Scaling-Up Behavioral Programming:
Steps from Basic Principles

to Application Architectures
David Harel and Guy Katz

Weizmann Institute

Overview

e The Behavioral Programming (BP) paradigm

° Scenario-based programming
e Previous work: BP is incremental & natural

e But does it scale up?

» Attempt to apply BP to a large case-study (a webserver)
* Do BP’s desirable traits carry over to large systems!?

> Conclusion: yes, but...

> With some extensions to BP

Agenda

* Introduction to Behavioral Programming
e Our proposed extensions

o Case-study:a web server

Agenda

* Introduction to Behavioral Programming

Behavioral Programming (BP)

* A scenario-based paradigm for programming reactive
systems

* Program by specifying scenarios
> Desirable scenarios

o Undesirable scenarios

e All scenarios are consulted at runtime

> Producing cohesive system behavior

Harel et al, "Behavioral Programming", CACM, 2012

Behavioral Programming (cnt'd)

e A program has events and threads

e At synchronization points threads pause and declare
|. Requested events
2. Waited-for events

3. Blocked events

» Event selection at synchronization points:

|. Trigger an event requested by some thread and blocked by
none

2. Inform threads that requested/wait-for the event

The Execution Cycle

Wait

l

e L
l Behavior Threads IBI

The Execution Cycle

Wait

l

e L
l Behavior Threads IBI

The Execution Cycle

Wait

l

e L
l Behavior Threads IBI

Toy Example

AddHotFiveTimes() {
for i=1 to 5 {
bSync(request=addHot, wait-for=0, block=0);
}
}

e

AddColdFiveTimes() {
for i=1 to 5 {
bSync(request=addCold, wait-for=0, block=0);
}
}

Interleave() {
forever {
bSync(request=0, wait-for=addHot, block=addCold);
bSync(request=0, wait-for=addCold, block=addHot);

addHot
addCold
addHot
addCold
addHot
addCold
addHot
addCold
addHot
addCold

Motivation for BP

* Incremental, non-intrusive development
> New requirement? Add a thread

> Program repair
* Threads aligned with the specification
e Natural / easy to learn

* Fosters abstract programming

BP and the Actor Model

e Similarities:
> Actors / Behavior Threads: narrow view of the system
> Event passing between threads

 Differences:

° Synchronization is global

> Undesired behaviors/the blocking idiom

* We regard Actors and BP as complementary

Agenda

e Our proposed extensions

Time in BP

e Traditional BP assumed zero-time actions

> Threads re-synchronize immediately

e Threads with multiple time scales!?

o Partial solutions exist (Harel et al, AGERE! 2011)

e But, no way to reason about time

Example: Railway Crossing

e Upon trainComing, lower the gate
e The gate must remain down for 30 seconds

Thread LowerGate
while (true)
bSync(request=¢, wait-for=trainComing, block=g¢)
bSync(request=1lowerGate, wait-for=¢, block=g¢)

Thread PreventRaise
while (true)
bSync(request=¢, wait-for=_LowerGate, block=g¢)
bSync(request=¢, wait-for=¢, block=raiseGate)

Extension: A Timeout Ildiom

e Extend synchronization calls with a timeout parameter
bSync(request, wait-for, block, timeout)

e Threads synchronize, and an enabled event is triggered

No enabled events? Wait for nearest timeout value

Wake up the thread that timed-out

> That thread may change the requested/blocked events

Thread PreventRaise
while (true)
bSync (¢, LowerGate, ¢, «)
bSync (o, ¢, raiseGate, 30)

Strategies

o Often, multiple events requested and not blocked
> Which is triggered!?
* Traditional solutions:
> Arbitrary
> Event / thread priorities
> Round robin
e Our extension: selection strategy a part of the program

> Tailor event selection to programmer’s needs

Dynamic Thread Creation

* Previously, threads exist throughout the run

e Difficult to handle requirements that change throughout
the run
> E.g.,user action creates a thread

* Our extension: dynamic thread creation

> Threads spawn other threads, in response to events

Parameterized Events

* Previous programs dealt finitely many events
» Explicitly name all possible events...

* Our extension: allow events with parameters

Agenda

o Case-study:a web server

The Project

e Large scope:a TCP stack and a HT TP stack
o Together, they form a webserver
e Various programming tasks: timeouts, string

manipulation, file access, checksums, multiple inputs,
mandatory and forbidden behavior, etc.

Goal: find out whether this is feasible using BP

> Answer: yes, with the aforementioned extensions

e Sub-goals:
> Program incrementally

> Align threads with the specifications

The Need for the Extensions

e Timeouts:
o Every TCP segment needs to be acknowledged

o QOtherwise, resend it

Thread ResendSegment
do {
bSync (sendSegment, ¢, ¢, ©)
bSync (o, ack, o, 2)
} while (timeoutInLastSync())

The Need for the Extensions

e Spawn Threads: new thread per connection
o Strategies: answer urgent segments first

e Parameterized events: carry a segment’s payload

The Implementation’s Layout

24

Conclusions & Future Work

* We've developed a large behavioral application

 In the process, extended BP with:
> Timeouts
> Dynamic Thread Creation
o Strategies

o Parameterized events

¢ |n the future: extend our case study

> May reveal additional idioms worth adding to BP

* Extend program analysis tools (model-checking, repair,
etc) to the new variant of BP

Thank You!

Questions
?

&

—

i\

-

