
Ganesha Upadhyaya and Hridesh Rajan
{ganeshau,hridesh}@iastate.edu

Iowa State University

Actors to Threads Mapping Technique
for JVM-based Actor Frameworks

This work was supported in part by the NSF grants CCF- 08-46059, CCF-11-17937, and CCF-14-23370.

1

mailto:ganeshau@iastate.edu
mailto:ganeshau@iastate.edu

Problem

actor1 actor2

actor3

actor4 actor5

Mapping

core0 core1

core2 core3

Actor System Architecture

2

Problem

actor1 actor2

actor3

actor4 actor5

core0 core1

core2 core3JVM
threads

Mapping OS
Scheduler

Actor System Architecture

2

Problem

actor1 actor2

actor3

actor4 actor5

core0 core1

core2 core3JVM
threads

Mapping OS
Scheduler

Actor System Architecture

PROBLEM: Mapping Actors to JVM threads

2

➢ More Actors than JVM threads,
➢ Actors are short-lived [1],
➢ OS Scheduler maps JVM threads to Cores,

Problem

core1

core3

actor1 actor2

actor3

actor4 actor5

core0

core2JVM
threads

Mapping OS
Scheduler

Actor System Architecture

PROBLEM: Mapping Actors to JVM threads

[1] Francesquini, Emilio, Alfredo Goldman, and Jean-François Mehaut. "Improving the performance of actor
model runtime environments on multicore and manycore platforms." Proceedings of AGERE, 2013.2

➢ More Actors than JVM threads,
➢ Actors are short-lived [1],
➢ OS Scheduler maps JVM threads to Cores,

Problem

actor1 actor2

actor3

actor4 actor5

core0 core1

core2 core3JVM
threads

Mapping OS
Scheduler

Actor System Architecture

[1] Francesquini, Emilio, Alfredo Goldman, and Jean-François Mehaut. "Improving the performance of actor
model runtime environments on multicore and manycore platforms." Proceedings of AGERE, 2013.

PROBLEM: Mapping Actors to JVM threads

INTUITION: Actor characteristics and Communication
behaviours could be used to decide the mapping

2

➢ More Actors than JVM threads,
➢ Actors are short-lived [1],
➢ OS Scheduler maps JVM threads to Cores,

Problem

actor1 actor2

actor3

actor4 actor5

core0 core1

core2 core3JVM
threads

Mapping OS
Scheduler

Actor System Architecture

[1] Francesquini, Emilio, Alfredo Goldman, and Jean-François Mehaut. "Improving the performance of actor
model runtime environments on multicore and manycore platforms." Proceedings of AGERE, 2013.

PROBLEM: Mapping Actors to JVM threads

INTUITION: Actor characteristics and Communication
behaviours could be used to decide the mapping

SOLUTION: Initial mapping of Actors to JVM threads

2

Outline

 Iowa State University

➢ Discuss JVM based actor frameworks
➢ Motivating examples
➢ Solution
➢ Illustrative example
➢ Evaluation & Results
➢ Limitations and Future Work.

3

Akka
➢ default
➢ pinned
➢ balancing
➢ calling-thread

Scala Actors, Actors Guild
➢ thread-based
➢ event-based

Kilim, Actor Foundry
➢ light-weight event-based actors,
➢ scheduler is a bundle composed of a

thread-pool, scheduling policy, collection
of runnable actors,

➢ scheduled in round-robin fashion

SALSA
➢ heavy-weight (individual

stage)
➢ light-weight (stage-sharing)
➢ each stage (actor) is a bundle

of a msgQ and JVM thread

Akka

Kilim

Scala Actors SALSA

Jetlang Actors GuildActorFoundry

JVM-based actor frameworks

➢ start with default mappings,
➢ iteratively refine the mappings to achieve desired performance

4

Example1: Master-Worker (RayTracer)

5

➢ easy to map actors to JVM threads,
➢ because actors perform independent computations,
➢ less interactions,
➢ data-parallel.

Example1: Master-Worker (RayTracer)

5

Example2: BenchErl-Serialmsg

6

➢ m instances of Generator actor,
➢ m instances of Receiver actor,
➢ one Dispatcher actor,

Example2: BenchErl-Serialmsg

6

➢ m instances of Generator actor,
➢ m instances of Receiver actor,
➢ one Dispatcher actor,

➢ start with a task-pool (size=#cores) & put all
actors in there,

➢ looks like Dispatcher is a bottleneck,
➢ assign a thread-pool to Dispatcher,
➢ still not working, load-imbalance, how do I do

it?

Example2: BenchErl-Serialmsg

Intuitive Mapping Process

6

➢ m instances of Generator actor,
➢ m instances of Receiver actor,
➢ one Dispatcher actor,

➢ start with a task-pool (size=#cores) & put all
actors in there,

➢ looks like Dispatcher is a bottleneck,
➢ assign a thread-pool to Dispatcher,
➢ still not working, load-imbalance, how do I do

it?

➢ each generator communicates
with receiver often through
dispatcher,

➢ whole communication (g0 -> d
-> r0) could be made
uninterrupted

Example2: BenchErl-Serialmsg

http://letitcrash.com/post/40755146949/tuning-dispatchers-in-akka-applications

InsightIntuitive Mapping Process

6

Some aspects of actor applications can help to
decide actors to JVM threads mapping

Observation: Analyzing Actor Applications

7

Some aspects of actor applications can help to
decide actors to JVM threads mapping

➢ blocking,
○ externally blocking behaviors using I/O, socket or

database blocking primitives,

Observation: Analyzing Actor Applications

7

Some aspects of actor applications can help to
decide actors to JVM threads mapping

➢ blocking,
○ externally blocking behaviors using I/O, socket or

database blocking primitives,
➢ inherent parallelism,

○ actors may use blocking send primitives and receive
results or use asynchronous send primitives. Actors
may or may not require the results immediately,

Observation: Analyzing Actor Applications

7

Some aspects of actor applications can help to
decide actors to JVM threads mapping

➢ blocking,
○ externally blocking behaviors using I/O, socket or

database blocking primitives,
➢ inherent parallelism,

○ actors may use blocking send primitives and receive
results or use asynchronous send primitives. Actors
may or may not require the results immediately,

➢ communication behavior,
○ leaf actor,
○ routing actor,
○ broadcast actor.

➢ computations,

Observation: Analyzing Actor Applications

7

Actor Characteristic Vector (cVector)

BLK STATE PAR COMM CPU

8

➢ BLK = {true, false} represents blocking behavior,

Actor Characteristic Vector (cVector)

BLK STATE PAR COMM CPU

8

➢ BLK = {true, false} represents blocking behavior,

➢ STATE = {true, false} represents stateful/stateless behavior,

Actor Characteristic Vector (cVector)

BLK STATE PAR COMM CPU

8

➢ BLK = {true, false} represents blocking behavior,

➢ STATE = {true, false} represents stateful/stateless behavior,
➢ PAR = {low, med, high} represents inherent parallelism,

○ low, if actor sends synchronous message and waits for the result, or
consumes the result right-away,

○ high, if actor sends asynchronous message and does not require result,
○ med, otherwise.

Actor Characteristic Vector (cVector)

BLK STATE PAR COMM CPU

8

➢ BLK = {true, false} represents blocking behavior,

➢ STATE = {true, false} represents stateful/stateless behavior,
➢ PAR = {low, med, high} represents inherent parallelism,

○ low, if actor sends synchronous message and waits for the result, or
consumes the result right-away,

○ high, if actor sends asynchronous message and does not require result,
○ med, otherwise.

➢ COMM = {low, med, high} represents communication behavior,
○ low, does not send messages to other actors (leaf actor),
○ med, sends exactly one message for every message received (router

actor),
○ high, sends more than one message (broadcast actor).

Actor Characteristic Vector (cVector)

BLK STATE PAR COMM CPU

8

➢ BLK = {true, false} represents blocking behavior,

➢ STATE = {true, false} represents stateful/stateless behavior,
➢ PAR = {low, med, high} represents inherent parallelism,

○ low, if actor sends synchronous message and waits for the result, or
consumes the result right-away,

○ high, if actor sends asynchronous message and does not require result,
○ med, otherwise.

➢ COMM = {low, med, high} represents communication behavior,
○ low, does not send messages to other actors (leaf actor),
○ med, sends exactly one message for every message received (router

actor),
○ high, sends more than one message (broadcast actor).

➢ CPU = {low, high} represents computational workload of the actor,
○ high, when recursive, loops with unknown bounds, makes high cost library

calls,
○ low, otherwise.

Actor Characteristic Vector (cVector)

BLK STATE PAR COMM CPU

8

Solution

➢ For mapping actors to threads,
○ we assign execution policy to actors,

➢ execution policy,
○ defines, how actor’s messages are processed?

9

➢ THREAD, actor is assigned a dedicated thread,
➢ TASK, actor is assigned to a task-pool and the shared thread of the task-pool

will process the messages,
➢ SEQ/MONITOR, calling actor thread itself

A

Q Thread

BA B

Thread Thread

A B
Thread

A B
Thread

A: TH, B:TH A: TA, B:TA

A: TH, B:SEQ A: TH, B:M

TH: Thread TA: Task SEQ: Sequential M: Monitor

Execution Policies

10

➢ Actor Communication Graph (ACG) is a directed graph G(V,E)
where,
○ V = A0, A1, ... , An is a set of nodes, each node represents an actor,
○ E is a set of edges (Ai, Aj) for all i,j such that there is a communication from

Ai to Aj.

➢ Mapping function M (Ai X P X ACG) EP where,
○ Ai is actor definition,
○ P is the actor program,
○ ACG is the actor communication graph,
○ EP = { THREAD | TASK | SEQ | MONITOR }

Mapping Function

11

Mapping Function: Flow diagram

Figure: Flow diagram of our mapping function that assigns actors one of the four execution policies.

12

c
V
e
c
t
o
r

Input

Execu
tion
Policy

Output

Actor Characteristic Vector (cVector)

BLK STATE PAR COMM CPU

trueBlocking Actors

Heuristics

means not used to make decision

THREAD

Policy

13

Actor Characteristic Vector (cVector)

BLK STATE PAR COMM CPU

trueBlocking Actors

Heuristics

means not used to make decision

THREAD

false

false

false

false

false

false

false

Heavy Actors

HighCPU Actors

LowCPU Actors

Hub Actors

Affinity Actors

Master Actors

Worker Actors

high high high

high low high

high low low

high high low

low/med low/med low

low/med high low

low/med low/med high

THREAD

TASK

MONITOR

TASK

MONITOR

THREAD

TASK

Policy

13

An Example: FileSearch

14

Evaluation

➢ Benchmark programs (14 total)
○ that exhibits data, task, and pipeline parallelism at

coarse and fine granularities.
➢ Comparing against default-thread and default-task,
➢ Measured reduction in program runtime over default

mappings on different core settings.

15

Figure: Results show Ith (improvement over default-thread mapping) and Ita (improvement over default-task
mapping) for the benchmarks.

Experimental Results

On average 50% improvement over default-thread and default-task mappings

16

Figure: Results show Ith (improvement over default-thread mapping) and Ita (improvement over default-task
mapping) for the benchmarks.

Experimental Results

Small or no improvement for data parallel
actor programs

16

Figure: Results show Ith (improvement over default-thread mapping) and Ita (improvement over default-task
mapping) for the benchmarks.

Experimental Results

Large improvements for actor programs with sub-optimal
performance benefits

16

In BenchErl/mbrot

➢ WHERE:
○ each Worker communicates with a ‘Mandel’ actor that checks if a pixel

belongs to the Mandelbrot set or not,
➢ PROBLEM:

○ inefficient decision,
○ each Worker can perform this test independently,
○ introducing shared Mandel kills the parallel performance.

➢ FIX:
○ Mandel is assigned MONITOR execution policy,
○ each Worker now executes the Mandel actor’s code.

Can we reduce the performance penalties due to inefficient
design of actor system?

Result Analysis

Future Work!!!
17

➢ application of our technique to wide-variety of
JVM-based actor frameworks, Call for collaborations!

Limitations

18

➢ application of our technique to wide-variety of
JVM-based actor frameworks, Call for collaborations!

➢ dynamism in actor-model
○ dynamic actor creation

■ execution policy for the actor type is still assigned!
○ dynamism in actor communication graph

■ our technique does not rely heavily on ACG,
however availability of partial/full ACG helps to
improve the mapping further!

■ also, programmers can use execution traces to
gather ACG.

Limitations

18

➢ load-imbalance,
○ assigning execution policy that enables load-

balancing.

Future Work

19

➢ load-imbalance,
○ assigning execution policy that enables load-

balancing.
➢ contentions (bencherl/serialmsg)

○ solution: contention-aware assignment of execution
policy.

Future Work

19

➢ load-imbalance,
○ assigning execution policy that enables load-

balancing.
➢ contentions (bencherl/serialmsg)

○ solution: contention-aware assignment of execution
policy.

➢ cache-miss (FileSearch)
○ about 10% LLC-load-misses
○ solution: cache-aware assignment of execution policy.

Future Work

19

Conclusion

Ganesha Upadhyaya
ganeshau@iastate.edu

20

actor1 actor2

actor3

actor4 actor5

core0

core2JVM
threads

Mapping OS
Scheduler

core1

core3

This work was supported in part by the NSF grants CCF- 08-46059, CCF-11-17937, and CCF-14-23370.

Questions?

mailto:ganeshau@iastate.edu
mailto:ganeshau@iastate.edu

