
 Event-Based Analysis of
Timed Rebeca Models

Using SQL
Brynjar Magnusson, Ehsan Khamespanah, Marjan Sirjani and Ramtin

Khosravi
Reykjavik University in Iceland and University of Tehran in Iran

AGERE@SPLASH
October 2014

1

Modeling and Verification of
Timed Actors

• Realtime aspects of actors are important

• Schedulability of timed actors are important

• Model checking against realtime properties is
required

• Reasoning about events is more interesting than
state variables of actors

2

A Simple Timed Actor Model
• A customer wants to buy a ticket

• Issuing a ticket is a time consuming event

• There is network delay

Issuing a ticket takes
3 or 4 units of time

Give
me a

 tic
ket

Request ticket

Let me ask
ticket service

Ticket issued Give
 yo

ur
tick

et

Customer

Agent

Ticket Service

3

Timed Rebeca Model
reactiveclass TicketService {
 knownrebecs {
 Agent a;
 }
 statevars {
 int issueDelay;
 }
 msgsrv requestTicket() {
 int issueDelay =?(3,4);
 delay(issueDelay);
 a.ticketIssued(1) after(2);
 }
}
reactiveclass Agent {
 knownrebecs {
 TicketService ts;
 Customer c;
 }
 msgsrv requestTicket() {
 ts.requestTicket() deadline(5) after(2);
 }

 msgsrv ticketIssued(byte id) {
 c.ticketIssued(id) after(2);!
 }
}
reactiveclass Customer {
 knownrebecs {
 Agent a;
 }
 msgsrv initial() {
 self.try();
 }
 msgsrv try() {
 a.requestTicket() after(2);!
 }
 msgsrv ticketIssued(byte id) {
 self.try() after(30);!
 }
}
main {
 Agent a(ts, c):();
 TicketService ts(a):();
 Customer c(a):();
}

4

Timed Rebeca Model
reactiveclass TicketService {
 knownrebecs {
 Agent a;
 }
 statevars {
 int issueDelay;
 }
 msgsrv requestTicket() {
 int issueDelay =?(3,4);
 delay(issueDelay);
 a.ticketIssued(1) after(2);
 }
}
reactiveclass Agent {
 knownrebecs {
 TicketService ts;
 Customer c;
 }
 msgsrv requestTicket() {
 ts.requestTicket() deadline(5) after(2);
 }

 msgsrv ticketIssued(byte id) {
 c.ticketIssued(id) after(2);!
 }
}
reactiveclass Customer {
 knownrebecs {
 Agent a;
 }
 msgsrv initial() {
 self.try();
 }
 msgsrv try() {
 a.requestTicket() after(2);!
 }
 msgsrv ticketIssued(byte id) {
 self.try() after(30);!
 }
}
main {
 Agent a(ts, c):();
 TicketService ts(a):();
 Customer c(a):();
}

Computation Time

4

Timed Rebeca Model
reactiveclass TicketService {
 knownrebecs {
 Agent a;
 }
 statevars {
 int issueDelay;
 }
 msgsrv requestTicket() {
 int issueDelay =?(3,4);
 delay(issueDelay);
 a.ticketIssued(1) after(2);
 }
}
reactiveclass Agent {
 knownrebecs {
 TicketService ts;
 Customer c;
 }
 msgsrv requestTicket() {
 ts.requestTicket() deadline(5) after(2);
 }

 msgsrv ticketIssued(byte id) {
 c.ticketIssued(id) after(2);!
 }
}
reactiveclass Customer {
 knownrebecs {
 Agent a;
 }
 msgsrv initial() {
 self.try();
 }
 msgsrv try() {
 a.requestTicket() after(2);!
 }
 msgsrv ticketIssued(byte id) {
 self.try() after(30);!
 }
}
main {
 Agent a(ts, c):();
 TicketService ts(a):();
 Customer c(a):();
}

Computation Time

Network Delay

4

Timed Rebeca Model
reactiveclass TicketService {
 knownrebecs {
 Agent a;
 }
 statevars {
 int issueDelay;
 }
 msgsrv requestTicket() {
 int issueDelay =?(3,4);
 delay(issueDelay);
 a.ticketIssued(1) after(2);
 }
}
reactiveclass Agent {
 knownrebecs {
 TicketService ts;
 Customer c;
 }
 msgsrv requestTicket() {
 ts.requestTicket() deadline(5) after(2);
 }

 msgsrv ticketIssued(byte id) {
 c.ticketIssued(id) after(2);!
 }
}
reactiveclass Customer {
 knownrebecs {
 Agent a;
 }
 msgsrv initial() {
 self.try();
 }
 msgsrv try() {
 a.requestTicket() after(2);!
 }
 msgsrv ticketIssued(byte id) {
 self.try() after(30);!
 }
}
main {
 Agent a(ts, c):();
 TicketService ts(a):();
 Customer c(a):();
}

Computation Time

Network Delay

Periodic Event

4

Timed Rebeca Model
reactiveclass TicketService {
 knownrebecs {
 Agent a;
 }
 statevars {
 int issueDelay;
 }
 msgsrv requestTicket() {
 int issueDelay =?(3,4);
 delay(issueDelay);
 a.ticketIssued(1) after(2);
 }
}
reactiveclass Agent {
 knownrebecs {
 TicketService ts;
 Customer c;
 }
 msgsrv requestTicket() {
 ts.requestTicket() deadline(5) after(2);
 }

 msgsrv ticketIssued(byte id) {
 c.ticketIssued(id) after(2);!
 }
}
reactiveclass Customer {
 knownrebecs {
 Agent a;
 }
 msgsrv initial() {
 self.try();
 }
 msgsrv try() {
 a.requestTicket() after(2);!
 }
 msgsrv ticketIssued(byte id) {
 self.try() after(30);!
 }
}
main {
 Agent a(ts, c):();
 TicketService ts(a):();
 Customer c(a):();
}

Computation Time

Network Delay

Message
Expiration Time

Periodic Event

4

Analysis Support
• Floating Time Transition

System for Schedulability and
Deadlock-Freedom analysis

• Transforming to Erlang to
simulate

5

Applications of Timed
Rebeca

• Verification of Network-on-Chip (NoC) systems
(model checking) - UT, Siamak Mohamadi

• Verification of Hadoop based systems (RU, Master
Thesis) - UIUC, Indi Gupta

• Verification of Structural Health Monitoring system
(model checking) - UIUC, Gul Agha

6

Analysis Support
• Floating Time Transition

System for Schedulability and
Deadlock-Freedom analysis

• Transforming to Erlang to
simulate

• Event-Based property analysis
using Timed Rebeca
Simulation Engine

7

Event-Based Property
Language for Timed Rebeca
• Computation takes palace by communication in

actor models

• We need to take communication events into
account

• A logic which events are its atomic propositions

• Easy to use by practitioners

8

Timed Event-Based Property
Language (TeProp)

• A logic based on MTL (no branching operator)

• Influenced by property patterns of the specification of
real-time systems and patterns in finite-state
verification to address:

• Maximum, minimum, exact, and bounded response
to events

• Periodic occurrence of events

• Precedence relation between events

9

Introduction to TeProp
• Three temporal modalities

• Two operators

• Events as atomic propositions

• Syntax of TeProp

1 reactiveclass TicketService {
2 knownrebecs {Agent a;}

3 statevars {

4 int issueDelay, nextId;

5 }

6 msgsrv initial(int myDelay) {

7 issueDelay = myDelay;

8 nextId = 0;

9 }

10 msgsrv requestTicket() {

11 delay(issueDelay);

12 a.ticketIssued(nextId);

13 nextId = nextId + 1;

14 }

15 }
16 reactiveclass Agent {

17 knownrebecs {

18 TicketService ts;

19 Customer c;

20 }

21 msgsrv initial() { }

22 msgsrv requestTicket() {

23 ts.requestTicket()

24 deadline(5);

25 }

26 msgsrv ticketIssued(byte id) {

27 c.ticketIssued(id);

28 }

29 }
30 reactiveclass Customer {
31 knownrebecs {Agent a;}

32 msgsrv initial() {

33 self.try();

34 }

35 msgsrv try() {

36 a.requestTicket();

37 }

38 msgsrv ticketIssued(byte id) {

39 self.try() after(30);

40 }

41 }
42
43 main {
44 Agent a(ts, c):();

45 TicketService ts(a):(3);

46 Customer c(a):();

47 }

Figure 1: The model of ticket service system.

erty types in event based systems. The first five property
types are mentioned in [19] and the sixth one is in [8]. Varia-
tions of these property types also appear in [2] and [18]. We
designed TeProp to address these six types of properties. To
this aim, we defined three temporal modalities G, F, B (pro-
nounced “globally”, “finally”, and “before” respectively) and
two operators! (“implies”) and{ (“leads-to”).

Di↵erences with MTL. Since the standard Until operator
in temporal logic is expressing that a state-proposition should
hold until something happens and we are only concerned
with the order and occurrence of instantaneous events we
introduce the Before operator instead of including the Until
operator. For example for stating that: e1 precedes e2 in the
next 10 time units, we say e1 B[0, 10] e2, while in MTL this
would be¬((¬e1) U[0, 10] e2)^ F[0, 10] e2. The other di↵erence
is defining the operator “leads-to” which is very similar to
standard “implies” except for that if p is false in p { q then
p { q is false (unlike for p ! q which is true if p is false).
We found this operator more intuitive when we express that
occurrence of some event will finally cause some other events
and we want to make sure that there is at least one occurance
of the first event. Note that G can be paired by!, and F can
be paired with {. The syntax and semantics of TeProp are
presented in the following subsections.

3.1 Syntax and Informal Semantics of TeProp
In TeProp temporal modalities are evaluated over time in-

tervals. A time interval consists of two non-negative integers
inside brackets [from, to]. The intervals are relative to the
current time, i.e. the current time instant is represented by 0,
positive integer represents the future, and the symbol end is
used to refer to the occurrence time of the last event of a trace.
Omitting an interval for an operator is the same as using the
interval [0, end].

As in this paper we define TeProp for Timed Rebeca mod-
els, events are defined based on the terminology of Timed
Rebeca. An event in Timed Rebeca is assumed as starting the
execution of a message server. An event is identified by the
name of its receiver and the name of message server in form
of receiver.msgsrvName(condition). Condition is optional and
given as a Boolean expression over the event’s parameters
and its sender (using the keyword sender). The formal syntax
of TeProp is depicted in Figure 2.

The intuitive meaning of TeProp formulas constructed by
valid combinations of temporal modalities and “implies” and
“leads-to” operator, is depicted in the following.

� ::= e | ¬� | � ^ � | (�) | FI e | FI (e{ �) | GI (e! �) | e BI e
I ::= [hIntegeri, hIntegeri] | [hIntegeri, end]
e ::= receiver.messageName([condition])

Figure 2: The syntax of TeProp. In e (denoting an event),
the “condition” is a boolean expression on the values of the
parameters and sender of e which its evaluation results in a
boolean value.

• Finally: F[i1, i2] e. An event matching e will happen
somewhere during the interval [i1, i2].
Examples: F X.call() - An event with instance name X
and message server call will happen at some point.
F[5, 20] X.call(n==7) - An event with instance name X
and message server call and the message parameter n
with value 7 will happen at some point between 5 and
20 time units.

• Before: e1 B[i1, i2] e2. Within the interval [i1, i2], an
event matching e1 happens at least once before an event
matching e2.
Example: X.call() B[0, 5] Y.call() - Within 0 and 5 time
units an event with instance name X and message server
call will happen before an event with instance name Y
and message server call.

• Globally with Implies: G[i1, i2](e ! �). For all events
matching e during the interval [i1, i2], the formula �
must be satisfied when the time of occurrence of e is
used as �’s current time. The formula is also satisfied if
there is no event that matches e during [i1, i2].
Example: G(X.call() ! F[0, 10] Y.call()) - Every occur-
rence of an event with instance name X and message
server call is followed by an event with instance name
Y and message server call within 10 time units of event
X.
G(X.call() ! Y.call() B[0, 9] Z.call()) - Every occurrence
of an event with instance name X and message server
call is followed by an event with instance name Y and
message server call before an event with instance name
Z and message server call , both within 9 time units of
event X.

• Finally with Leads-to: F[i1, i2](e{ �). At least for one
occurrence of an event matching e in the interval [i1, i2]

10

Intuitive Semantics
• Finally: : An event matching e will happen

somewhere during the given interval

• Before: : With in the given interval, an event
matching the first event happens at least once before an
event matching the second one.

• Globally with implies: : For all events matching e
during the given interval, the next formula myst be satisfied.

• Finally with leads-to: : At least for one
occurrence of an event matching e in the given interval, the
next formula holds true.

11

Property Patterns
• Maximum distance between an event and its reaction

!

• Exact distance between an event and its reaction

!

• Minimum distance between an event and its reaction

12

Property Patterns
• Periodic occurrence of events

!

• Bounded response

!

• precedence relation between two events

•

13

Database Design and Mapping
TeProp to SQL Formula

• Occurrences of events are stored in database

• TeProp formulas transformed to SQL queries and
SQL queries are executed over event traces

14

Example of Mapping From
TeProp Formulas to SQL formulas

15

Some Issues in Simulation of
Timed Rebeca Models

• When to stop simulation

• It depends on the behaviors of systems

• Number of simulation traces

• Computing confidence interval based on the
number of traces

16

Experimental Results

Control
Systems

Toxic Level

Leave the Lab

Rescue
Scientist

17

Experimental Results
• Sensor network example

!

!

• Multi-flight booking

18

Conclusion
• A new event-based property language (TeProp)

• Using simulation traces for analysis of the model

• Using Database as the repository of simulation
traces

• Mapping TeProp to SQL to make database able to
analyse the stored simulation traces

Thank you

20

