Ffficient TCTL Model
Checking Algorithm for
Timed Actos

Ehsan Khamespanah, Ramtin Khosravi, and Marjan Sirjani
University of Tehran in Iran and Reykjavik University in lceland
AGERE@SPLASH
October 2014

Analysis Support

Floating Time Transition
System for Schedulability and
Deadlock-Freedom analysis

Transforming to Erlang to
simulate

Event-Based Property
Analysis using Simulation
Engine of Timed Rebeca

TCTL verification of Timed
Rebeca models

Schedulability .
& Deadlock Simulation

Analysis Engine

€0y Efficient

TCTL
— Model

| Checking

Difficulties of TCTL Model
Checking

* There is no efficient algorithm
 Only a subset of TCTL can be check efficiently
* Does having discrete time make it easier?

» Duration transition graph (DTG) is a good
alternative

Semantics Of Timed Rebeca
N Timed Transition System

e The tuple TTS = (5,50, Act,—,AP,L) is the timed transition
system of a Timed Rebeca model where:

| ‘ (Vsis Bs,is pCs i 1055 5 man

el

* Sis a set of states
« Actis a set of actions U((Ix ix) x N xN)U {t} UN
<7
e Three types of transitions
* Taking an event
* Internal transition

* progress of time

Simple Timed Rebeca

reactiveclass RC1 (3) {
knownrebecs {
RC2 r2;
J
RC1() {
self.m1();
}
msgsrv m1() {
delay(2);
r2.m2();
delay(2);
r2.m3();
self.m1() after (10);

Moael

reactiveclass RC2 (4) {
knownrebecs {
RC1 r1;
J
RC2() { }
msgsrv m2() { }

msgsrv m3() { }

}

main {
RC1 r1(r2):();
RC2 r2(r1):();

}

Simple Timed Rebeca
Model

reactiveclass RC1 (3) { reactiveclass RC2 (4) {
knownrebecs { knownrebecs {
RC2 ro: RC1 r1;
Line number as %02() ()

program counter msgsrv m2() { }

f

MSgSrv migl msgsrv ml () { (1)
delay(2); I delay(2);

r2.m2(); 2 r2.m2();

delay(2); 3 delay(2);

r2.m3(); 4 r2.m3(); ();
self.m1() after (3 } self.ml() after (10); [);

J

}

-[(rl - r2.m3(),0,%)]

l(rl - 12.m3(),0,%0)

msgsrv ml () {
| delay(2);
2 r2.m2();
3 delay(2);
4 r2.m3();
5 self.m1() after (10);

}

time=0 [T TS0]

queue | [(rl - r1.m1(),0,)]
L pc -

queue | -
oN
| . pc -

(r1 - r1.m1(),0,)

gueue | -

i

~ | pc ml:1
gueue | -

~

~ | pc -

time =2

time=0

queue

[(r1 = r1.m1(),0,)]

pc

queue | -

pc

l(rl - rl.m1(),0,)

time =2

-
~ | pc ml:4
o |aueue [(r1 - r2.m2(),0,)
- m -
l(rl - 1r2.m2(),0,»)
ue
ml:4
e -
|
time = 4 ltime = time + 2
_, |Queue |-
“ | pc ml:4
queue | -
e pc
lt(rl)
_, |aueue |-
(™ pc -
queue | [(r1 = r2.m3(),0,=)]
~N
- pc -
l(rl - r2.m3(),0,»)
L, queue | -
pc
o |aueue | -
| .
time =14
_, |Queue [(r1 = r1.m1(),10,)]
- pc i
queue | -

msgsrv ml () {
| delay(2);
2 r2.m2();
3 delay(2);
4 r2.m3();
5 self.m1() after (10);

}

time=0

queue | [(r1 - r1.m1(),0,0)] |

i
~ | pc
time=2

rl

r2

_, |aueue | - hk
~ | pc ml:3

. Laueue [(r1 > r2.m2(),0,0)]
~ | pc -

(r1 - r2.m2(),0,»)

time=0

queue | [(r1 - r1.m1(),0,)] |

l(rl = rl.m1(),0,)

;nlz 4
[(r1 - r2.m2(),0,)]

l(rl - 1r2.m2(),0,»)

lt(rl)

queue -[(rl - r2.m3(),0,»)

l(rl — 1r2.m3(),0,)

time =14

queue | [(r1 = r1.m1(),10,0

[

msgsrv ml () {

| delay(2);

2 r2.m2();

3 delay(2);

4 r2.m3();

5 self.m| () after (10);

}

time=0

time = :

SO
_, | Queue [(r1 - r1.m1(),0,)]
~ | pc - :
time = 2 ltime = time + 2
S2
[|
time = 4 ltime = time + 2
S5
queue | -
i
= | pC ml:4
queue | -
N
S pc -
7(rl)
S6
queue | -
i
. pc -
queue | [(r1 - r2.m3(),0,)]
‘E pc -
(r1 - r2.m3(),0,)
S7
queue | -
-
time=4 pc B
queue | -
oN
— pc -
time = 14 time = time + 10

time=0 S0
_, | Queue [(r1 - r1.m1(),0,)]
© [pc n
queue | -
~
Y | pc
l(rl = rl.m1(),0,»)
S1
queue | -
-t
~ | pc ml:2
queue | -
~
- pc
|
time = 2 ltime = time + 2
S2
_, | queue |-
~ | pc ml:2
queue | -
~
Y | pe
lr(rl)
53
_, | queue | -
~ | pc ml:4
queue | [(r1 - r2.m2(),0,)]
ﬁ pc -
l(rl - 1r2.m2(),0,)
S4
_, |Queue |-
sl pc ml: 4
queue | -
~
- pc
T lu‘me = time + 2
S5
_, |Queue | -
~ | pc ml:4
queue | -
~N
— pc
lr(rl)
S6
queue | -
-
T [pc N
queue | [(r1 - r2.m3(),0,=)]
Y [pc B
l(rl - r2.m3(),0,x)
S7
queue | -
-
T | pc
queue | -
~
[> pc
|
time = 14 ltime = time + 10
S8
_, | Queue [(r1 = r1.m1(),10,)]
© [pc .
queue | -
~N
- pc

Duration Transition Graph

 Example of a DTG * Two different semantics

[O,oo) Submi.
0
() 0
New [7’45] . ([Draft Submis—
Idea “_Written sion
[25,50]
Notif.
[0,366] Accept
[0,7]
Y
[50,110] (Final

Publicationl<

TCTL Model Checking for
DTG

nere is a polynomial time model checking
gorithm for TCTL<> properties but model
necking of TCTL= is NP-Complete

O o —

 Combination of CTL model checking and shortest/
longest path search

* Try to find a set of states which satisfy a given
TCTL formula without any timed constraint

e Check timed constraints

How the Algorithm Works for
1D, U=D,
e Assume DTGjC(” = (S,s,, Act,—",AP’,L’) as a

reduced version of DTGy Which satisfies 4 ®;UD,

* Any state s in DTG} satisfies the time version of the
formula if and only if there is path from s to state s’
such that the length of path is less than the time
constraint.

* This can be checked using O(n2) algorithm

TCTL<s Model Checking of

Timed Rebeca Models
e TTS of a Timed Rebeca modelisa DTG

e All the transitions are assumed to be internal

transitions (no action label) with zero time
duration

* Progress-of-Time transitions are assumed as
transitions with tight duration

* Model checking Timed Rebeca models against
TCTL<s properties is possible in O(n2)

10

A New Reduction lechnigue

* [here are some transient states in the state space
(Residual time is zero in transient states)

e [ransient behavior is not interested in some systems

* |t is possible to eliminate transient states from the
state space

* The overhead of reduction must be smaller than
the gain of model checking on smaller state
space

11

xample of How Reduction
Technigue Works

-
o e

Cost Free Reduction
Technigque!

* Timed Rebeca models Algorithm 1: ZenoFree(s) analyzes the model for Zeno-
must be checked to be freedom.
Z7eno free Input: State s of a timed transition system T

Output: The part of T reachable from s is Zeno-free or
not

1 visited < ()

2 forall the state s’ € Successors(s) do

3 if s’ & visited then

1 visited « visited U {s’}

5

6

7

* |t can be checked by
using DFS search to
detect cycles without
progress-of-time states

recStack(s’) « true
if ZenoFree(s') = false then
| return false

. . : ecStack(s’ alse
. Timed model is discrete ~ ° | L 7o)< ok
. . 9 else
IN Timed Rebeca 10 if recStack(s’) = true A now(s’) = now(s) then
1 | return false

—

—

12 return [rue

13

Cost Free Reduction
Technigque!

* Reduction technigue requires BFS traversal to
figure out the set of next level progress-of-time
states of each state

 Combination of BFS and DFS is required

* EXplore the states among two consequent
progress-of-time states by bounded-DFS

* [hen go to the next level

14

Algorithm 2: BoundedZenoCheck(s) makes sure that there
is no cycle among reachable states from s to npts(s). Also
sets the nearest progress-of-time states of all the reachable
states from s to npts(s).

@®» -

10

11
12
13
14

15
16

17
18
19

2

=

Input: State s of a timed transition system

Output: The bounded reachable part of the transition
system is Zeno-free or not

visited « 0

forall the state s" € Successors(s) do

if s’ ¢ visited then

visited « visited U {s’}

if s’ is progress-of-time then

//DFS has reached one of its boundaries
L npts(s) « npts(s) U {s’}

else
if now(s) = now(s’) then
recStack(s') « true
childsNPTS « BoundedZenoCheck(s’)
recStack(s’) « false
if childsNPTS = () then
|_ return ()

else
|_ npts(s) « npts(s) U childsNPTS

else
//Back-edge is detected
| npts(s) < npts(s) U npts(s’)

else
if recStack(s’) = true then

/[There is cycle which shows Zeno behavior
L return ()

return npts(s)

Algorithm 3: FTS(TTSa) creates the corresponding FTS I
of a given TTS or returns 0 in the case of Zeno behavior in
the model.

E=R~ T AN L B TR o

e
W = O

14
15
16
17
18
19

20
21
22
23

15

Input: Timed transition system

TTS,M = (S, so, Act, —, AP, L)
Output: Folded timed transition system of M
S« {so}
Act « 0
—«
AP’ — AP
L' <L
openBorderStates < {sy}
nextLevelStates « ()
repeat
while openBorderStates # () do
remove s from openBorderStates
NPTS « BoundedZenoCheck(s)

if NPTS = () then
| return 0
else

nextLevelStates «— nextLevelStates U NPTS
S" « S"UNPTS
foreach s’ € NPTS do
<= U|(s,act’,s’))
L Act' « Act’ U {act’}

—

openBorderStates « nextLevelStates
nextLevelStates « ()

until openBorderStates # ()

return (S, sy, Act', <, AP, L)

More Than Smaller State
Space

e Using reduction technique, we are able to
efficiently check the model for TCTL= properties

* There is a pseudo-polynomial algorithm for finding
exact path among two nodes of the graph

* Preprocessing a graph to uniforms the weights of
edges by an O(W? n3) algorithm

* Looking for exact path by an O(|k| min{|k|,w} n?)
algorithm

16

Polynomial Algorithm for Model
Checking of TCTL. Properties

* All the weights in TTS are positive integers, so there is
no need for an O(W” n3) relaxation algorithm

* In model checking problem, “k” related to the maximum
bound number which is used in TCTL- formula

* |n many cases “k” can be assumed as an small
constant

* The complexity of finding exact path is reduced to
O(|k|? n?)= O(rP)

17

ExXperimental Results

 Four different models are used

* 90% reduction In the state space size in some

Ccases
Problem Size State Space Size ReSduced State Percentage of
pace Size Reduction

2 customers 77 10 87%

3 customers 360 39 89%

4 customers 1825 184 90%
Ticket Service | 5 customers 10708 1045 90%

6 customers 73461 6996 90%

7 customers 581962 54019 91%
WSAN - 1920 818 57%
Yarn - 533 172 68%
8x8 NoC - 74192 6068 92%

18

Conclusion

e \WWe can model check Timed Rebeca models
against TCTL< properties in polynomial time.

* A combination of checking for Zeno freedom and
reduction technigue Is proposed

* Reducing the state space size without overhead
* We propose an approach which works for model

checking of wide range of TCTL= formulas in
polynomial time

19

I'hank you

