, PlanLib the plan library, storing the current set of
plans available to the agent (loaded from agent scripts),
AssignedTask the reference to the object representing the
task assigned to the agent.

In this control-loop, there is a first plan stage before loop-
ing (lines 2–3), selecting a plan p for the assigned task and
then instantiating the corresponding intention in the set of
intentions I . Then, the loop is used to carry on the execu-
tion of the plan (act stage, lines 15–18), while perceiving
events from the environment (sense stage, lines 5–7). Simi-
larly to event-loops, for each cycle an event is fetched from
the event queue (line 6). Like in Jason and differently from
event-loops, such fetching is not blocking: if no events are
in the queue, ev is nil (not available). Differently from Ja-
son, fetching is driven by the intention, that is: fetching looks
for an event related to the current intention currInt—i.e.,

syntax allows to specify directly the name of the task type, along with
parameters—in that case, a new task object of that type is implicitly created.
4 So for each intention, a stack is used to manage the action rule block
nesting.
5 Given an object o with an observable property obs , then in an action rule
block |o.obs as: b|{ ... [+b] => ... } the agent can perceive
changes occurring to o.obs , mapped into an implicitly declared local read-
only variable b . These variables are called beliefs.

concerning beliefs belonging to the action rule block on the
top of the stack of this intention. If the event is about the
change of an observable property of an object observed by
the agent, or about the notification that an action previously
executed (e.g. method call on an object) has been completed
(or failed), then the corresponding belief in the action rule
block is updated (line 7). If the event is about a new task
to do – caused by the execution of an action self-allocating a
task, such as the do action – then a new plan stage is executed
(line 8-14). Like in Jason, if the request is about a sub-task
to do, then the plan body of the selected plan (which is an ac-
tion rule block) is pushed on current intention stack. Other-
wise, if it is an independent task, a new intention is created.
In the act stage, an intention is selected to be the current
intention currInt (line 7), using a round-robin schema to
guarantee fairness, and then all actions that can be executed
according to the rules of such an intention are collected (line
15) and executed, sequentially (line 16-18).

Two important differences compared to the control-loop
in Jason are:

• here the plan stage does not occur for every possible
event, but only for events concerning the tasks to do—
reactions to events related to changes in the environment
are expressed by action rules inside plans;
• it is not an infinite loop: an agent terminates as soon as

there are no more intentions to carry on.

The programming model induced by this control-loop is
quite similar to the Jason one, based on the hierarchical de-
composition of plans, as shown by the philosopher example
in Figure 6. The main differences concern the granularity of
plans and the shape of the behaviours integrating proactivity
and reactivity. Jason – following AgentSpeak(L) – adopts
a quite fine grained plan model, so that we have to write a
plan for each possible event relevant to the agent. On the one
side this favors simplicity and flexibility, on the other side it
has a drawback on modularity and encapsulation: a strategy
for doing some task that needs to integrate some actions and
some reactions to asynchronous events cannot be encapsu-
lated into a single plan, but it must be necessarily split into
multiple plans not explicitly related. So for complex agent
programs, this could lead to a large number of plans which
are not sub-plans but implicit fragments of the same logical
high-level plan.

For instance, suppose to consider a variant of the dining
philosopher in which a philosopher agent must begin eating
reactively, by perceiving a hungry stimulus after thinking.
This could be implemented in Jason as follows:

+!living <- !think.

+hungry <- !acquireRes; !eat; !releaseRes; !!living.

that is: the plan for !living must be broken in two parts:
a first plan triggering the !think goal and a second plan
reacting to the event +hungry. At the logical level, these

8 2014/8/16



plans are part of the same conceptual higher-level plan, but
they are not explicitly related at the program level.

The ALOO control loop allows for adopting a more
coarse-grained plan model: a plan is meant to encapsulate
the strategy to accomplish some specific task—which may
include some workflow of actions – including triggering fur-
ther sub-tasks – and reactions. For instance, the variant of the
dining philosopher could be implemented without breaking
the plan, by simply adding an action rule:

agent-script Philosopher(body: MyBody){

plan-for DiningTask {

...

{

[] => |body.isHungry as: hungry| {

do Think()

[hungry] => {

do AcquireForks();do Eat();do ReleaseForks()

}}}

In this code, the agent in the main cycle observes the ob-
servable property isHungry of a body object, mapped into
a belief hungry. As soon as it is perceived to be true, the
agent executes an action rule block driving the eating stage.
This allows to avoid the enforced fragmentations into plans
to handle reactivity, improving encapsulation—at the price
of an increased complexity of the plan model adopted and of
the structures used to manage it at runtime. gaz

4. Discussion and Concluding Remarks
Given the analysis in previous sections, we can draw a path
from threads to actors to agents concerning the control ar-
chitecture adopted to define the behaviour of autonomous
entities. With threads, the control architecture accounts for
a simple control flow executing some body of code, possi-
bly traversing objects shared with other control flows. With
receive-based actors (not based on event-loop), such a con-
trol flow is encapsulated into boundaries so that it cannot
cross with other control flows, it can traverse objects that
are inside these boundaries and an explicit blocking receive
primitive is provided to react to messages. With event-loop
based actors, the control architecture is extended to provide
a stronger discipline: it allows the programmer for abstract-
ing from the use of low-level receive primitives by organ-
ising the execution flow in turns or cycles and embedding
the blocking receive as an implicit part of the control ar-
chitecture. This promotes a state-based organisation of the
actor behavior; then, the adoption of mechanisms such as
continuations and futures/promises allows for partially re-
covering a more activity-oriented style. Going from event-
loops to control-loops, the implicit blocking behaviour of
the control flow is removed, so that conceptually the cycle is
continuously running, fetching an event if available at each
cycle, deciding the next action(s) to do according to the cur-
rent plan(s) in execution and executing it/them. This leads
to plan/procedural organization of the behaviour, allowing

for integrating blocking actions without tampering reactiv-
ity. The increased complexity of the control architecture cor-
responds to an increase of the level of abstraction provided
by the programming model, where e.g. mechanisms such as
continuations are no more necessary to manage synchronous
interactions or to realize articulated activities. So what is
quite clear in this path is that the evolution of the level of
abstraction provided to program active entities is strongly
related to the evolution of the control architecture adopted.

This analysis can be considered just the starting point,
useful to set a frame – spanning from event-loops to control-
loops, from actors to agents – in which (further) issues can
be (further) explored. One is about performance, i.e. how
the control architecture may impact on performances. The
evolution of the control architecture discussed before cor-
responds to an increase of complexity and challenges about
performances. In particular, the features provided by control-
loop in agents could lead to an important decrease of per-
formance compared to event-loops in actors. This could be
devised also by considering some first benchmarking and
analysis recently carried on in literature [6]. However, the
level of maturity of agent technologies is far from the ac-
tor one, where different kinds of optimisation have been
devised and applied making the performance of event-loop
based actors comparable with the one based on explicit re-
ceive [18]. Analogously, we believe that a deeper study of
control-loop implementation schema can lead to optimiza-
tions making the performance of agents comparable to actors
one. An example is given by cycling-by-need, that is: even
if the control-loop is, in principle, always cycling, without
blocking, it is possible to identify those situations in which
cycling can be avoided, since it is not going to change the
agent actual state.

Another issue that can be further explored, which could
be considered as a direct continuation of this work, is about
the impact of control architectures on the mechanisms and
models that can be adopted to extend/reuse/compose the
structure and behaviour of actors/agents. A simple example
which is mentioned also in this paper is about how easy
can be extending the task/behaviour of a dining philosopher
with the capability/functionality of promptly reacting to an
alarm stimoulous/message and evacuate, starting from the
pre-existing basic implementation. Apparently, this problem
can be tackled in different ways depending on the kind
of organization of the behaviour promoted, e.g. either in
states or in plans. In actor literature, most of the discussion
about reuse and extensibility has been developed around the
problem of inheritance anomaly [20], focusing in particular
on purely reactive entities (the typical example is a bounded
buffer actor). This could be the starting point to consider
also more proactive entities, like agents, and organization of
behaviours that are more plan-oriented, integrating existing
research works about inheritance available in the context of
agent programming [7, 17].

9 2014/8/16



References
[1] Akka. Actor framework, 2010. http://akka.io/, Last

Retrieved: Aug 12, 2014.

[2] J. Armstrong. Erlang. Communications of the ACM, 53(9):68–
75, 2010.

[3] R. Bordini and J. Hübner. BDI agent programming in AgentS-
peak using Jason. In F. Toni and P. Torroni, editors, CLIMA VI,
volume 3900 of LNAI, pages 143–164. Springer, Mar. 2006.

[4] R. Bordini, J. Hübner, and M. Wooldridge. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley
& Sons, Ltd, 2007.

[5] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Müller, M. Pezzè, and M. Shaw. Software
engineering for self-adaptive systems. chapter Engineering
Self-Adaptive Systems Through Feedback Loops, pages 48–
70. Springer-Verlag, Berlin, Heidelberg, 2009.

[6] R. C. Cardoso, M. R. Zatelli, J. F. Hübner, and R. H. Bor-
dini. Towards benchmarking actor- and agent-based program-
ming languages. In Proc. of the 2013 Workshop on Program-
ming Based on Actors, Agents, and Decentralized Control,
AGERE! ’13, pages 115–126, New York, NY, USA, 2013.
ACM.

[7] L. Crnogorac, A. S. Rao, and K. Ramamohanarao. Analysis
of inheritance mechanisms in agent-oriented programming. In
IJCAI (1)’97, pages 647–654, 1997.

[8] T. V. Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and
W. D. Meuter. AmbientTalk: Object-oriented event-driven
programming in mobile ad hoc networks. In Proc. of SCCC
’07, pages 3–12, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[9] M. Dastani. 2apl: a practical agent programming language.
Autonomous Agents and Multi-Agent Systems, 16(3):214–248,
2008.

[10] E. W. Dijkstra. Letters to the editor: Go to statement consid-
ered harmful. Commun. ACM, 11(3):147–148, Mar. 1968.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995.

[12] P. Haller and M. Odersky. Scala actors: Unifying thread-
based and event-based programming. Theoretical Computer
Science, 410(2-3):202–220, 2009.

[13] C. Hewitt and H. j. Baker. Actors and continuous functionals.
Technical report, MIT/LCS/TR-194, 1979.

[14] K. V. Hindriks. Programming rational agents in GOAL.
In R. H. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni, editors, Multi-Agent Programming: Lan-
guages, Platforms and Applications (2nd volume), pages 3–
37. Springer-Verlag, 2009.

[15] E. Johnsen and O. Owe. An asynchronous communication
model for distributed concurrent objects. Software & Systems
Modeling, 6(1):39–58, 2007.

[16] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Stef-
fen. ABS: A core language for abstract behavioral specifica-

tion. In Formal Methods for Components and Objects, volume
6957 of LNCS, pages 142–164. Springer, 2012.

[17] H. Jordan, S. Russell, G. O’Hare, and R. Collier. Reuse by
inheritance in agent programming languages. In Intelligent
Distributed Computing V, volume 382 of Studies in Compu-
tational Intelligence, pages 279–289. Springer Berlin Heidel-
berg, 2012.

[18] R. K. Karmani, A. Shali, and G. Agha. Actor frameworks
for the jvm platform: a comparative analysis. In Proc. of
PPPJ’09, pages 11–20, New York, NY, USA, 2009. ACM.

[19] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, Jan. 2003.

[20] S. Matsuoka and A. Yonezawa. Research directions in con-
current object-oriented programming. chapter Analysis of in-
heritance anomaly in object-oriented concurrent programming
languages, pages 107–150. MIT Press, Cambridge, MA, USA,
1993.

[21] M. Miller, E. Tribble, and J. Shapiro. Concurrency among
strangers: programming in E as plan coordination. In Trust-
worthy Global Computing, volume 3705 of LNCS, pages 195–
229. Springer Berlin / Heidelberg, 2005.

[22] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In Proc. of MAAMAW’96, pages 42–55.
Springer-Verlag New York, Inc., 1996.

[23] A. S. Rao and M. P. Georgeff. BDI Agents: From Theory to
Practice. In Proc. of ICMAS’95, 1995.

[24] A. Ricci and A. Santi. Concurrent object-oriented program-
ming with agent-oriented abstractions: The ALOO approach.
In Proc. of the 2013 Workshop on Programming Based on Ac-
tors, Agents, and Decentralized Control, AGERE! ’13, pages
127–138, New York, NY, USA, 2013. ACM.

[25] A. Ricci and A. Santi. From actors and concurrent objects to
agent-oriented programming in simpAL. In Concurrent Ob-
jects and Beyond – Festschrift in Honor of Akinori Yonezawa,
volume 8665 of LNCS. Springer, 2014.

[26] R. Ross, R. Collier, and G. O’Hare. AF-APL: Bridging prin-
ciples and practice in agent oriented languages. In Program-
ming Multi-Agent Systems, volume 3346 of Lecture Notes in
Computer Science, pages 66–88. Springer, 2005.

[27] J. Schäfer and A. Poetzsch-Heffter. CoBoxes: Unifying active
objects and structured heaps. In Proc. of FMOODS’08, pages
201–219, Berlin, Heidelberg, 2008. Springer-Verlag.

[28] Y. Shoham. Agent-oriented programming. Artificial Intelli-
gence, 60(1):51–92, 1993.

[29] T. Van Cutsem, C. Scholliers, D. Harnie, and W. De Meuter.
An operational semantics of event loop concurrency in ambi-
enttalk. Technical report, Vrije Universiteit Brussel, 2012.

[30] C. Varela and G. Agha. Programming dynamically reconfig-
urable open systems with salsa. SIGPLAN Not., 36(12):20–34,
Dec. 2001.

[31] C. A. Varela. Programming Distributed Computing Systems:
A Foundational Approach. MIT Press, May 2013.

10 2014/8/16


