
MULTIPLE INHERITANCE IN
AGENTSPEAK(L)-STYLE
PROGRAMMING
LANGUAGES

Akshat Dhaon

Rem Collier

UCD School of Computer Science & Informatics,

University College Dublin, Belfield, Dublin 4, Ireland.

OVERVIEW

¢  Agent-Oriented Programming is a high-level programming
paradigm for implementing intelligent distributed systems.

¢  Most of the AOP languages focus on the provision of
support for intelligent decision making.

¢  Language design concerns such as modularity, reuse, code
structure and performance have been neglected.
Ø  Existing AOP languages are rarely used, partially because large

implementations are difficult to understand, maintain and reuse.

¢  This paper presents an abstract model of multiple
inheritance for AgentSpeak(L) style languages.
Ø  Agent programs are decomposed into a set of inter-related agent

classes.
Ø  Focus on AgentSpeak(L) because MI requires a run-time

apparatus for rule selection and establishing relationships
between agent classes.

AGENTSPEAK(L)

¢  Attempts to bridge the gap between theory and practice by
mapping the BDI (Beliefs, Desires, Intentions) model to an
event-driven language:
Ø  Plans – basic abilities of an agent.
Ø  Intentions – Plans chosen by the agent for execution.
Ø  Beliefs, Events & Intentions cumulatively form the state.

¢  Agent processes events relating to its internal decision
making (goals) or its external environment (beliefs).
Ø  Two types of triggering events – related to the addition and

deletion of beliefs and/or goals.

¢  Execution is governed by the dynamics of Event Selection,
Rule Selection and Intention Execution.
Ø  Events are processed in order of occurrence, through their

(contextual) matching to a plan which is then either adopted as an
intention or appended to an existing intention.

POSSIBLE APPROACHES

¢  Single Inheritance
Ø  A class is derived from a single base/parent class.

¢  Multiple Inheritance
Ø  A class is derived from multiple parent classes.

¢  Mixins
Ø  Abstract classes that implement self-contained behaviours which

can be “mixed in” to other classes as necessary.

¢  Interfaces
Ø  Defining a set of abstract methods that are to be implemented in

any class that uses the interface.

¢  Traits
Ø  Groups of methods that serve as building blocks for classes and

are primitive units of code reuse.

¢  Automated Delegation
Ø  Automate the forwarding of messages to contained classes.

MI ISSUES
¢  The Diamond Problem

Ø  Both B & C have their own implementation of
display(). Which one should D inherit?

¢  Surprising Method Bindings
Ø  Inherited classes and superclasses ordered, based on priority.
Ø  May have surprising effects in large hierarchy.
Ø  Names may become ambiguous.
Ø  Ambiguously named methods compete for selection.
Ø  Selected definition may be non-deterministically chosen.

OVERVIEW OF THE APPROACH

¢  Agent class is a container for plan rules and a set of initial
beliefs and goals.

Definition: Agent Class

Class = <name, P, IS, R>

•  name is the name of the class.
•  P is the list of parents of the class.
•  IS is the initial state of the class.
•  R is an ordered list of rules

associated with the class.

Definition: Agent

Agent = <name, type, B, I, E>

•  name is the agent identifier.
•  type is the name of the type (class) of the

agent.
•  B is the set of beliefs that the agent has.
•  I is the set of intentions which the agent

has.
•  E is the event queue associated with the

agent. Definition: Program

Program = <C, A>

•  C is a set of agent classes associated
with the program.

•  A is a set of agents associated with
the program.

THE MI APPROACH

¢  If a matching rule is found in the implementing class, that
rule is used.
Ø  Otherwise the interpreter searches the hierarchy for a matching

rule

¢  If multiple implementations of a rule exist in the hierarchy,
preference is given to one which is at largest distance from
the root of the hierarchy (closest to the calling agent class).

THE MI APPROACH (CONTD.)

¢  If multiple implementations of plan rules exist at same
level in the hierarchy, preference is given to one that is
provided by the class on left in the “extends” line.
Ø  This is the default conflict resolution strategy and similar to the C

++ “virtual” functionality.

¢  Scope operator provided to restrict the scope of invocation.

UPDATED SYNTAX FOR AGENTSPEAK(L)
A ::= [agent <agent-

name>
[extends <agent-
name> (, <agent-
name>)*]<c>*

c ::= <initial> |
<rule>

initial ::= <belief> | <goal>

rule ::= <event>:
<context> <-
(<statement>)*

statement ::= ? <belief> |
<update> | <goal>
| <action> |
<scoped-goal> |
<scoped-update>

update ::= +<belief> | -
<belief>

scoped-goal ::= <agent-name> ::
<goal>

scoped-belief ::= <agent-name> ::
<update>

Simple Program:
(Fibonacci Number Generator)

agent Fibby {
 fib(1,1)
 fib(2,1)

 +!fib(X, N) : X < N &

 fib(X-1, Y) & fib(X-2, Z) <-
 +fib(X, Y+Z);
 !fib(X+1, N).

 +!fib(X, N) : X == N &

 fib(X-1, Y) & fib(X-2, Z) <-
 +fib(X, Y+Z).
}

agent 50Fibs extends Fibby {
 !fib(3,50)
}

HANDLING SCOPED EVENTS

¢  Scoping requires a change to the event model and an
updated option selection algorithm:

Definition: Event

Event = <te, i, type>

•  te is the triggering event.
•  i is the source of the event (an

intention or φ meaning it is an
external source).

•  type is the name of the scoped
class or φ if not scoped.

Algorithm: selectOption(P, A, e)
 if e.type = φ then
 t <- A.type
 else
 t <- e.type
 endif

 classes <- getLinearization(P, t)
 while (classes != []) do
 cls <- head(classes)
 classes <- tail(classes)
 o <- selectOptionForClass(P,A,cls,e)
 if (o != φ) then
 return o
 endif
 endwhile
 return φ	

SIMPLE EXAMPLES

Extending Behaviours

agent A {

 +!init() <-
 println(“Hi from A”);
 }

 agent B extends A {
 +!init() <-
 println(“Hi from B”);
 A::!init();
 }

Combining Behaviors

agent A {
+!init() <-

 println(“Hi from A”);
}

agent B {
+!init() <-

 println(“Hi from B”);
}

agent C extends A, B {
+!init() <-

 A::!init();
 B::!init();

}

SIMPLE EXAMPLES (CONTD.)

Defensive Programming

agent A {
count(0);

+!init() : count(x) & x<50<-

 A::!inc();
 //Do something
 !init();

+!inc() : count(x) <-

 -count(x);
 +count(x+1);

}

agent B extends A {
+!inc() : count(x) <-

 -count(x);
 +count(x-1);

}

agent C extends A, B {

 !init();
}

¢  Ability to extend behaviour can introduce unexpected side-
effects.

¢  Can be restricted by the scope operator: Run-time “final”
functionality.

BENEFITS OF THE MI APPROACH

As shown in the simple case study presented in the paper,
Multiple Inheritance demonstrates various benefits:
¢  Improved Quality of Code

Ø  Reusing existing (and tested) piece of code allows focus on only the
new code as against the entire codebase. Makes the cycle of
development, maintenance and testing simpler.

¢  Ability to decouple interaction logic from business logic
Ø  If interaction logic is not dependent on the business logic, then

both can be developed, refactored and enhanced independently
without having concerns over one affecting the other.

¢  Maintain clear link between design and implementation
Ø  Makes it possible to maintain the more natural role-based

decomposition of methodologies through the mapping of roles to
classes that are then combined into the concrete agent classes
that are instantiated.

Ø  Promotes consistency between design and implementation.

CONCLUSION
¢  First attempt to provide support for MI in AOP.
¢  AOP hierarchies expected to be less complex than their OOP

counterparts.
Ø  Agents are coarse grained entities inhabiting upper layers of complex

systems (objects expected to be the building blocks of those systems).
Ø  Agents are intended to provide high level decision-making and

coordination infrastructures.

¢  Focus on providing support to roles at runtime.
Ø  Roles are a common feature of Agent methodologies.
Ø  Provide better levels of abstraction.
Ø  Can be applied to multiple agents and vice-versa.
Ø  Often abstracted out of final design due to absence of clear mappings.

¢  Reference implementation: ASTRA
�  Typed variables; integrated with EIS and CArtAgO; extended set of

plan operators
�  Available as Eclipse Plugin from: http://astralanguage.com

QUESTIONS?

APPENDIX
getLinearization(P, t)

 if (linearization = []) then
 queue <- queue+[t]
 while (queue != []) do
 class <- head(queue)
 queue <- tail(queue)
 if (class.parents != []) then
 while (class.parents != []) do
 if (!queue.contains(head(class.parents) &
 !priorQ.contains(head(class.parents)) then
 queue <- head(class.parents)
 endif
 class.parents <- tail(class.parents)
 endwhile
 priorQ <- addToPriorQueue(class, priorQ)
 endif
 endwhile
 while (priorQ != []) do
 if (!linearization.contains(head(priorQ)))
 linearization <- [head(priorQ)]+linearization
 endif
 priorQ <- tail(priorQ)
 endwhile
 endif
 return linearization

APPENDIX (CONTD.)
addToPriorQueue(class, priorQ)

 if (priorQ == []) then
 return [class]
 endif
 tempQ <- priorQ
 priorQ <- []
 inserted <- false
 while (tempQ != []) do
 claz <- head(tempQ)
 tempQ <- tail(tempQ)
 if (!inserted && (getDistance(class) > getDistance(claz))) then
 priorQ <- priorQ + [class]
 inserted <- true
 else
 priorQ <- priorQ + [claz]
 endif
 endwhile
 if (!inserted) then
 priorQ <- priorQ + [class]
 endif
 return priorQ

APPENDIX (CONTD.)
getDistance(class)

 if (distFromRoot = -1) then
 maxDist <- 0
 tempPar <- parents
 while (tempPar != []) do
 parent <- head(tempPar)
 tempPar <- tail(tempPar)
 d <- getDistance(parent)
 if (d > maxDist) then
 maxDist <- d
 endif
 endwhile
 distFromRoot <- maxDist+1
 endif
 return distFromRoot

APPENDIX (CONTD.)
agent Election {
 rule +!bully_election()
 : score(int score) & participants(list agents) {
 +holding("election");
 if (leader(string X)) -leader(X);

 forall (string receiver : agents)
 if (receiver ~= system.name() | failed_election(receiver))
 send (request, receiver, elect(system.name(), score));

 wait_for_deadline();

 if (holding("election"))
 forall (string agt : agents)
 send(inform, agt, elected(system.name()));

 foreach (failed_election(string name))
 -failed_election(name);
 }

APPENDIX (CONTD.)
 rule @message(request, string sender, elect(string name, int score))
 : score(int my_score) {
 if (score < my_score) {
 +failed_election(name);
 send (inform, sender, result("ok"));
 if (~holding("election"))
 Election::!!bully_election();
 }
 }

 rule @message(inform, string sender, result("ok"))
 : holding("election") {
 -holding("election");
 }

 rule @message(inform, string N, elected(N)) {
 +leader(N);
 }

 plan wait_for_deadline() {
 system.sleep(2000);
 }
}

