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Introduction

Multicore processors are now ubiquitous
Parallelism is the future of computing
Actor Model regained popularity

* Erlang —flagship language

Many actor libraries out there for various languages
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% Motivation

 Benchmarks help motivate language implementers to
* Improve their implementations

* Calibrate competitive advantages of their approach
* Currently rely on micro-benchmarks
* Rarely reflect behavior of real world applications

* Need a benchmark suite that goes beyond micro-benchmarks
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% Goals

e Savina, a benchmark suite for actor-oriented programs
* Cover a wide range of diverse and realistic use-cases
* Enable apple-to-apples comparisons

* Implementations available as open source
* Provide implementations of benchmarks in various actor libraries

* Encourage researchers to contribute their implementations



Outline

Benchmarks breakdown
Micro-benchmarks
Concurrency Benchmarks
Parallelism Benchmarks
Experimental Results

Availability and Summary
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b Benchmarks Diversity "‘

* Focuses on computationally intensive applications
* Display commonly used parallel patterns
* Covers wide range of domains

« Common concurrency problems

* Graph and Tree Traversal

* Linear Algebra



b Benchmarks Breakdown

e 7 Micro-benchmarks
e 8 Classical Concurrency benchmarks

e 14 Parallelism benchmarks
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Micro-benchmarks (l)

Ping Pong
* Message delivery overhead
Counting Actor

 Message passing overhead
Fork Join (throughput)
* Messaging throughput

Fork Join (actor creation)

e Actor creation and destruction
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b Micro-benchmarks (ll)

 Thread Ring

* Message sending; Context switching between actors
* Chameneos

* Contention on mailbox; Many-to-one message passing
* Big

* Contention on mailbox; Many-to-Many message passing
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Concurrency benchmarks () *

Concurrent Dictionary

* Reader-Writer concurrency; Constant-time data structure

Concurrent Sorted Linked-List

* Reader-Writer concurrency; Linear-time data structure

Producer-Consumer with Bounded Buffer

* Multiple message patterns based on Join calculus
Dining Philosophers

* Inter-process communication; Resource allocation
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% Concurrency benchmarks (ll) &

* Sleeping Barber

* Inter-process communication; State synchronization

* Cigarette Smokers
* Inter-process communication; Deadlock prevention
* Logistic Map Series
* Synchronous Request-Response with non-interfering transactions

e Bank Transaction

* Synchronous Request-Response with interfering transactions
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b Parallelism benchmarks (I) SR

e All-Pairs Shortest Path

* Graph exploration; Phased computation
* A-Star Search

* Graph exploration; Message priority
* NQueens first K solutions

* Divide-and-conquer style parallelism; Message priority
* Recursive Matrix Multiplication

* Divide-and-conquer style parallelism; Uniform load

e Quicksort

* Divide-and-conquer style parallelism; Non-uniform load
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b Parallelism benchmarks (Il) &

* Radix Sort
 Static Pipeline; Message batching
* Filter Bank
e Static Pipeline; Split-Join Pattern
* Bitonic Sort
 Static Pipeline; Round-robin message forwarding and reception

e Sieve of Eratosthenes

* Dynamic Pipeline; Non-uniform load
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Parallelism benchmarks (lll) *

Unbalanced Cobwebbed Tree

* Tree exploration; Non-uniform load
Online Facility Location

 Dynamic Tree generation and navigation
Trapezoidal Approximation

* Master-Worker; Static load-balancing
Precise Pi Computation

 Master-Worker; Dynamic load-balancing

Successive Over-Relaxation

* 4-point stencil computation

14
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% Experimental Results "‘

* 12-core (two hex-cores) 2.8 GHz Intel Westmere SMP node
* Java Hotspot JDK 1.8.0

* Nine Actor libraries:
* Akka 2.3.2
* Functional-Java 4.1
* GPars1.2.1
 Habanero-Java library 0.1.3
* Jetlang 0.2.12
* Jumi0.1.196
e Lift 2.6-M4
 Scala2.11.0
* Scalaz 7.1.0-M6
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Forkdoin Creation Micro-benchmark
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b Producer-Consumer
with Bounded Buffer benchmark
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* 5000 producer actors each producing up to 1000 messages

e 2000 consumer actors 18



b Filter Bank benchmark
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e 8-way join branches
300,000 data items and 131,072 columns 19
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b Sieve of Eratosthenes benchma
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Related Work

Cardoso et al at AGERE last year
 Compare actor and agent languages

* Focus on micro-benchmarks (Thread Ring, Chameneos, Fibonacci)
bencherl: Scalability benchmark suite for Erlang applications
Theron C++ concurrency library: Five actor micro-benchmarks
nofib suite: Haskell programs

Computer Language Benchmarks Game:

e compares over 20 programming languages on a set of 13 micro-
benchmarks
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Future Work

Bug fixes and improved implementations

Java versions of benchmarks

e Save on pattern matching overheads
Discover and add diverse benchmarks

Other runtime implementations

* Perform inter-language comparisons

Compare solutions for elegance

2 RICE

23
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b Availability

* |Implementation available in github
https://github.com/shamsmahmood/savina

* Open source release allows
* Verifying what is actually being tested
* Porting the benchmarks to other actor languages and runtimes
* Comparison of solutions for syntax and elegance

* Analysis of benchmarks to further study impact of different features

* Encourage community to submit solutions
* |mprove existing ones

e Add new libraries or runtimes

24
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b Summary

* Introduced Savina, Actor Benchmark Suite
 Described benchmark breakdown

* Open source release
* Nine actor libraries compared

* Expect contributions for other libraries
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b Comments ’

1mport agere.audience.Feedback
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b Backup-Slides
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