

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPLAN’05 June 12–15, 2005, Location, State, Country.
Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

Multiple Inheritance in AgentSpeak(L)-style Programming
Languages

Akshat Dhaon

UCD School of Computer Science & Informatics,
University College Dublin, Belfield, Dublin 4, Ireland

akshat.dhaon@ucdconnect.ie

Rem Collier

UCD School of Computer Science & Informatics,
University College Dublin, Belfield, Dublin 4, Ireland

rem.collier@ucd.ie

Abstract

Agent-Oriented Programming (AOP) is a high-level program-
ming paradigm for implementing intelligent distributed systems.
While a number of AOP languages have been proposed in the
literature, many of them focus on the provision of support for
intelligent decision making rather than addressing language
design concerns such modularity and reuse. To address this
imbalance, this paper presents an abstract model of multiple
inheritance for AgentSpeak(L) style languages which decom-
poses agent programs into a set of inter-related agent classes and
defines a run-time apparatus for rule selection on the relation-
ship between those classes. To demonstrate our approach, a case
study is presented that introduces a new AgentSpeak(L)-based
language entitled ASTRA and its use in an illustrative imple-
mentation of an agent-based chat system is then presented.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features – abstract data
types, polymorphism, control structures.

General Terms Algorithms, Design, Languages, Theory.

Keywords Agent Programming, Multiple Inheritance.

1. Introduction

Agent-oriented programming is an upcoming programming
paradigm that adopts a societal view of computation [28] in
which systems are built from a set of entities known as agents
that coordinate their activities in order to realise global system
behaviours. Individual agents are imbued with intelligent deci-
sion making capabilities that allow them to autonomously de-
termine when and how to interact with other agents in the sys-
tem.

To date, a number of agent programming languages have
been proposed [5] that support programming of the intelligent
behaviour based on mental notions such as beliefs, desires, and
intentions [25] [28]. Many of these languages are logic based
and are inspired by earlier theories of rational action. Unfortu-
nately, research on these languages has tended to focus on the
decision-making capabilities of agents to the exclusion of other
important issues, such as modularity and code reuse. This lack

of consideration has led to a number of languages that can be
applied to solve complex problems, but are rarely used because
the implementations are difficult to understand, maintain and
reuse.

Some previous attempts have been made to address the issue
of modularity. For example, [8] [9] propose a modular approach
to reuse using the concept of capabilities- reusable clusters of
beliefs, plans and events - that can act as the building blocks of
agent programs. Others have proposed the use of shared envi-
ronments as reuse mechanisms, which allow heterogeneous
agents to share common action and perception routines [19].
However, the provided modularity constructs are mostly compo-
sitional, and support for variability through specialisation, which
has long been considered a key issue in mainstream program-
ming languages, is less well explored [30]. Finally, in [19], a
generalised model of single inheritance is proposed that could be
applied to all agent programming languages. However, this
model is intended to be applied as a pre-processing step that is
lost at compile time. It also supports only overriding of behav-
iours and not extension of behaviours.

In our view, single inheritance does not provide an adequate
model of specialisation for agent programming languages. This
is apparent when attempting to utilize an agent programming
language to implement a design specified in one of the many
agent-oriented methodologies (e.g. GAIA [36], Prometheus
[24]). Typically, these methodologies define system behaviours
in terms of a set of roles that interact to achieve the required
behaviour. These roles are then combined into a set of agent
types that are to be implemented. This type of decomposition is
used because it is generally seen as more natural and as offering
a better form of decomposition than agent types. Unfortunately,
due to the lack of a correlation between the key concept of a role
and an equivalent concept in the agent programming language,
implementations of the design rarely bear any resemblance to
the design. While this has led some researchers to investigate
the notion of roles as run-time constructs [12][16], there is no
common consensus as to how roles should be realised in agent
programming language: either as an equivalent to a Java inter-
face for representing interaction; or as a concept that encapsu-
lates partial behaviours of agents.

In methodologies, the final set of agent types that make up a
system design often includes a number of agent types that are
associated with multiple roles. Further, many of the roles are
associated with multiple types. This relationship between roles
and types has a strong resonance with multiple inheritance: roles
represent specific behaviours in the system that can be imple-
mented in individual agent classes which can, in turn, be com-
bined into final agent classes that correspond to the required
agent types.

This paper explores the use of multiple inheritance in
AgentSpeak(L) [25] style agent programming languages. We
have focused on this class of languages because our model is not
only a design-time construct, but also applied at run-time. How-
ever, we believe that the approach we have adopted can be
applied to other agent programming languages as well.

2. Multiple Inheritance

Multiple inheritance is a powerful paradigm in object-oriented
programming. It is of great interest in Artificial Intelligence for
its classification power [7] [32] [33]. It is also a very promising
programming tool with good properties for modularity, reusabil-
ity and incremental design [13] [22]. There has been much
discussion about the usefulness of multiple inheritance [6]. It is
also a complex notion as defining and using or reusing non
trivial hierarchies of classes needs precise principles and power-
ful mechanisms [10]. When a class is derived from exactly one
parent (base) class, it is referred to as single inheritance while if
a class is derived from more than one parent classes, it is multi-
ple inheritance. Graphs for single inheritance are always trees.
Graphs for multiple inheritance are DAGs (directed acyclic
graphs). In general, multiple inheritance allows a user to com-
bine independent (and not so independent) concepts represented
as classes into a composite concept represented as a derived
class [29].

There are two strategies in common use for dealing with
multiple inheritance. The first strategy attempts to deal with the
inheritance graph directly. This is consistent with the approach
of Trellis/Owl, extended Smalltalk and C++. If a class inherits
operations with the same name from more than one parent, the
conflict must be resolved. Trellis/Owl deals with it by signalling
an error at compile time. On the other hand, extended Smalltalk
creates an operation for the class that signals an error when
invoked [29]. However, if the same operation (from the same
parent) is inherited by a class via different paths through the
inheritance graph, it is not an error [29]. Thus conflict resolution
is an integral part of this strategy. As in Smalltalk, a compound
selector may be used to specify the parent implementation to be
invoked [10]. Also, for cases where no compound selector is
used and there is a need to provide a conflict resolution mecha-
nism, a linearization strategy, like that discussed in [1], can be
put in place. In this regard, acceptability and monotonicity are
two of the most desirable characteristics for linearization [17].
Various strategies for the same have been studied [14].

The second strategy first flattens the graph into a linear
chain, and then deals with that chain using the rules for single
inheritance [29]. This strategy is used by Flavors [23] and
CommonLoops [3]. A total ordering is created that preserves the
ordering along each path through the inheritance graph (a class
never appears after one of its ancestors). Flavors attempts to
preserve the relative ordering of the parents of a class too (the
first parent of a class never appears after the second, etc.).An
error is signalled if no total ordering exists that satisfies all such
constraints. While the relative ordering of a class and its ances-
tors is preserved in the total ordering, unrelated classes can be
inserted between a class and its parent. The computed inher-
itance chain has the unusual property that the “effective parent”
of a class x may be a class of which the designer of class x has
absolutely no knowledge of [29]. For example if developer 1
designs classes x & y and developer 2 designs z & w (x inherits
y and z inherits w) and there are some more inheritances in-
volved in the system, there may be a case where, in the flattened
chain, z is the parent of x. While there would be no issues at
compile time in such cases, they may result in anomalous run-

time behaviours. One more problem with the computed chain is
that in case of operation conflicts (two or more parents defining
the same operation) one operation will be selected even if there
is no clear “best” choice [29]. Another problem involves the
way in which a class may reliably communicate with its “real”
parents [29]. CommonLoops allows a class to invoke its “effec-
tive parent” (its parent in the computed inheritance chain) using
a notation similar to super in Smalltalk. Flavors provides a
declarative mechanism (method combination) that is essentially
equivalent. These mechanisms avoid the problem of uninten-
tional multiple invocations of operations that can occur using
graph-oriented solutions. However, these mechanisms make it
difficult for a class to reliably set up private communication with
a parent, given the interleaving of classes that can occur when
the inheritance chain is computed [29].

Recently, automated delegation [34], mixins [20] and traits
[27] have come up as ways of reuse in the agent programming
community. However, they are able to provide more of an ex-
tension of behaviours but not combination. They can only be
considered as alternative ways of composition and can’t address
issues like that of independent control (if an agent is autono-
mous, how can it make decisions involving conflicts or how
would an agent be controlled in case an organizational structure
is implemented).

3. Our Solution

In this paper, we have chosen to demonstrate how multiple
inheritance can be applied to AgentSpeak-style languages. As
was discussed in the introduction, we have done this because our
model impacts the design of the interpreter. AgentSpeak has
been chosen because it represents the most prominent class of
agent programming languages and is the basis for the highly
successful Jason agent programming language [4].

At its core, AgentSpeak(L) is an event driven language in
which the agent processes events relating to its internal decision
making (goal events) or its external environment (belief update
events). One event is processed per iteration, and the event is
handled by selecting a plan rule. Plan rules define courses of
action (plans) that should be used to in response to the occur-
rence of specific events in a given context (state of the environ-
ment).

Traditionally, an AgentSpeak(L) agent consists of an event
queue, a set of beliefs (representing the current state of the
environment), a set of plan rules (the behaviour of the agent) and
a set of intentions (the current active behaviours being executed
by the agent). A central feature of the underlying interpreter is
the algorithm that selects which plan rule should be used to
handle a given event. In most implementations, this algorithm
checks rules in the order in which they are written (in the agent
program source code) and selects the first rule that handles the
given event and whose context is satisfied.

In our model, we introduce the notion of an agent class as a
container for plan rules. This allows us to decompose the mono-
lithic list of plan rules typically attributed to agent program into
coherent lists of plan rules that correspond to specific behav-
iours. These agent classes can then be combined through multi-
ple inheritance to define composite behaviours. An agent pro-
gram is then defined as an instance of an agent class.

The consequence of introducing the concept of an agent class
is that the plan rule selection algorithm is no longer sufficient,
especially in the case where a behaviour is split over multiple
agent classes. In this scenario, the key question we must ask is
how can we determine which lists of rules should be checked
and in what order?

In this way, rule selection is a similar problem to the issues
of method selection in Object-Oriented Programming languages
that employ multiple-inheritance. This issue was discussed in
some detail in section 2. Out of the strategies outlined that
section, our model adopts the first strategy - it deals with the
inheritance graph directly. However, we also maintain a linear-
ized chain as part of a conflict resolution strategy. Informally,
the conflict resolution strategy adopted is as follows:-

 If a rule that appears in multiple parents is invoked in
a child, the invocation of the correct sequence of in-
structions would depend on the order of inheritance by
default, i.e. the corresponding rule of the class inherit-
ed first is executed, if present in it. Otherwise the next
inherited class would be checked, and so on.

 The scope resolution operator (“::”), similar to that of
C++, can be used to explicitly define the scope of in-
voking a rule if it is present in multiple agents of the
hierarchy.

 If no scope is defined while invoking a rule in the
child agent and it is present in one or more of its par-
ents as well as the child itself, the implementation/s
defined in the parent/s would be hidden by that of the
child (overriding).

To illustrate and refine the model in more detail, this section
presents an informal overview of the modified AgentSpeak(L)
language, followed by a number of examples that illustrate key
features of the model.

3.1 Modified AgentSpeak(L) Grammar

We modify and extend the basic AgentSpeak(L) syntax to in-
clude a unique identifier for each agent program (the agent class
name), a list of the agent classes that are being extended, and
introduce the concept of a scoped goal as a type of sub-goal
where the corresponding events are targeted at a specific agent
class.

A Java style syntax has been adopted for this extension,
however any appropriate syntax could be used. In particular, the
“agent” keyword is used to denote an agent class and the “ex-
tends” keyword to specify the parent agent class(es). Multiple
parent classes can be specified using a comma-delimited list of
agent class names. The body of the agent program (any initial
state and rules) is enclosed within a set of braces.

The syntax for these proposed changes are illustrated in Fig-
ure 1 with the italicised syntax represents the extensions pro-
posed to the existing language.

A ::= [agent <agent-name>

[extends <agent-name> (,
<agent-name>)*]<c>*

C ::= <initial> | <rule>

initial ::= <belief> | <goal>

rule ::= <event>: <context><-
(<statement>)*

statement ::= ? <belief> | + <belief>
| - <belief> | <goal> |
<action> | <scoped-goal>

scoped-goal ::= <agent-name> :: <goal>

Figure 1. Modified AgentSpeak(L) syntax

3.2 Combining Behaviours

The most obvious benefit of multiple inheritance is the ability to
combine multiple existing behaviours to form a new behaviour.
For example, in the scenario shown in Figure 2, agent A has a
rule that handles the event corresponding to the addition of the
goal !init() while the agent B has two rules that correspond to
the addition of two goals, !init() and !myInit(). Agent C,
which is a child of both A & B according to our model, will now
be able to invoke both the goals even though it itself doesn’t
define either of them. This is how we can combine the behav-
iours of multiple agents into a new agent using multiple inher-
itance.

Figure 2. A simple multiple inheritance scenario

If we look at the scenario a little more closely, we can infer

that calling !myInit() in C would invoke the !myInit()
defined in B. However, it is not clear what would happen when
we call !init() in C.There are two possibilities, either the
!init() of A is invoked or that of B is invoked. Such a prob-
lem has also been encountered in object-oriented programming
(in languages like C++), when a method called from a child
instance exists in multiple parents. C++ deals with it by giving a
compile time error as the method referenced is ambiguous.
However, C++ also provides the “virtual” keyword which ena-
bles a programmer to bypass the compilation error. If the meth-
od existing in multiple parent classes is declared virtual and
referenced from the child instance, then the implementation
defined by the parent inherited first (i.e. appearing on the left in
the line where parents of the child class are defined) would be
invoked.

Rather than present compile time errors, this is the default
behaviour adopted in our model, i.e. if a rule defined in multiple
parents is invoked from the child agent, the implementation
defined by the parent appearing on the left in the “extends” line
gets preference and is called by default. This means that the
!init() of A would be invoked in this case.

Figure 3. A more complex multiple inheritance scenario

3.3 Overriding Behaviour

A second benefit of multiple (and single) inheritance is the
ability to override existing behaviours, to provide a modified
behaviour. For example, in Figure 3 agent A has a rule that
handles the event corresponding to the addition of the goal
!init() while agent B inherits A. Agent B, in turn, is inherited by
C, which again adds a rule that handles the event corresponding
to the addition of the goal !init(). Finally, agent D inherits B and
C and tries to invoke the !init() implementation.

It is to be noted here that the !init() implementation defined
in C would hide (override) the implementation that had been
defined in A as C is lower down in the hierarchy. However D
would also get A’s implementation of !init() through B. This is a
little more complicated than the case discussed in section 3.2 as
the choice is not obvious. But, in our implementation, we first
give preference to a smaller distance from root (the agent from
which the rule is being invoked). Hence invoking !init() on D
would invoke the implementation defined in C and not in A. The
case discussed in section 3.2 would apply only when distances
from root for two parent agents are the same.

3.4 Scope Resolution

Sometimes the default conflict resolution strategy outlined in 3.3
can lead to scenarios in which the selected rule is not the one we
desire. For example -again referring to Figure 3 - what if we
need to invoke A’s implementation of !init() from D? For
such a scenario, we introduce the scope resolution operator
(“::”), similar to that provided by C++. This can be used to
restrict the scope of a construct invocation. For the requirement
discussed above, we can use A::!init(). It should be noted
that the same implementation of A can also be invoked by
B::!init() as when we restrict the scope of init() to B, the
only implementation available in the hierarchy is that of A.

In this context, let us also look at Figure 2 again. What if a
programmer needs to invoke the !init() of B from C? For
such a scenario also, B::!init() would be useful. Therefore,
the scope operator can always be used by the programmer to
specify the scope of the construct to be invoked. In cases where
it is not used, default behaviour is used to avoid ambiguities.

3.5 Implications

In order to illustrate the potential benefits and limitations of our
model, this section explores some examples of different ways in
which it can be used in real world systems.

3.5.1 Extending Behaviours

 agent A {
 +!init() <-
 println(“Hi from A”);
 }

 agent B extends A {
 +!init() <-
 println(“Hi from B”);
 A::!init();
 }

Figure 4. Example for Extending Behaviours

Figure 4 depicts how B inherits !init() from A and extends
the behaviour associated with the !init() goal. This is how
the inheritance model may be used to extend existing behav-
iours.

3.5.2 Combining Behaviours

agent A {
+!init() <-
 println(“Hi from A”);
}

agent B {
+!init() <-
 println(“Hi from B”);
}

agent C extends A, B {
+!init() <-
 A::!init();
 B::!init();
}

Figure 5. Example for Combining Behaviours

Figure 5 depicts how C inherits !init() from A and B and
combines the existing behaviour of both to produce a new be-
haviour for !init().

3.5.3 Defensive Programming

agent A {
count(0);

+!init() : count(x) & x<50<-
 A::!inc();
 //Do something
 !init();

+!inc() : count(x) <-
 -count(x);
 +count(x+1);
}

agent B extends A {
+!inc() : count(x) <-
 -count(x);
 +count(x-1);
}

agent C extends A, B {
 !init();

 }

Figure 6. A Defensive Programming Example

The ability to extend behaviour can also introduce unexpected
side-effects. For example, in Figure 6, the code has been written
to do something 50 times (in agent A). However, it is possible to
extend that agent to override the correct functionality with
something incorrect and cause bugs in the code. To illustrate
this, we show agent B overriding the !inc() goal of A to dec-
rement the count, instead of incrementing it, which would result
in incorrect behaviour. Fortunately, the scope operator helps us
to avoid this undesirable outcome. By writing A::!inc(), the
developer ensures that his code won’t be overridden and hence
never have an incorrect behaviour. Thus we see how there can
be a need to limit overriding in certain cases to oversee the
dangers that can be caused by our model. Now, whenever !in-
it() will be called from agent C, it would always give the
correct behaviour. This can be considered analogous to what the
“final” keyword achieves in OOP languages like C++ and Java.
However, while final is a compile-time feature, the feature of
restricting scope is at run-time. This implies that it can provide

more flexibility than final. B could still override the !inc()of
A and C (or any agent directly calling !inc()) can choose
whether to use the overridden version or not. In case where an
agent utilises a goal/plan of its parent indirectly, the parent is
able to restrict or allow overriding (as shown here).

4. Formalisation

This section presents a formal model that illustrates the seman-
tics of the modified language. Our model is inspired by the
Jason formal model presented in [17]. However, we do not
attempt to provide a complete formalisation of the language, but
instead we choose to focus only on the relevant bits (which need
to be modified for our purpose). Specifically, we focus on the
revised plan selection mechanism that is necessary to cater for
the introduction of multiple inheritance.

The key concepts are as follows:-

 An agent’s class is defined as

 Class = <name, P, IS, R> where:

- name is the name of the class.

- P is the list of parents of the class.

- IS is the initial state of the class.

- R is an ordered list of rules associated with the
class.

 An agent is defined as

 Agent = <name, type, B, I, E> where:

- name is the agent identifier.

- type is the name of the type (class) of the agent.

- B is the set of beliefs that the agent has.

- I is the set of intentions which the agent has.

- E is the event queue associated with the agent.

 An event is defined as

 Event = <te, i, type> where:

- te is the triggering event.

- i is the source of the event (an intention or
meaning it is an external source).

- type is the name of the scoped class or if not
scoped.

 An agent program is defined as

 Program = <C, A> where:

- C is a set of agent classes associated with the pro-
gram.

- A is a set of agents associated with the program.

Apart from introducing the concept of an agent class, we
have modified AgentSpeak(L) events to cater to scoping. In this
new model, rules are linked to classes and the adoption of multi-
ple inheritance impacts rule selection. We now proceed to pro-
vide the algorithms that would determine rule selection in the
modified language.

execute(P, A)
 e <- selectEvent(A)
 o <- selectOption(P, A, e)
 if (o !=) then
 applyOption(o)
 endif
 i<- selectIntention(A)
 if (i !=) then
 executeIntention(i)
 endif

Figure 7. Simplified AgentSpeak(L) Interpreter Algorithm

Figure 7 is a simplified version of the AgentSpeak(L) inter-

preter algorithm presented in [26]. In our model, only the itali-
cised line (selectOption) is affected. While it is simpler than
the algorithms proposed in [26] [17], it does correspond to those
algorithms.

selectOption(P, A, e)
 if e.type = then
 t <- A.type
 else
 t <- e.type
 endif
 classes <- getLinearization(P, t)
 while (classes != []) do
 cls <- head(classes)
 classes <- tail(classes)
 o <- selectOptionForClass(P,A,cls,e)
 if (o !=) then
 return o
 endif
 endwhile

return

Figure 8. ModifiedAgentSpeak(L) selectOption Algorithm

Figure 8 shows our modification to the existing selectOp-

tion algorithm of AgentSpeak(L). The initial part of our algo-
rithm deals with the handling of scope (discussed in section 3.4
above). If no scope is defined by the user, then the scope would
default to the current agent class. We then introduce a getLin-
earization algorithm which returns a list of classes according
to the criteria discussed in sections 3.2 & 3.3. We do not present
the whole algorithm here for brevity constraints. The selec-
tOptionForClass works in exactly the same way as the exist-
ing AgentSpeak(L) selectOption algorithm, there is an extra
parameter for class as this algorithm can be called multiple times
(once for each agent class in the hierarchy defined by the scope).

5. Case Study

We present a case study where our model is applied to a recently
developed agent programming language, called ASTRA [11].
ASTRA is an agent-oriented programming language that is built
on Java. It is an implementation of AgentSpeak(TR), which
extends AgentSpeak(L) with support for Teleo-Reactive
functions [11].

ASTRA is designed to be syntactically close to Java. The
programs are written in files with a “.astra” extension. Each file
must contain exactly one agent class, specified by the agent
keyword. In terms of this paper, the important changes features
are:-

 Initial beliefs & goals can be specified using the initial
keyword.

 Plan rules are specified using the rule keyword.

 Standard statement types for plans are provided: if,
while, foreach, variable declarations, assignment,
try...recover etc.

 Support for system and user defined libraries of ac-
tions and sensors that are implemented as annotated
java classes, known as modules.

 Provision of integrated support for CArtAgo [26] and
EIS [2].

 Introduction of a type system for variables that is de-
signed to map on to java primitives (i.e. int, float,
long, double, char etc.) and objects.

 Additional event types are introduced for messages,
and EIS/CARTAGO events.

Due to space constraints, details of the ASTRA language are not
presented here. Instead, the reader is directed to the ASTRA
language website. Some examples of ASTRA code are present-
ed in Figures 9, 10 and 11.

5.1 Example System without Inheritance

Here we present some code from a chat system implemented in
ASTRA. This system was first written without using inheritance.
It was presented as part of the Agent Oriented Software module
of the course, M.Sc. Advanced Software Engineering 2013-14 at
University College Dublin.

The code presented in Figure 9 is for the Manager which
manages all connection requests (between various users) in the
system. The normal behaviour of the Manager agent is that it
responds to an initial request from a User agent to connect to
another user (the first rule in Figure 9). If the Manager believes

that the connecting agent is a registered user of the system then
it checks if the target user exists. If the target user does not
exist, the Manager refuses the connection request. If the target
user does exist, then the Manager agrees to the connection re-
quests and sends a propose message to the target agent asking-
whether or not the connection can be made. The plan then waits
for a response to be returned.

Receipt of the response to the proposal is handled by the sec-
ond and third rules which deal with acceptance and rejection of
the proposal respectively. When the Manager receives its re-
sponse, it adopts a belief that causes the main plan to stop wait-
ing and to continue processing the connection request. If the
proposal was accepted, it informs the requesting User agent of
the success of the initial request, otherwise it tells the User agent
that its connection request has failed.

In this example, which represents typical a typical solution to
this type of scenario, we can see how protocols are implemented
in a bespoke way to handle the different messages that can be
sent in the system. This is a very basic approach where each step
in the protocols has to be coded explicitly in each agent. It
should be noted that there is not much scope of code reuse in
this approach. So when we write code for other entities in the
system (e.g. User), we do it again from scratch.

5.2 Example System with Inheritance

We now present code for the same system where we utilise
multiple inheritance. First of all, we code the various protocols
that would be used by different entities in the same system as
well as other systems. Thus we build a library of standard inter-
action protocols, the fipa protocols [18].

In Figure 10, we present the Propose protocol. It is the sim-
plest of all fipa protocols. This protocol can be utilised by an
agent that wishes to initiate a Propose communication or by an
agent that is supposed to participate in it. To initiate this type of

package chat;
agent Manager {
rule @message(request,string S, connect(string UN)):user(S,string SN) {
 if (~user(UN,string N)) {
 send(refuse,S,connect(UN));
 } else {
 send(agree,S,connect(UN));
 query(user(UN,string name));
 send(propose,UN,connection(S, SN));
 when(connect_response(UN,S,SN, string R)) {
 -connect_response(UN,S,SN, R);
 if (R == "yes") {
 send(inform,S, connection(UN,name));
 } else {
 send(failure,S, connect(UN));
 }
 }
 }
 }

 rule @message(accept-proposal, string S, connection(string UN,string N)) {
 +connect_response(S,UN,N,"yes");
 }

 rule @message(reject-proposal, string S, connection(string UN,string N)) {
 +connect_response(S,UN,N,"no");
 }
}

Figure 9. Code for ASTRA Chat System Manager

communication, an initiator first creates a conversation and then
sends a propose message to the agent that should participate. It
also adopts a timeout sub-goal implying that it would wait for
the response of this message for finite time duration. Receipt of
the response to the propose message sent by initiator is handled
by the second and third rules. When a possible participant re-
ceives a propose message, it can choose to either accept or reject
the proposal. The rules for this are in the participant section of
Figure 10.

Due to space constraints, we won’t be able to show the other
protocols (such as Request and Subscribe) here. However, all
protocols could be written along the lines of the Propose proto-
col.

The Protocol class, present in the system, works as a building
block for various protocols. It contains goals such as
start_conv and fipa_timeout as well as the mechanism for
generating unique conversation ids. The agents that extend this
class do not have to worry about the implementation details of
these goals.

Figure 11 presents the code for a Manager which handles all

connection requests in the system as well as utilises the features
of multiple inheritance. It should be noted that this code looks
quite concise with the Manager only needing to handle rules
relevant to the conversation without bothering about the details
of the underlying Request and Propose protocols.

 The whole code (including that in Figure 10) may not be
lesser than its counterpart that doesn’t use inheritance if we
consider the lines of code (LoC) metric. However, we see how
protocols like Propose are decoupled from the business logic.
These protocols may be reused by other entities in the system
(e.g. User) and by entities in other systems as well. Implementa-
tion details of agents at one level of the hierarchy are abstracted
from the other levels. Hence, agents at each level need to focus
only on their core functionalities thus enabling an incremental
development of the system. It was also possible for us to add
another feature, that of timeout handling, in this scenario with
minimal effort. Similarly, we could also have added the logic of

package astra.fipa.protocol;
agent Propose extends Protocol {
 // ------------------------------
 // Initiator
 // ------------------------------
 rule +!fipa_propose(int T, string S, string A, list P, boolean R) {
 !start_conv("fipaPropose",int Id);

 send(propose, sender, content("fipaPropose",Id,A,P));

 !!fipa_timeout(Id, T);
 wait(fipa_timeout(cid) | fipa_result(Id,boolean R2));

 if (fipa_result(Id, boolean B)) {
 R = B;
 -fipa_result(Id, B);
 } else {
 R = false;
 }
 }

 rule @message(accept-proposal, string S, content("fipaPropose", int Id)) {
 +fipa_result(Id, true);
 }

 rule @message(reject-proposal,string S, content("fipaPropose", int Id)) {
 +fipa_result(Id, false);
 }

 // ------------------------------
 // Participant
 // ------------------------------
 rule @message(propose, string S, content("fipaPropose", int Id, string A,
 listP)) {
 !handle_fipa_propose(S,A,P, boolean R);
 if (R == true) {
 send(accept-proposal, S, content("fipaPropose", Id));
 } else {
 send(reject-proposal, S, content("fipaPropose", Id));
 }
 }

 rule +!handle_fipa_propose(string S, string A, list P, boolean R) {
 R = false;
 }
}

Figure 10. Code for the Propose Protocol

cancelling a conversation. As a result, we see that multiple
inheritance allows us to build a more concrete, robust and exten-
sible model. Also, as different entities and protocols are decou-
pled, the system becomes much simpler to develop and compre-
hend. Coming back to the LoC argument, if we imagine a lot of
entities present in the system, then the LoC can be much less for
a multiple inheritance implementation as repetitive code would
be written only once.

In this context, it must be noted that in the previous version
of Manager that we had (which didn’t use inheritance), the
business logic was entwined with the protocols. It was a blurred,
ad hoc solution that was not able to provide any consistency of
approach or separation of concerns. Common issues arising out
of using such a coding approach include the mismatch of per-
formatives between the content & predicate of messages and
mismatch in the type and number of parameters. Also, trying to
add new features would have needed considerable effort. How-
ever, these problems were overcome with the new version
(which utilised multiple inheritance) and we moved towards
better coding practices. We were able to provide a better quality
of code in the new version as we reused well-tested code im-
plementations. This was a more engineered solution. Adopting
such practices could lead to rapid and iterative development of
software with shorter development cycles.

6. Conclusion

We conclude that multiple inheritance makes it simpler to im-
plement a large, complex system. Also, different functionalities
(roles) can be developed independently and combined later. The
development can be iterative and decoupling of business logic
implies that the focus can be on one feature at a time. Alterna-
tively, many developers can be involved in the parallel devel-
opment of a system, with each of them focusing on one feature.
Multiple inheritance allows an agent to have more than one roles
in a system, thus making them closer to the real world. Different
responsibilities, pertaining to different roles, may be executed in
different contexts by the same agent (rule selection). Regarding
the LoC metric, the larger and more complex a system, the

better would be its LoC as compared to its counterpart that does
not utilise inheritance.
 It should be noted that initially we had considered using
only a single inheritance model. However, a number of factors
led us towards adopting the multiple inheritance strategy. Single
inheritance would allow us to extend single behaviours but not
allow combining different behaviours. We felt that multiple
inheritance was a natural fit for agent programming as it would
allow agents to combine social and individual behaviours. Es-
tablished agent methodologies like GAIA, AgentFactory, Pro-
metheus etc. deal with identifying roles in a system. Once the
roles are identified, the implementation of the modelled system
would include implementing the roles into agents. This served as
another motivation for multiple inheritance so that one agent had
the capability to combine multiple roles. Thus we can say that
multiple inheritance fits nicely with existing Agent Oriented
Software Engineering methodologies. Also, multiple inheritance
can allow easy encoding of market patterns such as Product
Hierarchy, Functional Hierarchy, Centralised Market etc. into
agents. In addition to this, multiple inheritance corresponds to
the roadmap described in [21].

Through our findings, we can say that multiple inheritance
improves an agent language by:-

 Modularising it.
 Give the ability to reuse complex agent programs

(rules, plans, and goals).
 Provide customisable templates to users to reduce de-

velopment times.
 Each agent may be a combination of more than one tem-
plate, utilising some/all of the features defined in earlier tem-
plates without needing to have them at a single place and/or
redefining them.
 In our chosen case study, the motivating factor for multiple
inheritance was the ability of an agent to combine the implemen-
tation of multiple protocols. As our new Manager agent com-
bines both Request and Propose protocols, it has the ability to
exhibit both kinds of behaviour (based on different contexts).
Also, established protocols can be reused by different agents in
the same system or even in other systems. Such a level of ab-

packageastra.fipa;
agent Manager extends Request,Propose {
 rule +!handle_fipa_request(string S, "connect", list P, boolean R) {
 if (~user(S, prelude.valueAsString(P,0))) {
 result = false;
 } else {
 result = true;
 }
 }

rule +!process_fipa_request(string S, "connect", list P, list V): user(S, string SN) {
 query(user(prelude.valueAsString(P,0),string N));
 !fipa_propose(UN, "connection", [S,SN], boolean R);
 if (result == true) {
 V = [N];
 } else {
 system.fail();
 }
}

Figure 11. Code for the ASTRA Chat System Manager using Multiple Inheritance

straction would aid in reducing complexity. With agents already
established as smart entities, such abilities would open new
possibilities for software development.

References

1. Barrett, Cassels, Haahr, Moon, Playford & Withington. “A
Monotonic Superclass Linearization for Dylan.” In
OOPSLA '96 Proceedings of the 11th ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, Pages 69-82.

2. Behrens, T., Dix, J., Hindricks, K. V., “Towards an envi-
ronment interface standard for agent platforms”, An-
nals of Mathematics and Artificial Intelligence, Vol-
ume 61, Issue 4, pp 261-295, April 2011

3. Bobrow, D., Khan, K., Kiczales, G., Masinter, L., Stefik,
M., Zdybel, F., “CommonLoops: Merging Common Lisp
and Object-Oriented Programming.” Proc. ACM Confer-
ence on Object-Oriented Systems, Languages, and Appli-
cations. Portland, Oregon, Sept. 1986.

4. Bordini, Hübner & Renata. “Jason and the Golden Fleece
of Agent-Oriented Programming.” In Multiagent Systems,
Artificial Societies, and Simulated Organizations Volume
15, 2005.

5. Bordini, R., Braubach, L., Dastani, M., Seghrouchni, A,
Gomez-Sanz, Leite, J., O’Hare, G.M.P., Pokahr A. & Ric-
ci, A. “A Survey of Programming Languages and Plat-
forms for Multi-Agent Systems.” Informatica 30 (2006)
33–44.

6. Borning & Ingalls. “Multiple Inheritance in Smalltalk-80.”
In ECOOP '87. European Conference on Object-Oriented
Programming: Paris, France.

7. Brachman, R. J. “What IS-A is and Isn’t: An Analysis of
Taxonomic Links in Semantic Networks,” IEEE Comput-
er, vol. 16, no. 10, 1983.

8. Braubach, Pokahr, & Lamersdorf. “Extending the capabil-
ity concept for flexible BDI agent modularization.” Pro-
gramming Multi-Agent Systems, pages 139–155, 2006.

9. Busetta, Howden, Ronnquist, & Hodgson. “Structuring
BDI agents in functional clusters.” Intelligent Agents VI.
Agent Theories Architectures, and Languages, pages 277–
289, 2000.

10. Carre, B., Geib, J-M., “The Point of View notion for
Multiple Inheritance”.In OOPSLA/ECOOP '90 Proceed-
ings of the European conference on object-oriented pro-
gramming on Object-oriented programming systems, lan-
guages, and applications, Pages 312-321

11. Collier, R.W., “ASTRA Language Website”, URL:
http://www.astralanguage.com/, 2014

12. Collier, R., Ross, R., O'Hare, G.M.P., A Role-based Ap-
proach to Reuse in Agent-Oriented Programming, AAAI
Fall Symposium on Roles, an interdisciplinary perspective
(Roles 2005), November 3-6, Hyatt Crystal City, Arling-
ton, Virginia, USA, 2005

13. Cox, B.J. “Object-Oriented Programming: An Evolution-
ary Approach”, Addison-Wesley, Reading (Mass.), 1986.

14. Crespo, J., Marques J. M., Rodriguez, J.J. “On the Trans-
lation of Multiple Inheritance Hierarchies into Single In-
heritance Hierarchies.” In Proceedings of the Inheritance
Workshop at ECOOP 2002, Publications of Information
Technology Research Institute, 12/2002, University of
Jyvskyl.

15. Daly, J., Brooks, A., Miller, J., Roper M., & Wood, M..
“The effect of inheritance on the maintainability of object-
oriented software: an empirical study.” In Proceedings of
the International Conference on Software Maintenance,
pages 20–29. IEEE, 1995.

16. Dastani, M., Birna van Riems-dijk, M., Hulstijn, J. Dig-
num, F., Ch. Meyer, J. “Enacting and deacting roles in
agent programming”, In Proceedings of the 2nd Interna-
tional Workshop on Programming Multi-Agent Systems
PROMAS2004), 2004.

17. Ducournau, Habib, Huchard & Mugnier. “Proposal for a
Monotonic Multiple Inheritance Linearization.” In ACM
SIGPLAN Notices, 01/1994; 29(10):164-175.

18. FIPA, “FIPA 2000 Specifications”,
http://www.fipa.org/specs/, 2000

19. Jordan, H.R., Russell, S.E., O’Hare, G.M.P., Collier. R.W.
“Reuse by Inheritance in Agent Programming Languages.”
University College Dublin. In Proceedings of the 5th In-
ternational Symposium on Intelligent Distributed Compu-
ting - IDC 2011, Delft, The Netherlands, October 2011.

20. Limberghen, M.V., Mens. T. “Encapsulation and composi-
tion as orthogonal operators on mixins: a solution to mul-
tiple inheritance problems.” Object Oriented Systems
(1996).

21. Luck, M., McBurney, P., Shehory O., Willmott, S., Agent
Technology: Computing as Interaction (A Roadmap for
Agent Based Computing), AgentLink, 2005. ISBN 085432
845 9

22. Meyer, B. “Object-Oriented Software Construction”,
Prentice Hall, 1988.

23. Moon, D., “Object-Oriented Progamming with Flavors”.
Proc. ACM Conference on Object-Oriented Systems, Lan-
guages, and Applications. Portland, Oregon, Sept. 1986.

24. Padgham, L., Winikoff. M. “The Prometheus Methodolo-
gy”. In Methodologies and Software Engineering for
Agent Systems, Multiagent Systems, Artificial Societies
and Simulated Organizations Volume 11, 2004, pp 217-
234.

25. Rao, A. “AgentSpeak(L): BDI Agents speak out in a
logical computable language”. Australian Artificial Intel-
ligence Institute, Melbourne, Australia. In MAAMAW '96
Proceedings of the 7th European workshop on Modelling
autonomous agents in a multi-agent world: Pages 42-55.

26. Ricci, A., Viroli, M., Omicini, A., CArtAgO: A Frame-
work for Prototyping Artifact-Based Environments in

MAS, Environments for MultiAgent Systems III, Lecture
Notes in Computer Science 4389, May-June 2007

27. Scharli, Ducasse, Nierstrasz & Black. “Traits: Composable
Units of Behaviour.” In the European Conference on Ob-
ject-Oriented Programming (ECOOP) 2003.

28. Shoham, Y. “Agent-oriented programming”, Robotics
Laboratory, Computer Science Department, Stanford Uni-
versity, USA. Artificial Intelligence 60 (1993) 51-92.

29. Snyder, A. “Encapsulation and Inheritance in Object-
Oriented Programming Languages”, Hewlett-Packard La-
boratories. CA, USA. In OOPLSA '86 Conference pro-
ceedings on Object-oriented programming systems, lan-
guages and applications, Pages 38-45

30. Stroustrup, B., “Multiple Inheritance for C++”, AT&T
Bell Laboratories, 1999.

31. Svahnberg, Van Gurp, & Bosch. “A taxonomy of variabil-
ity realization techniques.” Software: Practice and Experi-
ence, 35(8):705–754, 2005.

32. Tarr, Ossher, Harrison, &Sutton Jr. “N degrees of separa-
tion: multi-dimensional separation of concerns.” In Pro-
ceedings of the 21st international conference on Software
engineering, pages 107–119. ACM, 1999.

33. Touretzky, D.S. “The Mathematics of Inheritance Sys-
tems”, Pitman, London, 1986.

34. Viega, Tutt & Behrends. “Automated Delegation is a
Viable Alternative to Multiple Inheritance in Class Based
Languages.”, UVA Technical Report CS-98-03, March 12,
1998

35. Wegner, P. “Classification in Object Oriented Systems”.
ACM SIGPLAN Notice, vol. 21, no. 10, 1986.

36. Woolridge, M., Jennings, N. & Kinny D.. “The Gaia
Methodology for Agent-Oriented Analysis and Design.”
In Autonomous Agents and Multi-Agent Systems, Sep-
tember 2000, Volume 3, Issue 3, pp 285-312.

