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Abstract  

Agent-Oriented Programming (AOP) is a high-level program-
ming paradigm for implementing intelligent distributed systems. 
While a number of AOP languages have been proposed in the 
literature, many of them focus on the provision of support for 
intelligent decision making rather than addressing language 
design concerns such modularity and reuse. To address this 
imbalance, this paper presents an abstract model of multiple 
inheritance for AgentSpeak(L) style languages which decom-
poses agent programs into a set of inter-related agent classes and 
defines a run-time apparatus for  rule selection on the relation-
ship between those classes. To demonstrate our approach, a case 
study is presented that introduces a new AgentSpeak(L)-based 
language entitled ASTRA and its use in an illustrative imple-
mentation of an agent-based chat system is then presented. 

Categories and Subject Descriptors D.3.3 [Programming 
Languages]: Language Constructs and Features – abstract data 
types, polymorphism, control structures. 

General Terms Algorithms, Design, Languages, Theory. 

Keywords  Agent Programming, Multiple Inheritance. 

1. Introduction 

Agent-oriented programming is an upcoming programming 
paradigm that adopts a societal view of computation [28] in 
which systems are built from a set of entities known as agents 
that coordinate their activities in order to realise global system 
behaviours.  Individual agents are imbued with intelligent deci-
sion making capabilities that allow them to autonomously de-
termine when and how to interact with other agents in the sys-
tem. 

To date, a number of agent programming languages have 
been proposed [5] that support programming of the intelligent 
behaviour based on mental notions such as beliefs, desires, and 
intentions [25] [28]. Many of these languages are logic based 
and are inspired by earlier theories of rational action. Unfortu-
nately, research on these languages has tended to focus on the 
decision-making capabilities of agents to the exclusion of other 
important issues, such as modularity and code reuse. This lack 

of consideration has led to a number of languages that can be 
applied to solve complex problems, but are rarely used because 
the implementations are difficult to understand, maintain and 
reuse. 

Some previous attempts have been made to address the issue 
of modularity. For example, [8] [9] propose a modular approach 
to reuse using the concept of capabilities- reusable clusters of 
beliefs, plans and events - that can act as the building blocks of 
agent programs. Others have proposed the use of shared envi-
ronments as reuse mechanisms, which allow heterogeneous 
agents to share common action and perception routines [19]. 
However, the provided modularity constructs are mostly compo-
sitional, and support for variability through specialisation, which 
has long been considered a key issue in mainstream program-
ming languages, is less well explored [30].  Finally, in [19], a 
generalised model of single inheritance is proposed that could be 
applied to all agent programming languages. However, this 
model is intended to be applied as a pre-processing step that is 
lost at compile time. It also supports only overriding of behav-
iours and not extension of behaviours. 

In our view, single inheritance does not provide an adequate 
model of specialisation for agent programming languages. This 
is apparent when attempting to utilize an agent programming 
language to implement a design specified in one of the many 
agent-oriented methodologies (e.g. GAIA [36], Prometheus 
[24]). Typically, these methodologies define system behaviours 
in terms of a set of roles that interact to achieve the required 
behaviour.  These roles are then combined into a set of agent 
types that are to be implemented. This type of decomposition is 
used because it is generally seen as more natural and as offering 
a better form of decomposition than agent types. Unfortunately, 
due to the lack of a correlation between the key concept of a role 
and an equivalent concept in the agent programming language, 
implementations of the design rarely bear any resemblance to 
the design.  While this has led some researchers to investigate 
the notion of roles as run-time constructs [12][16], there is no 
common consensus as to how roles should be realised in agent 
programming language: either as an equivalent to a  Java inter-
face for representing interaction; or as a concept that encapsu-
lates partial behaviours of agents. 

In methodologies, the final set of agent types that make up a 
system design often includes a number of agent types that are 
associated with multiple roles.  Further, many of the roles are 
associated with multiple types. This relationship between roles 
and types has a strong resonance with multiple inheritance: roles 
represent specific behaviours in the system that can be imple-
mented in individual agent classes which can, in turn, be com-
bined into final agent classes that correspond to the required 
agent types. 



This paper explores the use of multiple inheritance in 
AgentSpeak(L) [25] style agent programming languages. We 
have focused on this class of languages because our model is not 
only a design-time construct, but also applied at run-time. How-
ever, we believe that the approach we have adopted can be 
applied to other agent programming languages as well. 

2. Multiple Inheritance 

Multiple inheritance is a powerful paradigm in object-oriented 
programming. It is of great interest in Artificial Intelligence for 
its classification power [7] [32] [33]. It is also a very promising 
programming tool with good properties for modularity, reusabil-
ity and incremental design [13] [22]. There has been much 
discussion about the usefulness of multiple inheritance [6]. It is 
also a complex notion as defining and using or reusing non 
trivial hierarchies of classes needs precise principles and power-
ful mechanisms [10]. When a class is derived from exactly one 
parent (base) class, it is referred to as single inheritance while if 
a class is derived from more than one parent classes, it is multi-
ple inheritance. Graphs for single inheritance are always trees. 
Graphs for multiple inheritance are DAGs (directed acyclic 
graphs). In general, multiple inheritance allows a user to com-
bine independent (and not so independent) concepts represented 
as classes into a composite concept represented as a derived 
class [29]. 

There are two strategies in common use for dealing with 
multiple inheritance. The first strategy attempts to deal with the 
inheritance graph directly. This is consistent with the approach 
of Trellis/Owl, extended Smalltalk and C++. If a class inherits 
operations with the same name from more than one parent, the 
conflict must be resolved. Trellis/Owl deals with it by signalling 
an error at compile time. On the other hand, extended Smalltalk 
creates an operation for the class that signals an error when 
invoked [29]. However, if the same operation (from the same 
parent) is inherited by a class via different paths through the 
inheritance graph, it is not an error [29]. Thus conflict resolution 
is an integral part of this strategy. As in Smalltalk, a compound 
selector may be used to specify the parent implementation to be 
invoked [10]. Also, for cases where no compound selector is 
used and there is a need to provide a conflict resolution mecha-
nism, a linearization strategy, like that discussed in [1], can be 
put in place. In this regard, acceptability and monotonicity are 
two of the most desirable characteristics for linearization [17]. 
Various strategies for the same have been studied [14]. 

The second strategy first flattens the graph into a linear 
chain, and then deals with that chain using the rules for single 
inheritance [29]. This strategy is used by Flavors [23] and 
CommonLoops [3]. A total ordering is created that preserves the 
ordering along each path through the inheritance graph (a class 
never appears after one of its ancestors). Flavors attempts to 
preserve the relative ordering of the parents of a class too (the 
first parent of a class never appears after the second, etc.).An 
error is signalled if no total ordering exists that satisfies all such 
constraints. While the relative ordering of a class and its ances-
tors is preserved in the total ordering, unrelated classes can be 
inserted between a class and its parent. The computed inher-
itance chain has the unusual property that the “effective parent” 
of a class x may be a class of which the designer of class x has 
absolutely no knowledge of [29]. For example if developer 1 
designs classes x & y and developer 2 designs z & w (x inherits 
y and z inherits w) and there are some more inheritances in-
volved in the system, there may be a case where, in the flattened 
chain, z is the parent of x. While there would be no issues at 
compile time in such cases, they may result in anomalous run-

time behaviours. One more problem with the computed chain is 
that in case of operation conflicts (two or more parents defining 
the same operation) one operation will be selected even if there 
is no clear “best” choice [29]. Another problem involves the 
way in which a class may reliably communicate with its “real” 
parents [29]. CommonLoops allows a class to invoke its “effec-
tive parent” (its parent in the computed inheritance chain) using 
a notation similar to super in Smalltalk. Flavors provides a 
declarative mechanism (method combination) that is essentially 
equivalent. These mechanisms avoid the problem of uninten-
tional multiple invocations of operations that can occur using 
graph-oriented solutions. However, these mechanisms make it 
difficult for a class to reliably set up private communication with 
a parent, given the interleaving of classes that can occur when 
the inheritance chain is computed [29]. 

Recently, automated delegation [34], mixins [20] and traits 
[27] have come up as ways of reuse in the agent programming 
community. However, they are able to provide more of an ex-
tension of behaviours but not combination. They can only be 
considered as alternative ways of composition and can’t address 
issues like that of independent control (if an agent is autono-
mous, how can it make decisions involving conflicts or how 
would an agent be controlled in case an organizational structure 
is implemented). 

3. Our Solution 

In this paper, we have chosen to demonstrate how multiple 
inheritance can be applied to AgentSpeak-style languages. As 
was discussed in the introduction, we have done this because our 
model impacts the design of the interpreter. AgentSpeak has 
been chosen because it represents the most prominent class of 
agent programming languages and is the basis for the highly 
successful Jason agent programming language [4]. 

At its core, AgentSpeak(L) is an event driven language in 
which the agent processes events relating to its internal decision 
making (goal events) or its external environment (belief update 
events). One event is processed per iteration, and the event is 
handled by selecting a plan rule. Plan rules define courses of 
action (plans) that should be used to in response to the occur-
rence of specific events in a given context (state of the environ-
ment). 

Traditionally, an AgentSpeak(L) agent consists of an event 
queue, a set of beliefs (representing the current state of the 
environment), a set of plan rules (the behaviour of the agent) and 
a set of intentions (the current active behaviours being executed 
by the agent). A central feature of the underlying interpreter is 
the algorithm that selects which plan rule should be used to 
handle a given event. In most implementations, this algorithm 
checks rules in the order in which they are written (in the agent 
program source code) and selects the first rule that handles the 
given event and whose context is satisfied. 

In our model, we introduce the notion of an agent class as a 
container for plan rules.  This allows us to decompose the mono-
lithic list of plan rules typically attributed to agent program into 
coherent lists of plan rules that correspond to specific behav-
iours. These agent classes can then be combined through multi-
ple inheritance to define composite behaviours. An agent pro-
gram is then defined as an instance of an agent class. 

The consequence of introducing the concept of an agent class 
is that the plan rule selection algorithm is no longer sufficient, 
especially in the case where a behaviour is split over multiple 
agent classes. In this scenario, the key question we must ask is 
how can we determine which lists of rules should be checked 
and in what order? 



In this way, rule selection is a similar problem to the issues 
of method selection in Object-Oriented Programming languages 
that employ multiple-inheritance. This issue was discussed in 
some detail in section 2.  Out of the strategies outlined that 
section, our model adopts the first strategy - it deals with the 
inheritance graph directly. However, we also maintain a linear-
ized chain as part of a conflict resolution strategy. Informally, 
the conflict resolution strategy adopted is as follows:- 

 

 If a rule that appears in multiple parents is invoked in 
a child, the invocation of the correct sequence of in-
structions would depend on the order of inheritance by 
default, i.e. the corresponding rule of the class inherit-
ed first is executed, if present in it. Otherwise the next 
inherited class would be checked, and so on. 

 The scope resolution operator (“::”), similar to that of 
C++, can be used to explicitly define the scope of in-
voking a rule if it is present in multiple agents of the 
hierarchy. 

 If no scope is defined while invoking a rule in the 
child agent and it is present in one or more of its par-
ents as well as the child itself, the implementation/s 
defined in the parent/s would be hidden by that of the 
child (overriding). 

To illustrate and refine the model in more detail, this section 
presents an informal overview of the modified AgentSpeak(L) 
language, followed by a number of examples that illustrate key 
features of the model. 

3.1 Modified AgentSpeak(L) Grammar 

We modify and extend the basic AgentSpeak(L) syntax to in-
clude a unique identifier for each agent program (the agent class 
name), a list of the agent classes that are being extended, and 
introduce the concept of a scoped goal as a type of sub-goal 
where the corresponding events are targeted at a specific agent 
class. 

A Java style syntax has been adopted for this extension, 
however any appropriate syntax could be used. In particular, the 
“agent” keyword is used to denote an agent class and the “ex-
tends” keyword to specify the parent agent class(es). Multiple 
parent classes can be specified using a comma-delimited list of 
agent class names. The body of the agent program (any initial 
state and rules) is enclosed within a set of braces. 

The syntax for these proposed changes are illustrated in Fig-
ure 1 with the italicised syntax represents the extensions pro-
posed to the existing language. 

 
A ::= [agent <agent-name> 

[extends <agent-name> (, 
<agent-name>)*]<c>* 

C ::= <initial> | <rule> 

initial ::= <belief> | <goal> 

rule ::= <event>: <context><- 
(<statement>)* 

statement ::= ? <belief> | + <belief> 
| - <belief> | <goal> | 
<action> | <scoped-goal> 

scoped-goal ::= <agent-name> :: <goal> 

Figure 1.  Modified AgentSpeak(L) syntax 

3.2 Combining Behaviours 

The most obvious benefit of multiple inheritance is the ability to 
combine multiple existing behaviours to form a new behaviour. 
For example, in the scenario shown in Figure 2, agent A has a 
rule that handles the event corresponding to the addition of the 
goal !init() while the agent B has two rules that correspond to 
the addition of two goals, !init() and !myInit(). Agent C, 
which is a child of both A & B according to our model, will now 
be able to invoke both the goals even though it itself doesn’t 
define either of them. This is how we can combine the behav-
iours of multiple agents into a new agent using multiple inher-
itance.  

 
 
 
 
 
 
 
 
 
 

 
Figure 2. A simple multiple inheritance scenario 
 
If we look at the scenario a little more closely, we can infer 

that calling !myInit() in C would invoke the !myInit() 
defined in B. However, it is not clear what would happen when 
we call !init() in C.There are two possibilities, either the 
!init() of A is invoked or that of B is invoked. Such a prob-
lem has also been encountered in object-oriented programming 
(in languages like C++), when a method called from a child 
instance exists in multiple parents. C++ deals with it by giving a 
compile time error as the method referenced is ambiguous. 
However, C++ also provides the “virtual” keyword which ena-
bles a programmer to bypass the compilation error. If the meth-
od existing in multiple parent classes is declared virtual and 
referenced from the child instance, then the implementation 
defined by the parent inherited first (i.e. appearing on the left in 
the line where parents of the child class are defined) would be 
invoked. 

Rather than present compile time errors, this is the default 
behaviour adopted in our model, i.e. if a rule defined in multiple 
parents is invoked from the child agent, the implementation 
defined by the parent appearing on the left in the “extends” line 
gets preference and is called by default. This means that the 
!init() of A would be invoked in this case.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3.  A more complex multiple inheritance scenario 
 



3.3 Overriding Behaviour 

A second benefit of multiple (and single) inheritance is the 
ability to override existing behaviours, to provide a modified 
behaviour. For example, in Figure 3 agent A has a rule that 
handles the event corresponding to the addition of the goal 
!init() while agent B inherits A. Agent B, in turn, is inherited by 
C, which again adds a rule that handles the event corresponding 
to the addition of the goal !init(). Finally, agent D inherits B and 
C and tries to invoke the !init() implementation. 

It is to be noted here that the !init() implementation defined 
in C would hide (override) the implementation that had been 
defined in A as C is lower down in the hierarchy. However D 
would also get A’s implementation of !init() through B. This is a 
little more complicated than the case discussed in section 3.2 as 
the choice is not obvious. But, in our implementation, we first 
give preference to a smaller distance from root (the agent from 
which the rule is being invoked). Hence invoking !init() on D 
would invoke the implementation defined in C and not in A. The 
case discussed in section 3.2 would apply only when distances 
from root for two parent agents are the same. 

3.4 Scope Resolution 

Sometimes the default conflict resolution strategy outlined in 3.3 
can lead to scenarios in which the selected rule is not the one we 
desire.  For example -again referring to Figure 3 - what if we 
need to invoke A’s implementation of !init() from D? For 
such a scenario, we introduce the scope resolution operator 
(“::”), similar to that provided by C++. This can be used to 
restrict the scope of a construct invocation. For the requirement 
discussed above, we can use A::!init(). It should be noted 
that the same implementation of A can also be invoked by 
B::!init() as when we restrict the scope of init() to B, the 
only implementation available in the hierarchy is that of A. 

In this context, let us also look at Figure 2 again. What if a 
programmer needs to invoke the !init() of B from C? For 
such a scenario also, B::!init() would be useful. Therefore, 
the scope operator can always be used by the programmer to 
specify the scope of the construct to be invoked. In cases where 
it is not used, default behaviour is used to avoid ambiguities. 

3.5 Implications 

In order to illustrate the potential benefits and limitations of our 
model, this section explores some examples of different ways in 
which it can be used in real world systems. 

3.5.1 Extending Behaviours 

 agent A { 
 +!init() <- 
  println(“Hi from A”); 
 } 
 
 agent B extends A { 
 +!init() <- 
  println(“Hi from B”); 
  A::!init(); 
 } 

Figure 4.  Example for Extending Behaviours 
 

Figure 4 depicts how B inherits !init() from A and extends 
the behaviour associated with the !init() goal. This is how 
the inheritance model may be used to extend existing behav-
iours. 

3.5.2 Combining Behaviours 

agent A { 
+!init() <- 
 println(“Hi from A”); 
} 
 
agent B { 
+!init() <- 
 println(“Hi from B”); 
} 
 
agent C extends A, B { 
+!init() <- 
 A::!init(); 
 B::!init(); 
} 
 

Figure 5. Example for Combining Behaviours 
 

Figure 5 depicts how C inherits !init() from A and B and 
combines the existing behaviour of both to produce a new be-
haviour for !init().  

3.5.3 Defensive Programming 

agent A { 
count(0); 
 
+!init() : count(x) & x<50<- 
 A::!inc(); 
 //Do something 
 !init(); 
 
+!inc() : count(x) <- 
 -count(x); 
 +count(x+1); 
} 
 
agent B extends A { 
+!inc() : count(x) <- 
 -count(x); 
 +count(x-1); 
} 
 
agent C extends A, B { 
 !init(); 

 } 
 
Figure 6. A Defensive Programming Example 
 

The ability to extend behaviour can also introduce unexpected 
side-effects. For example, in Figure 6, the code has been written 
to do something 50 times (in agent A). However, it is possible to 
extend that agent to override the correct functionality with 
something incorrect and cause bugs in the code. To illustrate 
this, we show agent B overriding the !inc() goal of A to dec-
rement the count, instead of incrementing it, which would result 
in incorrect behaviour. Fortunately, the scope operator helps us 
to avoid this undesirable outcome. By writing A::!inc(), the 
developer ensures that his code won’t be overridden and hence 
never have an incorrect behaviour. Thus we see how there can 
be a need to limit overriding in certain cases to oversee the 
dangers that can be caused by our model. Now, whenever !in-
it() will be called from agent C, it would always give the 
correct behaviour. This can be considered analogous to what the 
“final” keyword achieves in OOP languages like C++ and Java. 
However, while final is a compile-time feature, the feature of 
restricting scope is at run-time. This implies that it can provide 



more flexibility than final. B could still override the !inc()of 
A and C (or any agent directly calling !inc()) can choose 
whether to use the overridden version or not. In case where an 
agent utilises a goal/plan of its parent indirectly, the parent is 
able to restrict or allow overriding (as shown here). 

4. Formalisation 

This section presents a formal model that illustrates the seman-
tics of the modified language. Our model is inspired by the 
Jason formal model presented in [17]. However, we do not 
attempt to provide a complete formalisation of the language, but 
instead we choose to focus only on the relevant bits (which need 
to be modified for our purpose).  Specifically, we focus on the 
revised plan selection mechanism that is necessary to cater for 
the introduction of multiple inheritance. 

The key concepts are as follows:- 

 An agent’s class is defined as 

 Class = <name, P, IS, R> where: 

- name is the name of the class. 

- P is the list of parents of the class. 

- IS is the initial state of the class. 

- R is an ordered list of rules associated with the 
class. 

 An agent is defined as 

 Agent = <name, type, B, I, E> where: 

- name is the agent identifier. 

- type is the name of the type (class) of the agent. 

- B is the set of beliefs that the agent has. 

- I is the set of intentions which the agent has. 

- E is the event queue associated with the agent. 

 An event is defined as 

 Event = <te, i, type> where: 

- te is the triggering event. 

- i is the source of the event (an intention or  
meaning it is an external source). 

- type is the name of the scoped class or  if not 
scoped. 

 An agent program is defined as 

 Program = <C, A> where: 

- C is a set of agent classes associated with the pro-
gram. 

- A is a set of agents associated with the program. 

Apart from introducing the concept of an agent class, we 
have modified AgentSpeak(L) events to cater to scoping. In this 
new model, rules are linked to classes and the adoption of multi-
ple inheritance impacts rule selection. We now proceed to pro-
vide the algorithms that would determine rule selection in the 
modified language. 

 

execute(P, A) 
 e <- selectEvent(A) 
 o <- selectOption(P, A, e) 
  if (o !=) then 
    applyOption(o) 
 endif 
 i<- selectIntention(A) 
 if (i != ) then 
  executeIntention(i) 
 endif 
 
Figure 7.  Simplified AgentSpeak(L) Interpreter Algorithm 

 
Figure 7 is a simplified version of the AgentSpeak(L) inter-

preter algorithm presented in [26]. In our model, only the itali-
cised line (selectOption) is affected. While it is simpler than 
the algorithms proposed in [26] [17], it does correspond to those 
algorithms.  

 
selectOption(P, A, e) 
 if e.type = then 
    t <- A.type 
 else 
  t <- e.type 
 endif 
 classes <- getLinearization(P, t) 
  while (classes != []) do 
  cls <- head(classes) 
  classes <- tail(classes) 
  o <- selectOptionForClass(P,A,cls,e) 
  if (o != ) then 
  return o 
  endif 
 endwhile 

return 
 
Figure 8.  ModifiedAgentSpeak(L) selectOption Algorithm 
 
Figure 8 shows our modification to the existing selectOp-

tion algorithm of AgentSpeak(L). The initial part of our algo-
rithm deals with the handling of scope (discussed in section 3.4 
above). If no scope is defined by the user, then the scope would 
default to the current agent class. We then introduce a getLin-
earization algorithm which returns a list of classes according 
to the criteria discussed in sections 3.2 & 3.3. We do not present 
the whole algorithm here for brevity constraints. The selec-
tOptionForClass works in exactly the same way as the exist-
ing AgentSpeak(L) selectOption algorithm, there is an extra 
parameter for class as this algorithm can be called multiple times 
(once for each agent class in the hierarchy defined by the scope). 

5. Case Study 

We present a case study where our model is applied to a recently 
developed agent programming language, called ASTRA [11]. 
ASTRA is an agent-oriented programming language that is built 
on Java. It is an implementation of AgentSpeak(TR), which 
extends AgentSpeak(L) with support for Teleo-Reactive 
functions [11]. 

ASTRA is designed to be syntactically close to Java. The 
programs are written in files with a “.astra” extension. Each file 
must contain exactly one agent class, specified by the agent 
keyword. In terms of this paper, the important changes features 
are:- 

 Initial beliefs & goals can be specified using the initial 
keyword.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Plan rules are specified using the rule keyword. 

 Standard statement types for plans are provided: if, 
while, foreach, variable declarations, assignment, 
try...recover etc. 

 Support for system and user defined libraries of ac-
tions and sensors that are implemented as annotated 
java classes, known as modules. 

 Provision of integrated support for CArtAgo [26] and 
EIS [2]. 

 Introduction of a type system for variables that is de-
signed to map on to java primitives (i.e. int, float, 
long, double, char etc.) and objects. 

 Additional event types are introduced for messages, 
and EIS/CARTAGO events. 

Due to space constraints, details of the ASTRA language are not 
presented here. Instead, the reader is directed to the ASTRA 
language website. Some examples of ASTRA code are present-
ed in Figures 9, 10 and 11. 

5.1 Example System without Inheritance 

Here we present some code from a chat system implemented in 
ASTRA. This system was first written without using inheritance. 
It was presented as part of the Agent Oriented Software module 
of the course, M.Sc. Advanced Software Engineering 2013-14 at 
University College Dublin. 

The code presented in Figure 9 is for the Manager which 
manages all connection requests (between various users) in the 
system.  The normal behaviour of the Manager agent is that it 
responds to an initial request from a User agent to connect to 
another user (the first rule in Figure 9).  If the Manager believes

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

that the connecting agent is a registered user of the system then 
it checks if the target user exists.  If the target user does not 
exist, the Manager refuses the connection request.  If the target 
user does exist, then the Manager agrees to the connection re-
quests and sends a propose message to the target agent asking-
whether or not the connection can be made.  The plan then waits 
for a response to be returned. 

Receipt of the response to the proposal is handled by the sec-
ond and third rules which deal with acceptance and rejection of 
the proposal respectively.  When the Manager receives its re-
sponse, it adopts a belief that causes the main plan to stop wait-
ing and to continue processing the connection request. If the 
proposal was accepted, it informs the requesting User agent of 
the success of the initial request, otherwise it tells the User agent 
that its connection request has failed. 

In this example, which represents typical a typical solution to 
this type of scenario, we can see how protocols are implemented 
in a bespoke way to handle the different messages that can be 
sent in the system. This is a very basic approach where each step 
in the protocols has to be coded explicitly in each agent. It 
should be noted that there is not much scope of code reuse in 
this approach. So when we write code for other entities in the 
system (e.g. User), we do it again from scratch. 

5.2 Example System with Inheritance 

We now present code for the same system where we utilise 
multiple inheritance. First of all, we code the various protocols 
that would be used by different entities in the same system as 
well as other systems. Thus we build a library of standard inter-
action protocols, the fipa protocols [18]. 

In Figure 10, we present the Propose protocol. It is the sim-
plest of all fipa protocols. This protocol can be utilised by an 
agent that wishes to initiate a Propose communication or by an 
agent that is supposed to participate in it. To initiate this type of  

package chat; 
agent Manager { 
rule @message(request,string S, connect(string UN)):user(S,string SN) { 
  if (~user(UN,string N)) { 
   send(refuse,S,connect(UN)); 
  } else { 
   send(agree,S,connect(UN)); 
   query(user(UN,string name)); 
   send(propose,UN,connection(S, SN)); 
   when(connect_response(UN,S,SN, string R)) { 
    -connect_response(UN,S,SN, R); 
   if (R == "yes") { 
    send(inform,S, connection(UN,name)); 
    } else { 
     send(failure,S, connect(UN)); 
    } 
   }  
  } 
 } 
 
 rule @message(accept-proposal, string S, connection(string UN,string N)) { 
  +connect_response(S,UN,N,"yes"); 
 } 
 
 rule @message(reject-proposal, string S, connection(string UN,string N)) { 
  +connect_response(S,UN,N,"no"); 
 } 
} 

Figure 9. Code for ASTRA Chat System Manager 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

communication, an initiator first creates a conversation and then 
sends a propose message to the agent that should participate. It 
also adopts a timeout sub-goal implying that it would wait for 
the response of this message for finite time duration. Receipt of 
the response to the propose message sent by initiator is handled 
by the second and third rules. When a possible participant re-
ceives a propose message, it can choose to either accept or reject 
the proposal. The rules for this are in the participant section of 
Figure 10. 

Due to space constraints, we won’t be able to show the other 
protocols (such as Request and Subscribe) here. However, all 
protocols could be written along the lines of the Propose proto-
col. 

The Protocol class, present in the system, works as a building 
block for various protocols. It contains goals such as 
start_conv and fipa_timeout as well as the mechanism for 
generating unique conversation ids. The agents that extend this 
class do not have to worry about the implementation details of 
these goals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11 presents the code for a Manager which handles all 

connection requests in the system as well as utilises the features 
of multiple inheritance. It should be noted that this code looks 
quite concise with the Manager only needing to handle rules 
relevant to the conversation without bothering about the details 
of the underlying Request and Propose protocols. 

 The whole code (including that in Figure 10) may not be 
lesser than its counterpart that doesn’t use inheritance if we 
consider the lines of code (LoC) metric. However, we see how 
protocols like Propose are decoupled from the business logic. 
These protocols may be reused by other entities in the system 
(e.g. User) and by entities in other systems as well. Implementa-
tion details of agents at one level of the hierarchy are abstracted 
from the other levels. Hence, agents at each level need to focus 
only on their core functionalities thus enabling an incremental 
development of the system. It was also possible for us to add 
another feature, that of timeout handling, in this scenario with 
minimal effort. Similarly, we could also have added the logic of

package astra.fipa.protocol; 
agent Propose extends Protocol { 
 // ------------------------------ 
 // Initiator 
 // ------------------------------ 
 rule +!fipa_propose(int T, string S, string A, list P, boolean R) { 
  !start_conv("fipaPropose",int Id); 
 
  send(propose, sender, content("fipaPropose",Id,A,P)); 
 
  !!fipa_timeout(Id, T); 
  wait(fipa_timeout(cid) | fipa_result(Id,boolean R2)); 
 
  if (fipa_result(Id, boolean B)) { 
   R = B; 
   -fipa_result(Id, B); 
  } else { 
   R = false; 
  } 
 } 
 
 rule @message(accept-proposal, string S, content("fipaPropose", int Id)) { 
  +fipa_result(Id, true); 
 } 
 
 rule @message(reject-proposal,string S, content("fipaPropose", int Id)) { 
  +fipa_result(Id, false); 
 } 
 
 // ------------------------------ 
 // Participant 
 // ------------------------------ 
 rule @message(propose, string S, content("fipaPropose", int Id, string A,  
 listP)) { 
  !handle_fipa_propose(S,A,P, boolean R); 
  if (R == true) { 
   send(accept-proposal, S, content("fipaPropose", Id)); 
  } else { 
   send(reject-proposal, S, content("fipaPropose", Id)); 
  } 
 } 
 
 rule +!handle_fipa_propose(string S, string A, list P, boolean R) { 
  R = false; 
 } 
} 

Figure 10. Code for the Propose Protocol

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
cancelling a conversation. As a result, we see that multiple 
inheritance allows us to build a more concrete, robust and exten-
sible model. Also, as different entities and protocols are decou-
pled, the system becomes much simpler to develop and compre-
hend. Coming back to the LoC argument, if we imagine a lot of 
entities present in the system, then the LoC can be much less for 
a multiple inheritance implementation as repetitive code would 
be written only once. 

In this context, it must be noted that in the previous version 
of Manager that we had (which didn’t use inheritance), the 
business logic was entwined with the protocols. It was a blurred, 
ad hoc solution that was not able to provide any consistency of 
approach or separation of concerns. Common issues arising out 
of using such a coding approach include the mismatch of per-
formatives between the content & predicate of messages and 
mismatch in the type and number of parameters. Also, trying to 
add new features would have needed considerable effort. How-
ever, these problems were overcome with the new version 
(which utilised multiple inheritance) and we moved towards 
better coding practices. We were able to provide a better quality 
of code in the new version as we reused well-tested code im-
plementations. This was a more engineered solution. Adopting 
such practices could lead to rapid and iterative development of 
software with shorter development cycles. 
 
6.   Conclusion 

We conclude that multiple inheritance makes it simpler to im-
plement a large, complex system. Also, different functionalities 
(roles) can be developed independently and combined later. The 
development can be iterative and decoupling of business logic 
implies that the focus can be on one feature at a time. Alterna-
tively, many developers can be involved in the parallel devel-
opment of a system, with each of them focusing on one feature.  
Multiple inheritance allows an agent to have more than one roles 
in a system, thus making them closer to the real world. Different 
responsibilities, pertaining to different roles, may be executed in 
different contexts by the same agent (rule selection). Regarding 
the LoC metric, the larger and more complex a system, the

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
better would be its LoC as compared to its counterpart that does 
not utilise inheritance. 
 It should be noted that initially we had considered using 
only a single inheritance model. However, a number of factors 
led us towards adopting the multiple inheritance strategy. Single 
inheritance would allow us to extend single behaviours but not 
allow combining different behaviours. We felt that multiple 
inheritance was a natural fit for agent programming as it would 
allow agents to combine social and individual behaviours. Es-
tablished agent methodologies like GAIA, AgentFactory, Pro-
metheus etc. deal with identifying roles in a system. Once the 
roles are identified, the implementation of the modelled system 
would include implementing the roles into agents. This served as 
another motivation for multiple inheritance so that one agent had 
the capability to combine multiple roles. Thus we can say that 
multiple inheritance fits nicely with existing Agent Oriented 
Software Engineering methodologies. Also, multiple inheritance 
can allow easy encoding of market patterns such as Product 
Hierarchy, Functional Hierarchy, Centralised Market etc. into 
agents. In addition to this, multiple inheritance corresponds to 
the roadmap described in [21]. 

Through our findings, we can say that multiple inheritance 
improves an agent language by:- 

 Modularising it. 
 Give the ability to reuse complex agent programs 

(rules, plans, and goals). 
 Provide customisable templates to users to reduce de-

velopment times. 
 Each agent may be a combination of more than one tem-
plate, utilising some/all of the features defined in earlier tem-
plates without needing to have them at a single place and/or 
redefining them. 
 In our chosen case study, the motivating factor for multiple 
inheritance was the ability of an agent to combine the implemen-
tation of multiple protocols. As our new Manager agent com-
bines both Request and Propose protocols, it has the ability to 
exhibit both kinds of behaviour (based on different contexts). 
Also, established protocols can be reused by different agents in 
the same system or even in other systems. Such a level of ab-

packageastra.fipa; 
agent Manager extends Request,Propose { 
 rule +!handle_fipa_request(string S, "connect", list P, boolean R) { 
  if (~user(S, prelude.valueAsString(P,0))) { 
   result = false; 
  } else { 
   result = true; 
  } 
 } 
 

rule +!process_fipa_request(string S, "connect", list P, list V): user(S, string SN) { 
  query(user(prelude.valueAsString(P,0),string N)); 
  !fipa_propose(UN, "connection", [S,SN], boolean R); 
  if (result == true) { 
   V = [N]; 
  } else { 
   system.fail(); 
 } 
} 

Figure 11. Code for the ASTRA Chat System Manager using Multiple Inheritance 

 



straction would aid in reducing complexity. With agents already 
established as smart entities, such abilities would open new 
possibilities for software development. 
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