NV RICE

Savina —
An Actor Benchmark Suite

AGERE! 2014
Monday, October 20, 2014

Shams Imam, Vivek Sarkar
shams@yrice.edu, vsarkar@rice.edu

Rice University




. N RICE
Introduction

Multicore processors are now ubiquitous
Parallelism is the future of computing
Actor Model regained popularity

* Erlang —flagship language

Many actor libraries out there for various languages



2 RICE

% Motivation

 Benchmarks help motivate language implementers to
* Improve their implementations

* Calibrate competitive advantages of their approach
* Currently rely on micro-benchmarks
* Rarely reflect behavior of real world applications

* Need a benchmark suite that goes beyond micro-benchmarks



2 RICE

% Goals

e Savina, a benchmark suite for actor-oriented programs
* Cover a wide range of diverse and realistic use-cases
* Enable apple-to-apples comparisons

* Implementations available as open source
* Provide implementations of benchmarks in various actor libraries

* Encourage researchers to contribute their implementations



Outline

Benchmarks breakdown
Micro-benchmarks
Concurrency Benchmarks
Parallelism Benchmarks
Experimental Results

Availability and Summary




: : N RICE
b Benchmarks Diversity "‘

* Focuses on computationally intensive applications
* Display commonly used parallel patterns
* Covers wide range of domains

« Common concurrency problems

* Graph and Tree Traversal

* Linear Algebra



b Benchmarks Breakdown

e 7 Micro-benchmarks
e 8 Classical Concurrency benchmarks

e 14 Parallelism benchmarks



: N RICE
Micro-benchmarks (l)

Ping Pong
* Message delivery overhead
Counting Actor

 Message passing overhead
Fork Join (throughput)
* Messaging throughput

Fork Join (actor creation)

e Actor creation and destruction



2 RICE

b Micro-benchmarks (ll)

 Thread Ring

* Message sending; Context switching between actors
* Chameneos

* Contention on mailbox; Many-to-one message passing
* Big

* Contention on mailbox; Many-to-Many message passing



y

NV RICE
Concurrency benchmarks () *

Concurrent Dictionary

* Reader-Writer concurrency; Constant-time data structure

Concurrent Sorted Linked-List

* Reader-Writer concurrency; Linear-time data structure

Producer-Consumer with Bounded Buffer

* Multiple message patterns based on Join calculus
Dining Philosophers

* Inter-process communication; Resource allocation

10



% Concurrency benchmarks (ll) &

* Sleeping Barber

* Inter-process communication; State synchronization

* Cigarette Smokers
* Inter-process communication; Deadlock prevention
* Logistic Map Series
* Synchronous Request-Response with non-interfering transactions

e Bank Transaction

* Synchronous Request-Response with interfering transactions

11



b Parallelism benchmarks (I) SR

e All-Pairs Shortest Path

* Graph exploration; Phased computation
* A-Star Search

* Graph exploration; Message priority
* NQueens first K solutions

* Divide-and-conquer style parallelism; Message priority
* Recursive Matrix Multiplication

* Divide-and-conquer style parallelism; Uniform load

e Quicksort

* Divide-and-conquer style parallelism; Non-uniform load

12



b Parallelism benchmarks (Il) &

* Radix Sort
 Static Pipeline; Message batching
* Filter Bank
e Static Pipeline; Split-Join Pattern
* Bitonic Sort
 Static Pipeline; Round-robin message forwarding and reception

e Sieve of Eratosthenes

* Dynamic Pipeline; Non-uniform load

13



y

N RICE

Parallelism benchmarks (lll) *

Unbalanced Cobwebbed Tree

* Tree exploration; Non-uniform load
Online Facility Location

 Dynamic Tree generation and navigation
Trapezoidal Approximation

* Master-Worker; Static load-balancing
Precise Pi Computation

 Master-Worker; Dynamic load-balancing

Successive Over-Relaxation

* 4-point stencil computation

14



_ Y RICE
% Experimental Results "‘

* 12-core (two hex-cores) 2.8 GHz Intel Westmere SMP node
* Java Hotspot JDK 1.8.0

* Nine Actor libraries:
* Akka 2.3.2
* Functional-Java 4.1
* GPars1.2.1
 Habanero-Java library 0.1.3
* Jetlang 0.2.12
* Jumi0.1.196
e Lift 2.6-M4
 Scala2.11.0
* Scalaz 7.1.0-M6

15



Y

102
o
E:
ha
=0
2
R= 1
%\ 10
2
R=
°
£
=
=
=
5 10°
3
=
84}
£
£
4
<
107!
\ \ | \ | |

2 4 6 8 10 12 14 16 18 20
Number of increment messages (in millions)

- AK-#-FJ] - GP—~—HA —+—JL 16
-o-JU-®-LI-®-SC-=+-S8Z




Forkdoin Creation Micro-benchmark

p— p—
() ()
[ 3]

Average Execution Time (in secs) in log scale
[a—
S
[«

| l

2 - 6 8

Number of actors created (in millions)

—e— AK-—m—F] —e— GP——HA ——JL
-®-JU -®-LI-®-SC--+-SZ

10

17



b Producer-Consumer
with Bounded Buffer benchmark

AK — H 14.63 —
FJ] | 28.50
GP = 17.10
HA | = 15.98 —
JL H 8.03 —
JU } 2065
LI | H 34.62 —
SC H 452 |-
SZ. 6.65
| \ | |

0 10 20 30 40 50

Buffer size of 6000
* 5000 producer actors each producing up to 1000 messages

e 2000 consumer actors 18



b Filter Bank benchmark

AK I—‘ 59.40

FJ] =~ 89.89 —
GP — 67.18
HA — 64.66

JL = 54.40 —
JU — 11395
LI — 57.07

SC = 73.30 —
S7Z — I 48.55 —

| | |
0 20 40 60 80 100 120

Average Execution Time (in secs)

e 8-way join branches
300,000 data items and 131,072 columns 19



AK | 1.69 ’

FJ K 9.10

GP | H 10.52
HA H 4.68

JL = 7.25

JU K 7.82

LI | 7.48

SC H 51.02
SZ | K328

! \ |
0) 10 20 30 40 50

32,768 data items

20




b Sieve of Eratosthenes benchma

AK K 3.0
FJ i 332
GP K 3.08 —
HA | H 3.08 —
JL | 2.95
JU H 3.56 —
LI i 3.0 -
SC = 4.34
SZ | 2.96
| |
0 1 2 3 4

Average Execution Time (in secs)

Find primes smaller than 100,000

21



N RICE

Related Work

Cardoso et al at AGERE last year
 Compare actor and agent languages

* Focus on micro-benchmarks (Thread Ring, Chameneos, Fibonacci)
bencherl: Scalability benchmark suite for Erlang applications
Theron C++ concurrency library: Five actor micro-benchmarks
nofib suite: Haskell programs

Computer Language Benchmarks Game:

e compares over 20 programming languages on a set of 13 micro-
benchmarks

22



Future Work

Bug fixes and improved implementations

Java versions of benchmarks

e Save on pattern matching overheads
Discover and add diverse benchmarks

Other runtime implementations

* Perform inter-language comparisons

Compare solutions for elegance

2 RICE

23



N RICE

b Availability

* |Implementation available in github
https://github.com/shamsmahmood/savina

* Open source release allows
* Verifying what is actually being tested
* Porting the benchmarks to other actor languages and runtimes
* Comparison of solutions for syntax and elegance

* Analysis of benchmarks to further study impact of different features

* Encourage community to submit solutions
* |mprove existing ones

e Add new libraries or runtimes

24



N RICE

b Summary

* Introduced Savina, Actor Benchmark Suite
 Described benchmark breakdown

* Open source release
* Nine actor libraries compared

* Expect contributions for other libraries

25



b\ RICE
b Comments ’

1mport agere.audience.Feedback

26



2 RICE

b Backup-Slides

22?5 '

27



