Event-Based Analysis of
Timed Rebeca Models

Using SQL

Brynjar Magnusson, Ehsan Khamespanah, Marjan Sirjani and Ramtin
Khosravi
Reykjavik University in Iceland and University of Tehran in lran
AGERE@SPLASH
October 2014

Modeling and Verification of
Timed Actors

Realtime aspects of actors are important
Schedulability of timed actors are important

Model checking against realtime properties is
required

Reasoning about events is more interesting than
state variables of actors

A Simple Timed Actor Model

e A customer wants to buy a ticket
* |ssuing a ticket Is a time consuming event

* There is network delay

R . .
“Queg, .., Ticket Service

Y o

Issuing a ticket takes
3 or 4 units of time

‘ Iss
_— B E

Timed Rebeca Model

reactiveclass TicketService {
knownrebecs {
Agent a;
J

statevars {
int issueDelay;
J

msgsrv requestTicket() {
int issueDelay =7(3,4);
delay(issueDelay);
a.ticketlssued(1) after(2);
}

}

reactiveclass Agent {
knownrebecs {

TicketService ts;
Customer c;

}

msgsrv requestTicket() {

}

ts.requestTicket() deadline(5) after(2);

msgsrv ticketlssued(byte id) {
c.ticketlssued(id) after(2);

}
}

reactiveclass Customer {

knownrebecs {
Agent a;

J

msgstrv initial() {
self.try();

J

msgstrv try() {
a.requestTicket() after(2);

}

msgstrv ticketlssued(byte id) {
self.try()

}

}

main {
Agent a(ts, ¢):();
TicketService ts(a):();
Customer c(a):();

}

Timed Rebeca Model

reactiveclass TicketService { msgsrv ticketlssued(byte id) {
knownrebecs { c.ticketlssued(id) after(2);
} J
Computation Time reactiveclass Customer {
knownrebecs {
, Agent a;
msg._ Y requestTicket() { }
int issueDelay =7(3,4); msgstrv initial() {
delay(issueDelay); self.try();
a.ticketlssued(1) after(2); }
} msgstrv try() {
} a.requestTicket() after(2);
reactiveclass Agent { }
knownrebecs { msgstrv ticketlssued(byte id) {
TicketService ts; self.try()
Customer c; }
} }
msgsrv requestTicket() { main {
ts.requestTicket() deadline(5) after(2); Agent a(ts, c):();
} TicketService ts(a):();

Customer c(a):();

}

Timed Rebeca Model

reactiveclass TicketService { msgsrv ticketlssued(byte id) {
knownrebecs { c.ticketlssued(id) after(2);
} J
Computation Time reactiveclass Customer {
knownrebecs {
, Agent a;
msg._ Y requestTicket() { }
int issueDelay =7(3,4); msgstrv initial() {
delay(issueDelay); self.try();
a.ticketlssued(1) after(2); }
} msgstrv try() {
} a.requestTicket() after(2);
reactiveclass Agent {
knownrebecs | Network Delay \sgsrv ticketlssued(byte id) {
TicketService ts; self.try()
Customer c; |
J }
msgsrv requestTicket() { main {
ts.requestTicket() deadline(5) after(2); Agent a(ts, c):();
} TicketService ts(a):();

Customer c(a):();

}

Timed Rebeca Model

reactiveclass TicketService { msgsrv ticketlssued(byte id) {
knownrebecs { c.ticketlssued(id) after(2);
} J
Computation Time reactiveclass Customer {
knownrebecs {
, Agent a;
msg._ Y requestTicket() { }
int issueDelay =7(3,4); msgstrv initial() {
delay(issueDelay); self.try();
a.ticketlssued(1) after(2); }
} msgstrv try() {
} a.requestTicket() after(2);
reactiveclass Agent {
knownrebecs | Network Delay \sgsrv ticketlssued(byte id)
TicketService ts; self.try()
} Customer c; } j Periodic Event
msgsrv requestTicket() { main {
ts.requestTicket() deadline(5) after(2); Agent a(ts, c):();
} TicketService ts(a):();

Customer c(a):();

}

Timed Rebeca Model

reactiveclass TicketService { msgsrv ticketlssued(byte id) {
knownrebecs { c.ticketlssued(id) after(2);
} J
Computation Time reactiveclass Customer {
knownrebecs {
, Agent a;
msg._ Y requestTicket() { }
int issueDelay =7(3,4); msgstrv initial() {
delay(issueDelay); self.try();
a.ticketlssued(1) after(2); }
} msgstrv try() {
} a.requestTicket() after(2);
reactiveclass Agent {
knownrebecs | Network Delay \sgsrv ticketlssued(byte id)
TicketService ts; self.try()
} Customer c; } j Periodic Event
msgsrv requestTicket() { main {
ts.requestTicket() deadline(5) after(2); Agent a(ts, c):();
} TicketService ts(a):();

Customer c(a):();

Message !

Expiration Time

Analysis Support

* Floating Time Transition
System for Schedulability and
Deadlock-Freedom analysis

Schedulability ., ..
e Transforming to Erlang to &DeaQ“OCk S'E‘#é?r?gn
simulate Analysis

Applications of Timed
Rebeca

* Verification of Network-on-Chip (NoC) systems
(model checking) - UT, Siamak Mohamadi

* Verification of Hadoop based systems (RU, Master
Thesis) - UIUC, Indi Gupta

* Verification of Structural Health Monitoring system
(model checking) - UIUC, Gul Agha

Analysis Support

* Floating Time Transition
System for Schedulability and
Deadlock-Freedom analysis

Schedulability

Simulation
* Transforming to Erlang to &Deadlock Engine

simulate

 Event-Based property analysis
using Timed Rebeca
Simulation Engine

Event-Based Property
| anguage for Timed Rebeca

 Computation takes palace by communication in
actor models

e We need to take communication events into
account

* Alogic which events are its atomic propositions

e Easy to use by practitioners

Timed Event-Based Property
. anguage (TeProp)

* Alogic based on MTL (no branching operator)

* Influenced by property patterns of the specification of
real-time systems and patterns in finite-state
verification to address:

 Maximum, minimum, exact, and bounded response
to events

e Periodic occurrence of events

e Precedence relation between events

9

Introduction to TeProp

Three temporal modalities
Two operators
Events as atomic propositions

Syntax of TeProp

¢ z=e|lpldAP|(P)|Fre|Fr(e~ ¢)[Gr(e— ¢)|eBre
[= [{Integer), (Integer)] | [{Integer), end]

e = receiver.messageName([condition])

10

INntuitive Semantics

Finally: Fli1,12] e: An event matching e will happen
somewhere during the given interval

Before: e; Bliy,12] e>: With in the given interval, an event
matching the first event happens at least once before an
event matching the second one.

Globally with implies: G[i, i.](e — ¢): For all events matching e
during the given interval, the next formula myst be satistied.

Finally with leads-to: F[iy,12](e ~ ¢) : At least for one

occurrence of an event matching e in the given interval, the
next formula holds true.

11

Property Patterns

 Maximum distance between an event and its reaction
G(e; — F|0, x] e))

* Exact distance between an event and its reaction
G(€1 — F[X, X] 62)

* Minimum distance between an event and its reaction

G(el > 'F[O/ x] 62)

12

Property Patterns

e Periodic occurrence of events

G(e = (F[x,x] e A =F[0,x — 1] e)) AF|0, oo] €

 Bounded response

G(El —> F[O, X] 62)

* precedence relation between two events

e1B|0, x| e,

13

Database Design and Mapping
TeProp to SQL Formula

e Occurrences of events are stored in database

e JeProp formulas transtformed to SQL gqueries and
SQL queries are executed over event traces

e — exists(e[0, 0])
select alias..id from event, alias. where alias..id
> aliasparent.id and alias..time between

aliasparent.-time + i; and alias,aren:.time + 1,

= — not(Q)
h1 A P2 — (1) and (¢3)
Flii, 5] e — exists(e[i,, 1;])

Fli1, 2] (e ~ ¢) — exists(e[i;, 1,]) and ()

Gli1, i3] (e = ¢) — not exists((e[i;,1,]) and not(¢)))
14

Example of Mapping From
TeProp Formulas to SQL formulas

SQL for G (senderAgent.start() — F[0, 10](receiverAgent.send()))

select 'satisfied’ from "base" t0_0 where (
not exists(
select t1_0.ID from "senderAgent_start” t1_0 where

t1_0.ID > t0_0.ID and t1_0.time >= tO_0.time and
not (exists(select tl1_1.ID from "receiverAgent_send"
t1_1 where t1_1.ID > t1_0.ID and tl1_1.time between
t1_0.time and t1_0.time + interval '10’ second

))

15

Some Issues in Simulation of
Timed Rebeca Models

* \When to stop simulation

* |t depends on the behaviors of systems
 Number of simulation traces

 Computing confidence interval based on the

number of traces N Y, Xe€
ft

Yo =2(1+ Ve)(1+2Ve)(1 +

n3/2
[n2/6

)Y

4
Y = g(e —2)[n(2/0)

16

Experimental Results

L L

y“”ve\ & &

Control
Systems

Rescueb '

Scientist

EXperimental

e Sensor network example

Results

Setting / Result
) . o)
Property 1 2 | 3| 4] 5] 6 7
The scientist will not die: |
) .) 0% 100% 0% 0% 0% 100% 100%
=F [0,end] admin.scientistDead()
The rescue team never went to rescue: ,
¢ EReTe TECTL TR A EHE RO TERCHe 0% | 0% | 0% | 0% |ow]| 0% | 100%
=F [0,end] rescue.go()
Admin never misses an acknowledgment
as result of ordering of events within a time 0% 0% 0% | 0% | 0% 0% 100%
unit: G(admin.checkScientistAck() — —=F [0, 0] admin.ack())
* Multi-flight booking
Setting / Result
. srbyr 5 /
Sopesy 1] 2] 3 | 4 | 5] 6 7
The first ticket is successfully booked: _ ,
. 1 " " ¢ 7 " H”n - 2”n 3“'1) 28('1))‘,;b q)”u ’)“n
F [0,end] customer.flightBooked(f == “1” A successful == “true”) 4 4 l { { 10X
The second ticket is successtully booked: | . _ , _
"1 1 - rn - r7] " t)l"U - .'l’ - .’;) 8“;) .,;D)”(l) “;)
F [0,end] customer.flightBooked(f == “2” A successful == “true”) >4 > 4 0 10(100
All tickets are successfully booked: |
— w . . Py 2”h 3 ”n 7) t)“;) ()”h L)(,)”n (,)““h
=F [0,end] customer.flightBooked(successful == “false”) : ’ : :
Booking occurred 3 or more time units
before the reservation ran out:
-y . . -~ . l"li -'.R“l) (“(' (';) ”CD q””l" (’;)
F [0,end] (ws1.bookFlight() ~» F [3, end] wsl.reservationExpired()) Vv 0 - 0 30 0 > 100
F [0,end] (ws2.bookFlight() ~ F [3, end] ws2.reservationExpired())

18

Conclusion

A new event-based property language (TeProp)
Using simulation traces for analysis of the model

Using Database as the repository of simulation
traces

Mapping TeProp to SQL to make database able to
analyse the stored simulation traces

I'hank you

