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PROBLEM: Mapping Actors to JVM threads

INTUITION: Actor characteristics and Communication 
behaviours could be used to decide the mapping

SOLUTION: Initial mapping of Actors to JVM threads
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Outline

 Iowa State University

➢ Discuss JVM based actor frameworks
➢ Motivating examples
➢ Solution
➢ Illustrative example
➢ Evaluation & Results
➢ Limitations and Future Work.
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Akka
➢ default
➢ pinned
➢ balancing
➢ calling-thread

Scala Actors, Actors Guild
➢ thread-based
➢ event-based

Kilim, Actor Foundry
➢ light-weight event-based actors,
➢ scheduler is a bundle composed of a 

thread-pool, scheduling policy, collection 
of runnable actors,

➢ scheduled in round-robin fashion

SALSA
➢ heavy-weight (individual 

stage)
➢ light-weight (stage-sharing)
➢ each stage (actor) is a bundle 

of a msgQ and JVM thread

Akka

Kilim

Scala Actors SALSA

Jetlang Actors GuildActorFoundry

JVM-based actor frameworks

➢ start with default mappings,
➢ iteratively refine the mappings to achieve desired performance
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Example1: Master-Worker (RayTracer)
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➢ easy to map actors to JVM threads,
➢ because actors perform independent computations,
➢ less interactions,
➢ data-parallel.

Example1: Master-Worker (RayTracer)
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Example2: BenchErl-Serialmsg
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➢ m instances of Generator actor,
➢ m instances of Receiver actor,
➢ one Dispatcher actor,
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➢ m instances of Generator actor,
➢ m instances of Receiver actor,
➢ one Dispatcher actor,

➢ start with a task-pool (size=#cores) & put all 
actors in there,

➢ looks like Dispatcher is a bottleneck,
➢ assign a thread-pool to Dispatcher,
➢ still not working, load-imbalance, how do I do 

it?

Example2: BenchErl-Serialmsg

Intuitive Mapping Process
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➢ m instances of Generator actor,
➢ m instances of Receiver actor,
➢ one Dispatcher actor,

➢ start with a task-pool (size=#cores) & put all 
actors in there,

➢ looks like Dispatcher is a bottleneck,
➢ assign a thread-pool to Dispatcher,
➢ still not working, load-imbalance, how do I do 

it?

➢ each generator communicates 
with receiver often through 
dispatcher,

➢ whole communication (g0 -> d 
-> r0) could be made 
uninterrupted

Example2: BenchErl-Serialmsg

http://letitcrash.com/post/40755146949/tuning-dispatchers-in-akka-applications

InsightIntuitive Mapping Process
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Some aspects of actor applications can help to 
decide actors to JVM threads mapping

➢ blocking,
○ externally blocking behaviors using I/O, socket or 

database blocking primitives,
➢ inherent parallelism,

○ actors may use blocking send primitives and receive 
results or use asynchronous send primitives. Actors 
may or may not require the results immediately,

➢ communication behavior,
○ leaf actor,
○ routing actor,
○ broadcast actor.

➢ computations,

Observation: Analyzing Actor Applications
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Actor Characteristic Vector (cVector)
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➢ BLK = {true, false} represents blocking behavior,

➢ STATE = {true, false} represents stateful/stateless behavior,
➢ PAR = {low, med, high} represents inherent parallelism,

○ low, if actor sends synchronous message and waits for the result, or 
consumes the result right-away, 

○ high, if actor sends asynchronous message and does not require result,
○ med, otherwise.

➢ COMM = {low, med, high} represents communication behavior,
○ low, does not send messages to other actors (leaf actor),
○ med, sends exactly one message for every message received (router 

actor),
○ high, sends more than one message (broadcast actor).

➢ CPU = {low, high} represents computational workload of the actor,
○ high, when recursive, loops with unknown bounds, makes high cost library 

calls,
○ low, otherwise.

Actor Characteristic Vector (cVector)

BLK STATE PAR COMM CPU
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Solution

➢ For mapping actors to threads,
○ we assign execution policy to actors,

➢ execution policy,
○ defines, how actor’s messages are processed?
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➢ THREAD, actor is assigned a dedicated thread,
➢ TASK, actor is assigned to a task-pool and the shared thread of the task-pool 

will process the messages,
➢ SEQ/MONITOR, calling actor thread itself

A

Q Thread

BA B

Thread Thread

A B
Thread

A B
Thread

A: TH, B:TH A: TA, B:TA

A: TH, B:SEQ A: TH, B:M

TH: Thread TA: Task SEQ: Sequential M: Monitor

Execution Policies
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➢ Actor Communication Graph (ACG) is a directed graph G(V,E) 
where,
○ V = A0, A1, ... , An is a set of nodes, each node represents an actor,
○ E is a set of edges (Ai, Aj) for all i,j such that there is a communication from 

Ai to Aj.

➢ Mapping function M (Ai X P X ACG) EP where, 
○ Ai is actor definition,
○ P is the actor program,
○ ACG is the actor communication graph,
○ EP = { THREAD | TASK | SEQ | MONITOR }

Mapping Function
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Mapping Function: Flow diagram

Figure: Flow diagram of our mapping function that assigns actors one of the four execution policies.
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Actor Characteristic Vector (cVector)
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Heavy Actors

HighCPU Actors

LowCPU Actors

Hub Actors

Affinity Actors

Master Actors

Worker Actors

high high high

high low high

high low low
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An Example: FileSearch
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Evaluation

➢ Benchmark programs (14 total)
○ that exhibits data, task, and pipeline parallelism at 

coarse and fine granularities.
➢ Comparing against default-thread and default-task,
➢ Measured reduction in program runtime over default 

mappings on different core settings.
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Figure: Results show Ith (improvement over default-thread mapping) and Ita (improvement over default-task 
mapping) for the benchmarks.

Experimental Results

On average 50% improvement over default-thread and default-task mappings
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Figure: Results show Ith (improvement over default-thread mapping) and Ita (improvement over default-task 
mapping) for the benchmarks.

Experimental Results

Small or no improvement for data parallel 
actor programs
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Figure: Results show Ith (improvement over default-thread mapping) and Ita (improvement over default-task 
mapping) for the benchmarks.

Experimental Results

Large improvements for actor programs with sub-optimal 
performance benefits
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In BenchErl/mbrot

➢ WHERE: 
○ each Worker communicates with a ‘Mandel’ actor that checks if a pixel 

belongs to the Mandelbrot set or not,
➢ PROBLEM: 

○ inefficient decision,
○ each Worker can perform this test independently,
○ introducing shared Mandel kills the parallel performance.

➢ FIX: 
○ Mandel is assigned MONITOR execution policy,
○ each Worker now executes the Mandel actor’s code.

Can we reduce the performance penalties due to inefficient 
design of actor system?

Result Analysis

Future Work!!!
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➢ application of our technique to wide-variety of 
JVM-based actor frameworks, Call for collaborations!

Limitations
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➢ application of our technique to wide-variety of 
JVM-based actor frameworks, Call for collaborations!

➢ dynamism in actor-model
○ dynamic actor creation

■ execution policy for the actor type is still assigned!
○ dynamism in actor communication graph

■ our technique does not rely heavily on ACG, 
however availability of partial/full ACG helps to 
improve the mapping further!

■ also, programmers can use execution traces to 
gather ACG.

Limitations

18



➢ load-imbalance,
○ assigning execution policy that enables load-

balancing.

Future Work
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➢ load-imbalance,
○ assigning execution policy that enables load-

balancing.
➢ contentions (bencherl/serialmsg)

○ solution: contention-aware assignment of execution 
policy.

➢ cache-miss (FileSearch)
○ about 10% LLC-load-misses
○ solution: cache-aware assignment of execution policy.

Future Work
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Conclusion

Ganesha Upadhyaya
ganeshau@iastate.edu
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