
Exploring AOP from an OOP Perspective

Rem W. Collier Seán Russell David Lillis
School of Computer Science, University College Dublin, Ireland

{rem.collier, sean.russell, david.lillis}@ucd.ie

Abstract
Agent-Oriented Programming (AOP) researchers have suc-
cessfully developed a range of agent programming lan-
guages that bridge the gap between theory and practice.
Unfortunately, despite the in-community success of these
languages, they have proven less compelling to the wider
software engineering community. One of the main problems
facing AOP language developers is the need to bridge the
cognitive gap that exists between the concepts underpinning
mainstream languages and those underpinning AOP. In this
paper, we attempt to build such a bridge through a concep-
tual mapping between Object-Oriented Programming (OOP)
and the AgentSpeak(L) family of AOP languages. This map-
ping explores how OOP concepts and the concurrent pro-
gramming concept of threads relate to AgentSpeak(L) con-
cepts. We then use our analysis of this mapping to drive the
design of a new programming language entitled ASTRA.

Categories and Subject Descriptors I.2.11 [Artificial In-
telligence]: Distributed Artificial Intelligence—Multiagent
systems, Languages and structures; D.3.2 [Programming
Languages]: Language Classifications—Multiparadigm lan-
guages

General Terms Languages, Theory

Keywords Agent-Oriented Programming, AgentSpeak(L),
ASTRA

1. Introduction
The Agent-Oriented Programming (AOP) paradigm is now
almost 25 years old. Since its inception, a number of estab-
lished AOP languages have emerged, with the most promi-
nent being: 2/3APL [9, 10], GOAL [13] and Jason [4]. How-
ever, while these languages have received much critical suc-

cess within the AOP community, they have been less well
received by the wider software engineering community.

A useful barometer for the view of this wider commu-
nity has been the students enrolled on an Agent-Oriented
Software Engineering (AOSE) module that is part of a Mas-
ters in Advanced Software Engineering offered at University
College Dublin since 2005. Students on this course typically
have 5 or more years of industrial software engineering ex-
perience and are senior software engineers in their respec-
tive companies. During the course, the students are exposed
to an AgentSpeak(L)-based language, which has been one of
AF-AgentSpeak [24], Jason [4], and our most recent agent-
programming language, ASTRA [2].

Each year, the students have provided informal feedback
on the AOP language(s) used and to comment on whether
they would consider using such a language in a live indus-
try application. The common response has been “no”, with
typical criticisms being the lack of tool support and the per-
ceived learning curve required to master an AOP language.

The lack of tool support seems strange given the ex-
istence of mind inspectors [7], advanced debugging tech-
niques [14, 17], and a range of analytical tools [5, 12]. How-
ever, after delving deeper, it became apparent that the crit-
icisms were directed more towards the quality of the In-
tegrated Development Environments (IDEs) provided and
their limitations in terms of practical features such as code
completion, code navigation and formatting support. Over
the years, it has become apparent that developers become
uneasy when stripped of their traditional supports and that
this engenders a feeling that the languages are not produc-
tion quality.

Conversely, the perceived learning curve is less unex-
pected. AOP, with its origins in Distributed Artificial In-
telligence, is underpinned by a quite different set of con-
cepts to mainstream software engineering, where there is
a clear evolution from procedural programming languages
to Object-Oriented Programming (OOP) languages. Individ-
uals attempting to learn about AOP are confronted with a
range of concepts - beliefs, desires and intentions; speech
acts; plans - that bear little relation to mainstream program-
ming concepts. For many, this can act as a significant barrier
to learning how to program in an AOP language.

Perhaps the most common explanation of the relationship
between AOP and OOP is the comparison table presented
in [25]. This table presents a very high-level view of AOP
and OOP that treats AOP as a specialisation of OOP. Unfor-
tunately, it provides little practical detail. For example, how
does the state of an object relate to the state of an agent? is
there any correlation between how behaviours are specified
in OOP and how they are specified in agents? when and how
will a behaviour be executed?

Answering these questions requires a more detailed com-
parison of AOP and OOP. However, when attempting to cre-
ate a deeper comparison, it quickly becomes evident that it
is not possible. The main reason for this is that AOP, un-
like OOP, does not promote or enforce a consistent concep-
tual model (i.e. a standard view of state, methods, messages,
etc.). The object model that underpins OOP tends to be im-
plemented in a relatively consistent way across various lan-
guages. In contrast, different AOP languages can be more di-
vergent in their approach. For example, AgentSpeak(L) style
languages are essentially event-driven languages. They de-
fine context-sensitive event handlers that map events to par-
tial plans. Conversely, GOAL is, at its heart, an action se-
lection language where rules identify the context in which
each action should be executed. The consequence of this
diversity is that it is more appropriate to compare specific
styles of AOP language with OOP rather than trying to over-
generalise.

In this paper, we focus on understanding the relationship
between AgentSpeak(L) and OOP, with the goal of trying to
reduce the perceived cognitive gap. We begin by identify-
ing a mapping between AgentSpeak(L) and OOP concepts
in Section 2, which we reflect on in Section 3. The purpose
of the reflection is to try to understand how to improve the
design of AgentSpeak(L) to better support developers wish-
ing to learn the language. In response to our analysis, Sec-
tion 4 introduces a new member of the AgentSpeak(L) fam-
ily called ASTRA. Full details of ASTRA are not provided
in this paper. Instead, we focus on only the most pertinent
features.

2. Relating AgentSpeak(L) to OOP
AgentSpeak(L) can be prosaically described as an event-
driven language where event handlers are fired based on both
the triggering event and some context. Events, which are
either external (environment-based) or internal (goal-based),
are generated and added to an event queue. Events are then
removed from this queue and matched to a rule which is then
executed. The matching process checks both that the rule
applies to the event and that the rule can be executed based
on a rule context that defines valid program states in which
the rule may be applied.

More commonly, the event handlers are known as plan
rules; the program state is modeled as a set of beliefs,
that are realized as atomic predicate logic formulae; the

events are also modeled as atomic predicate formulae (with
some additional modifiers); and the execution of plan rules
is achieved through creation and manipulation of intentions.
Finally, external events are generated through changes to the
agent’s state (i.e. the adoption or retraction of a belief), and
internal events are generated by declaring goals.

It follows that an AgentSpeak(L) agent consists of an
event queue, a set of beliefs (state), a set of plan rules (event
handlers), and a set of intentions that represent the execution
of plan rules. Given that AOP is commonly viewed as a
specialisation of OOP, and that agents are a special type
of object, it is possible to relate AgentSpeak(L) concepts to
OOP concepts from the perspective of an OOP developer.

Beliefs are equivalent to fields As indicated above, beliefs
form the state of an agent. In OOP, state is defined in
terms of a set of fields that hold values (or object refer-
ences). If we consider a field, such as int value; this
could be modeled as a belief value(0). Here, the value
0 is chosen as it is the default value for integer fields in
many OOP languages. To be fully precise, beliefs and
fields are not the same. Whereas fields can be modeled
using beliefs, beliefs actually encompass more than this,
including environment information, global variables, etc.

Plan Rules are equivalent to methods A plan rule asso-
ciates a plan with a triggering event and a context. Plans
define behaviours and are basically blocks of procedu-
ral code that are executed whenever a matching event is
processed and the rules context is satisfied. In OOP lan-
guages, procedural code is defined within methods and
is executed whenever the method signature is matched
to a message that has been received by the object. Ac-
cordingly, the AgentSpeak(L) equivalent of a method
signature is the triggering event (specifically the iden-
tifier and the number of arguments). The context has no
real equivalent in OOP, however, it can be viewed as pro-
viding a form of method overloading based on state (i.e.
when there are multiple rules matching a given event, the
context is used to identify which of the rules should be
executed).

Goals are equivalent to method calls Events are gener-
ated due to adoption or retraction of goals. These are
then matched to rules, which are subsequently executed.
Method calls generate messages, which are matched to
methods that are executed. Typically, goals are declared
from within a plan. The result is that the plan component
of the selected rule is pushed onto the program (intention)
stack and executed.

Events are equivalent to messages The events that are part
of AgentSpeak(L) play a similar role to messages in OOP.
Events are used to trigger plan rules in the same way
that, for OOP languages, messages are used to invoke
methods. This can be somewhat confusing because “mes-
sage” is also the term used for communication between

agents, however this is not the focus here. In OOP, the set
of messages that can be handled by an object is known
as the interface of the object. This set of messages cor-
responds to the signatures of the methods that are de-
fined in the objects implementing class(es). Given our
view of events being equivalent to OOP messages, then
in AgentSpeak(L) the interface of an agent is the set of
events that it can handle.

Intentions are equivalent to threads Intentions represent
the plans that the agent has selected based upon the
matching of events to plan rules. The AgentSpeak(L)
interpreter processes the intentions by executing the in-
structions contained within the plan. In cases where the
instruction is a sub-goal, this results in an additional plan
being added to the intention which must be executed
before the next instruction in the initial plan can be ex-
ecuted. In most programming languages, this activity is
modelled by the program (call) stack. Intentions are sim-
ply the AgentSpeak(L) equivalent of this. Given that an
agent can have multiple concurrent intentions whose ex-
ecution is interleaved, it is natural to view an intention as
being the equivalent of a thread.

The above mappings are intended to relate the concepts
of AgentSpeak(L) to those present in OOP. The objective
behind this is to try to reduce the cognitive gap faced by indi-
viduals who know OOP and wish to learn an AOP language.
The benefit of doing this is that someone who is proficient
in OOP can use these mappings as a starting point for their
study of the language.

3. Exploring the Implications
The mapping developed in Section 2 is not only potentially
useful to developers aiming to learn AgentSpeak(L), but
it is also useful from a language developer’s perspective
as it raises questions about the set of features that may
be appropriate for AgentSpeak(L)-style languages. In this
section, we explore some of the consequences of adopting
the above mapping.

3.1 Beliefs as Fields
Understanding the role of beliefs in AOP languages can be
one of the most challenging concepts to grasp. Certainly, at a
high-level it is clear that beliefs are the state, but many find it
difficult to understand how beliefs relate to the state of an ob-
ject. As was discussed above, one simple way of associating
beliefs with object state is to demonstrate that beliefs are like
fields. Fields are OOP’s mechanism for defining the state of
an object. Fields typically associate a label with a container
for values, for example String name = "Rem"; associates
the field name, of type String with the value “Rem”, which
is itself a String literal. In AgentSpeak(L), it is possible to
do something similar, namely to declare a fact, whose predi-
cate corresponds to the field name, and which takes a single

argument, the value associated with the field, for example
name("Rem");.

In OOP, there are a couple of operations that can be per-
formed on a field: (1) assigning a new value, for exam-
ple, name = "George";; and (2) comparing a value, for
example name.equals("Rem"). In AgentSpeak(L), per-
forming these operations can be achieved as follows. To
assign a new value, you must first drop the existing belief
and then adopt a new belief with the new value, for ex-
ample, -name("Rem");+name("George");. This process
has been optimised in Jason to -+name("George"), where
name("George") is adopted and one previous predicate
matching name(X) is removed. This optimisation is very
useful in a situation where a single belief is being used in the
same way as a global variable might be. In order to compare
a value, you can either perform a query of the agents beliefs.
Querying beliefs involves matching a provided belief against
the beliefs of the agent. This is done in a similar to way to
querying a fact base in a logic programming language such
as Prolog [6]. In AgentSpeak(L), there are two ways to query
the belief base. Firstly, it can be queried directly within a
plan, using the query operator (e.g. ?name("Rem")). Alter-
natively, a query can be declared in the context of a plan rule
(e.g. <te> : name("Rem") <- ...). It should be noted
here that the assignment operation, which is an atomic op-
eration in OOP and Jason, is not an atomic operation in
AgentSpeak(L).

An interesting observation of the above is that, in tran-
sitioning from OOP (nominally Java) to AgentSpeak(L) the
type of the field has been lost. Types can be a powerful fea-
ture of a programming language that can be used to statically
verify the correctness of code. Specifically, in OOP, they can
be used to identify situations where the wrong type of data
is assigned to a field, or where the wrong type of data is
passed to a method. Typically, AOP languages have used dy-
namically typed variables - this reflects the logical origins of
AOP, where dynamically typed variables are common. For
some developers, who come from a background where the
languages they have used are strongly typed, this can be an-
other significant hurdle to overcome.

One option for AOP language developers is to introduce
a type system to their language. Within AOP, it is possible
to apply type systems at two levels: the (multi-)agent level,
and at the language level. (Multi-)agent types refer to the
association of types with agent instances, such types can be
used for engendering reuse [11] of agent code or to support
run-time substitution of agent instances [3].

The second use of type systems is to apply types to the
terms of logical formulae. The potential benefits of this are:

• improved readability: the meaning of the belief is
clearer when the types are known.

• static type checking: compile-time checks can be used
to reduce the number of run-time errors.

To take full advantage of static typing, a number of ad-
ditional supports are required: correct forms for beliefs and
(potentially) goals could be specified using an implementa-
tion specific mechanism; for example a list of valid predicate
formula signatures. For example, these could be specified in
a manner similar to an actionspec in GOAL which is used
to specify pre- and post-conditions for actions [15].

This requirement can be extended further to encompass
environment interaction. In this case, the use of an environ-
ment interface such as CArtAgO [22] would also require
that types be specified. In simpAL this takes the form of
an artifactmodel which describes the usage interface of
all artifacts implementing that model [20]. This allows static
type checking in any use of an artifact. However, it does not
extend to any events that may be generated by the artifact.

3.2 Plans Rules as Methods
The equivalence of plan rules and methods posits a simple
question: if algorithms are a typical way for defining be-
haviour in OOP and methods are the common mechanism
for implementing algorithms, would it not be natural for
somebody learning AgentSpeak(L) to attempt to implement
some established algorithms using the agent language?

To investigate this in more detail, we decided to imple-
ment a common algorithm using AgentSpeak(L). The choice
of algorithm itself is not important, as the question really be-
ing asked here is: can somebody learning an AOP language
apply their existing algorithmic problem solving skills eas-
ily in that language? The result is illustrated in Figure 1. The
left hand piece of code is standard pseudo code for the se-
lection sort algorithm. The right-hand piece of code is the
AgentSpeak(L) implementation of that algorithm. As can be
seen, the AgentSpeak(L) solution is far more complicated
than the pseudo code - it is over 3 times longer; one method
has been mapped to 10 rules (the first rule in the AgentS-
peak(L) program actually calls the sorting algorithm); and
it is not even all of the code because 5 primitive actions
are used (_size(...), _elementAt(...), _swap(...),
_print(...), and _skip()). In fact, there are a number of
clear issues with the AgentSpeak(L) solution:

1. Rule explosion occurs because in AgentSpeak(L), loops
and selections are implemented using rules. In fact, 2
rules are typically required for both if statements and
loops. In both cases, one rule is required where the guard
is true and one where the guard is false. Both rules must
be provided in all cases, even if they do nothing (failure
to match an internal event to a rule is equated to failure
to achieve a sub-goal as there are no valid event handlers
for the given event).

2. Returning results is an issue in AgentSpeak(L) because
the basic version of the language does not allow values to
be returned from a sub-goal call. Instead, the value must
be stored in a belief (in the global state) and upon comple-
tion of the sub-goal, the value must be retrieved by query-

ing the global state. Such a convoluted approach clearly is
not scalable given AgentSpeak(L) supports multiple con-
current intentions.

3. Hidden code arises because AgentSpeak(L) has such
limited semantics that it is not able to directly perform
simple operations such as swapping two values. Instead
a number of custom primitive actions are also needed
(these are not included in the code count) to implement
this basic functionality. In the code any statement that is
prefixed by a is a primitive action.

4. Loss of readability due to the number of rules and the
convoluted control flow that results from it understanding
the agent code is far more difficult than understanding the
pseudo code.

Admittedly, many would question the value in imple-
menting a sorting algorithm using an agent language, but
again, the issue here is not the actual algorithm, but that al-
gorithms cannot be easily implemented in AgentSpeak(L).
Given the amount of time and effort that is put into teaching
programmers to think algorithmically, it seems inefficient
to be promoting languages that do not try to leverage those
skills. That said, it is also important to note that the principal
aim of AOP is not to facilitate programming of traditional al-
gorithms. Instead, the focus is on the coordination of activi-
ties amongst multiple decentralised problem solvers and the
provision of intelligent decision-making abilities. Another
potential benefit is the ability to exploit parallelism through
the use of concurrent intentions. In our view, traditional al-
gorithms (such as sorting) should be implemented as internal
actions or made available through the agents’ environment.

3.3 Intentions as Threads
In the mapping, we equate intentions with threads. Agents
are commonly presented as being active objects, with their
own thread of control [16]. The reality is that implementa-
tions of an agent can vary from a single threaded architec-
ture to highly complex multi-threaded architecture. Here, we
do not focus on such low level issues, instead, we explore
AgentSpeak(L) at a higher level.

In AgentSpeak(L), the execution of behaviours is mod-
eled through intentions. An agent creates a new intention for
every external event that it matches to a plan rule (it also gen-
erates a new intention for each initial goal that is declared in
the program, but this is a special case for goal events). An
intention is basically an execution stack - it contains each
action that must be performed in order to achieve the inten-
tion, with the next action to be performed sitting on top of
the stack. An execution step involves removing the top item
from the stack and executing it. In situations where an agent
has multiple intentions, the accepted view is that intention
execution is interleaved - on each iteration, one intention is
selected and executed.

1 Algorithm SelectionSort(A, n):
2 for j = 1 to n-1 do
3 minIndex = j
4 for k = j+1 to n-1 do
5 if (A[minIndex] < A[k]) then
6 minIndex = k
7 if (minIndex <> j) then
8 temp = A[j]
9 A[j] = A[j+1]

10 A[j+1] = temp
11 return A

1 !do_sort ([7, 5, 12, 15, 3]);
2

3 +! do_sort(L) <-
4 _size(L, S);
5 !outerLoop(L, S, 0);
6 ?sorted(L2);
7 _print(L2).
8

9 +! outerLoop(L, S, X) : X < S <-
10 +min_index(X);
11 !innerLoop(L, S, X);
12 ?min_index(Z);
13 -min_index(Z);
14 !update(L, S, X, Z).
15

16 +! update(L, S, X, Z) : X < Z <-
17 _swap(L, X, Z, L2);
18 !outerLoop(L2 , S, X+1).
19

20 +! update(L, S, X, Z) <-
21 !outerLoop(L, S, X+1).
22

23 +! outerLoop(L, S, X) <-
24 +sorted(L).
25

26 +! innerLoop(L, S, X) : X < S <-
27 _elementAt(L, X, T);
28 !compare(L, X, T);
29 !innerLoop(L, S, X+1).
30

31 +! innerLoop(L, S, X) <-
32 _skip ().
33

34 +! compare(L,X,T):min_index(Y)<-
35 _elementAt(L, Y, S);
36 !compare(L, X, Y, S, T).
37

38 +! compare(L, X, Y, S, T)
39 : S < T <-
40 -min_index(Y);
41 +min_index(X).
42

43 +! compare(L, X, Y, S, T) <-
44 _skip ().

Pseudo code AgentSpeak(L) code

Figure 1. Two implementations of Selection Sort algorithm

Consider the sample program in Figure 2. On creation,
two goal events are generated +!init(1) and +!init(2).
On the first iteration of the agent interpreter, the first event
is handled, resulting in the adoption of an intention that con-
tains three print actions. Given that this is the only intention
of the agent, the first step of this intention is also executed on
the first iteration. On the second iteration, the second event
is handled, resulting in a second intention that also contains
three print actions. At this point, there is some uncertainty as
to what happens as it is not clear which intention would be
selected for execution. To remove ambiguity, let us assume
that new intentions should always be selected for execution.
The result is that the first action of the second intention is
now executed. On subsequent iterations, a round robin exe-
cution policy can be enforced, allowing fair use of the under-
lying processors. This means that the first intention will be
scheduled on step 3 and the second intention on step 4. This
interleaving will continue while the agent has multiple inten-
tions. The resulting output is “1A 2A 1B 2B 1C 2C”. Note

1 !init (1).
2 !init (2).
3

4 +!init(X) <-
5 print(X+"A");
6 print(X+"B");
7 print(X+"C).

Figure 2. AgentSpeak(L) Interleaving Example

that, even if we had adopted a policy where new intentions
are not executed on the step they are created, then the output
would have been “1A 1B 2A 1C 2B 2C” - so interleaving
still occurs.

From this above example, it is clear that, irrespective of
the actual threading model used, an AgentSpeak(L) agent
with multiple intentions is like a process that has multiple
threads where each intention is akin to a thread.

If this view is adopted as the correct analogy for inten-
tions, then our languages must be designed with this in mind.
AgentSpeak(L) is not designed with such a view in mind.

As was mentioned above, sub-goals cannot return values.
Instead, the value must be stored in the global state of the
agent and retrieved once the sub-goal has completed. It is
easy to see that such a scenario does not work well if inten-
tions are like threads particularly given their execution can
be interleaved.

This can be easily illustrated by considering an agent with
two intentions, A and B, that both need to sort a (different)
list of numbers using the selection sort code of Figure 1. On
iteration i, intention A stores the sorted list in its global state.
On the next iteration (i+1), intention B stores its sorted list
in the global state. Two iterations later (after A and B have
completed their sub-goals), A then attempts to retrieve the
sorted list from the memory. The agent has two beliefs -
one for each sorted list - based on the given program, it is
ambiguous as to which of the sorted lists will be returned.
The result is that either A or B will have the incorrect sorted
list. Naturally, this problem can be overcome, but only by
further increasing the complexity of the program.

One approach to handling interleaved execution of in-
tentions is to introduce support for mutual exclusion into
AgentSpeak(L). This would overcome the issue, but would
require the mutual exclusion to be applied prior to the first
invocation of the !outerLoop(L, S, X) sub-goal causing
the second intention to be delayed until the first has com-
pleted. The simpler option is to allow sub-goals to return
values.

Jason includes support for mutual exclusion through the
atomic keyword. This keyword can be applied to plan rules
and causes the intention associated with the application of
the rule to be prioritised over all other intentions until it
has completed. While this functionality has the advantage of
being more high-level and declarative, we are not convinced
that it provides the flexibility necessary for more complex
applications. Our concerns are specifically focused on two
issues:

• Lack of support for multiple critical sections. Mutual ex-
clusion ensures sequential execution of code where re-
quired. This can result from the need to control access
to a resource or simply to ensure that some sequence
of actions is performed atomically. It is not unreason-
able to assume that some agents will have more than one
critical section. In such cases, enforcing agent-level mu-
tual exclusion will result in intentions being blocked even
though they are not accessing the same critical section. In
languages like Java, such issues can be alleviated through
the use of synchronized blocks.

• Limited granularity of locking mechanism. By providing
only a rule level of mutual exclusion, developers are
required to implement critical sections as atomic plan
rules. As was discussed in Section 3.2, this can lead to
rule explosion because each critical section would need
to be implemented as a separate plan rule.

In our view, a more appropriate level of support for criti-
cal sections is to allow synchronized blocks that have an as-
sociated token. This token would act like an identifier for a
critical section, and the mutual exclusion mechanism would
only block intentions trying to access a critical area whose
token has been taken by another intention. These intentions
would be blocked until the active intention releases the token
by reaching the end of the synchronized block.

A third issue arising from the adoption of the view of
intentions as threads is the use of global state to maintain
local state. This is particularly an issue if extended plan
operators are introduced as is recommended in Section 3.2.

1 +event : context
2 <-
3 while(vl(X) & X > 10) { // where vl(X) is a

belief
4 .print("value > 10");
5 -+vl(X+1);
6 }
7

Figure 3. Sketch of While-loop in Jason

The best way to illustrate this is to explore the example
in Figure 3 which is taken from [1]. In this example, the
code uses global state to represent a loop counter (vt(X) in
the example). This is in line with our discussion in section
3.1, as is the increment on line 5, which uses the Jason be-
lief update optimization. The problem with this is that global
state is being used to implement something that would tra-
ditionally be implemented using a local variable. Further-
more, given the above discussion, the code clearly cannot
be executed concurrently as the belief representing the loop
counter is a critical section. This has the implication that, in
Jason every loop is (part of) a critical section. This would
have significant performance consequences if the mutual ex-
clusion mechanism provided does not allow multiple criti-
cal sections to be defined. The natural consequence of the
introduction of additional constructs, such as loops, is that
AgentSpeak(L)-style languages require some mechanism to
define local state as well as global state.

Another interesting consequence of viewing intentions as
threads is the issue of runtime management of those threads.
While suspension and resumption of threads is now gener-
ally seen as poor practice due to the lack of control over
when the thread is suspended (e.g. suspension of a thread
within a critical section can lead to deadlocks), it has tradi-
tionally been a feature of multi-threaded languages. Given
that intentions are looked upon as a higher level abstraction
than threads, the ability to suspend and resume intentions
may have value. This is an area that we have not explored in
detail, however we are aware that such functionality is avail-
able within Jason [19].

3.4 Events as Messages
Perhaps the most contentious part of the mapping is the as-
sociation of AOP events and OOP messages. This can seem

contentious because “messages” are a well-defined concept
in multi-agent systems that drive speech-act-based interac-
tion between agents, typically using some Agent Communi-
cation Language (ACL). Furthermore, it appears to conflict
with Shoham’s analysis, which argues that message passing
in AOP is equivalent to message passing in OOP. The rea-
son for the seeming inconsistency is that Shoham compares
agents and objects from an external (and high-level) perspec-
tive, whereas our comparison of AgentSpeak(L) and OOP is
more low-level. Further, the design of AgentSpeak(L) did
not consider inter-agent communication. Thus any apparent
conflict is a consequence of the viewpoint being taken.

Since our analysis associates AOP events with OOP mes-
sages, it is interesting to also compare how these events can
come about. In OOP, an object’s interface is typically de-
scribed as the set of methods that can be invoked when mes-
sages are sent from other, external, objects. These methods
are often described as being “public”. The object itself may
invoke any of these public methods, but also other methods
that have been marked “private” (we will not consider “pro-
tected” methods, as inheritance is not common in AOP lan-
guages, though it does exist [11]).

In AgentSpeak(L), two types of events can be raised: be-
lief events occur whenever beliefs are adopted or retracted,
and goal events operate in a similar way for goals. The only
entity capable of affecting the goals of an agent is itself. This
means that a clear parallel can be drawn between plan rules
that react to goal events and private methods in OOP.

The situation with belief events is somewhat more com-
plex. Unlike goal events, beliefs can be created or removed
due to external factors, in addition to the agent’s own oper-
ations. For example, changes in the environment in which
an agent is situated typically result in changes to the agent’s
belief base, resulting in the generation of belief events. In a
similar way, the receipt of ACL messages is frequently im-
plemented by updates to the agent’s mental state, most com-
monly the adoption of beliefs. Because AgentSpeak(L) does
not distinguish between “private” or “public” plan rules, and
treats all belief events equally, it is difficult to draw a direct
parallel between the public interface of an object and a sim-
ilar concept for agents.

There are two basic approaches to handling the receipt
of messages in implementations of AgentSpeak(L). The first
approach is the approach adopted in Jason. Here, a subset of
KQML is identified and the chosen speech acts are closely
integrated with the language, which implements their se-
mantics by default. For example, receipt of a tell message re-
sults in the adoption a belief based on the content of the mes-
sage together with an annotation identifying the sender of the
message (although this behaviour can be overridden by the
programmer). Invoking a behaviour based on the receipt of a
tell message thus requires the creation of a plan rule whose
triggering event matches the belief adoption event created
by the receipt of the message. The sending of messages is

then supported through the provision of an internal action
.send(...). This approach fits the mapping presented in
this paper because the semantics of the receipt of messages
are hidden from the programmer.

An alternative approach is to introduce a new message
event type to model the receipt of a message. This approach
is more loosely coupled as the receipt of a message does not
have a direct impact on the agent. Instead, the programmer
must implement a rule to handle the receipt of the message.
The advantage of this approach is that it is left to the pro-
grammer to determine how the agent responds to the receipt
of a message. For example, if an agent is informed of some
new fact, then the programmer can provide a rule to define
whether or not the agent should adopt the content as a belief.
As before, sending of messages can be achieved through a
custom action (or plan operator).

It is an open question as to which of these approaches is
preferable, and a similar discussion could be had on how
to cater for information arising from the agent’s environ-
ment. One attractive element of the latter approach is that
belief events would no longer be directly triggered by exter-
nal elements such as the environment or other agents. The
behaviour resulting from such an external event is realised
through the processing of an event by the agent itself, and
the beliefs it adopts (if any) in response. What is interesting
to note from the second model is the idea of increasing the
number of event types supported by the language. The ben-
efit of adding new event types is that the events can be spec-
ified in a way that all of the relevant data is encoded in the
event. This can result in a solution that is clearer and easier
to follow that trying to reduce every event to an annotated
belief. The cost comes from the fact that the implemented
language must handle more event types.

4. ASTRA: AgentSpeak(L) Enhanced
The mapping presented in this paper is aimed at reducing
the cognitive gap for developers who are familiar with OOP
and who wish to learn an AOP language. In order to evaluate
whether such a mapping can help, we have developed a new
implementation of AgentSpeak(L) called ASTRA. ASTRA
is based upon Jason, but includes a number of features that
are inspired by the mapping presented in this paper. In line
with the rest of this paper, the syntax of ASTRA is based
upon Java syntax, which has been chosen so that the lan-
guage will seem more familiar to the user. In this section,
we present only the most pertinent details of ASTRA that
reflect the points made in the paper. For more information
on the language, the reader is directed to [2].

4.1 The ASTRA Type System
ASTRA as a statically typed language that provides a typi-
cal set of primitive types for use. Because ASTRA is built
on Java, and in an effort to improve the cohesion between
the agent layer and the supporting functionality in the Java

layer, the set of primitive types is based upon Java’s type sys-
tem. While not exhaustive, all the necessary types are pro-
vided for, including 4 and 8 byte integers (mapped to Java’s
int and long types), 4 and 8 byte floating point numbers
(mapped to float and double types) as well as representa-
tions for character and boolean values (mapped to char and
boolean types).

ASTRA also supports the non-primitive types: character
strings, which map to the String class; a list type which
maps to a custom implementation of the java.util.List

interface; a speech act type that represents FIPA ACL perfor-
matives; and formula and function types that can be used to
define variables capable of holding formulae and functional
terms respectively. Finally, ASTRA allows the use of generic
objects through the object type. Instances of objects cannot
be directly represented within the language but can be stored
and passed to internal and environment operations.

ASTRA uses modules to represent internal libraries. The
design of these libraries is inspired by the use of annota-
tions in CArtAgo [22]. Libraries allow four kinds of annota-
tion: terms, formulae, sensors and actions. Terms represent
basic calculations that can return a value. Formula methods
are constructors that return any logical formula instance in
ASTRA (these can be simple boolean values or more com-
plex formulae). Sensors generate beliefs that are added to
the agent’s state. Actions represent internal actions that can
be performed, returning a boolean value indicating if the ac-
tion was successfully performed. All invocations of module
code from the agent layer are treated as atomic and block-
ing. For this reason, it is expected that any formula or term
methods be short running operations while sensor and ac-
tion methods can be longer running. In the case of actions,
the corresponding intention is suspended until the action has
completed. Figure 4 shows the declaration of a module con-
taining a single term and action.

All of the components of the modules are typed. This
enables the static verification of types for any usage of the
library as well as for any value returned. Terms, actions
and formulae can be used in a manner intuitive to OOP
programmers: Figure 5 shows an example of the use of a
term to determine the largest of two numbers before using
an action to print it.

Modules must first be declared by linking the class to a
name within the agent, this declaration is shown in line 5 of
the example. A consequence of this method of declaration
is that a single agent can create several copies of the same
module, each with a different name and state.

It should be noted that ASTRA is not alone in considering
strong typing to be important in agent programming. The
simpAL agent programming language [21] also supports
typing, and includes the ability to extend strong typing to
environment artifacts and to the agents themselves.

One consequence of the type system is that the process
of querying the belief base may fail silently due to type mis-

1 package ex;
2

3 import astra.core.Module;
4

5 public class MyModule extends Module {
6

7 @TERM
8 public int max(int a, int b){
9 return Math.max(a, b);

10 }
11

12 @ACTION
13 public boolean printN(int n){
14 System.out.println(n);
15 return true;
16 }
17 }

Figure 4. Java code declaring a module
1 package ex;
2

3

4 agent Bigger {
5 module MyModule m;
6

7

8 initial num(45, 67);
9 initial !init();

10

11

12 rule +!init() {
13 query(num(int X,int Y));
14 int n = m.max(X,Y);
15 m.printN(n);
16 }
17

18 }

Figure 5. ASTRA code declaring and using a module

matches. In cases where the types of the terms in the belief
base are different to the types of the term in the query, no
match will occur. This happens because sensors can dynam-
ically add beliefs to the agent’s belief base, and because there
is currently no mechanism to allow a programmer to spec-
ify the types of valid beliefs that are supported by the agent
itself. It is intended to add support for content language def-
initions in future implementations of ASTRA.

4.2 Extended Plan Syntax
ASTRA includes a number of extensions to the traditional
AgentSpeak(L) plan syntax. These extensions are added to
combat the issues noted in Section 3.2. The usefulness of
constructs such as these is emphasised by Jason’s inclusion
of some of these procedural-style constructs (e.g. if state-
ments, loops) in its extended version of AgentSpeak(L). AS-
TRA attempts to provide a more complete mapping between
procedural-style pseudocode, as well as AOP features.

If statement the most basic form of flow control

While loop usual method of repetition in programming

Foreach loop repeats the same actions for every matching
binding of a formula

Try-recover allows for the recovery from failed actions

Local variable declaration declares a variable that can be
used within a plan rule

Assignment allows the value of a local variable to be
changed

Query bind the values of beliefs to variables

Wait pauses execution until condition if true

When performs block of code when condition is true

Send sends message to another agent

Synchronized enables mutual exclusion in critical sections

Figure 6 shows an implementation of selection sort as a
single rule in ASTRA. While this demonstrates only some
elements of the extended plan syntax, when compared to the
Agentspeak(L) implementation given in Figure 1 it is much
easier to understand.

1 rule +!sort(list L, list R) {
2 R = L;
3 int j = 0;
4 while (j < P.size(R)) {
5 int min = j;
6 int k = j+1;
7 while (k < P.size(R)) {
8 if (P.valueAsInt(R, min) > P.valueAsInt(R, k))
9 min = k;

10 k++;
11 }
12 if (min ~= j) {
13 R = P.swap(R, min , j);
14 }
15 j++;
16 }
17 }

Figure 6. ASTRA rule for Selection Sort

4.3 Mutual Exclusion Support
In Section 3.3, the link between intentions and threads was
established. This introduces potential difficulties in the form
of race conditions since multiple intentions are, interleaved
by their very nature. As such, it is necessary to provide
functionality to offset these difficulties. To facilitate removal
of these high-level race conditions, ASTRA includes support
for synchronized blocks - sections of the agent program that
are labeled as critical sections.

Code contained within a synchronized block can only be
executed by a single intention at a time. Synchronized blocks
are declared using the synchronized keyword but also re-
quire an identifier for the block. This allows multiple blocks
to be declared representing a common critical section. Once
an intention enters a synchronized block, all synchronized
blocks with the same identifier are locked and cannot be
entered until the current intention has left the synchronized
block.

Figure 7 shows an example of ASTRA code with race
conditions. This program invokes the !init() goal twice,
creating 2 intentions. In this situation, there is no way to
know the output of the program. If both intentions query the

1 agent Racy {
2 module Console C;
3

4 initial ct(0);
5 initial !init(), !init();
6

7

8 rule +!init() {
9 query(ct(int X));

10 +ct(X+1);
11 -ct(X);
12 }
13

14

15 rule +ct(int X) {
16 C.println("X = " + X);
17 }
18 }

Figure 7. ASTRA code with race conditions
1 agent Racy {
2 module Console C;
3

4 initial ct(0);
5 initial !init(), !init();
6

7 rule +!init() {
8 synchronized (ct_tok) {
9 query(ct(int X));

10 +ct(X+1);
11 -ct(X);
12 }
13 }
14

15 rule +ct(int X) {
16 C.println("X = " + X);
17 }
18 }

Figure 8. ASTRA code with mutual exclusion

belief at the same time the agent will only output the value of
X at 0 and 1 (initial and incremented once). Figure 8 shows
the same program with mutual exclusion added through the
use of a synchronized block. In this situation, the output is
guaranteed to show the values of X at 0, 1 and 2.

4.4 Extended Event Types
AgentSpeak(L) defines two basic types of event: belief up-
date events, and goal events. This reflects the focus of the
design of AgentSpeak(L) on the internal reasoning mecha-
nism of an agent. Jason extends AgentSpeak(L) in numerous
ways, one of which is the integration of support for agent
interaction. The manner in which Jason performs this inte-
gration has been to define a limited set of message types and
define the semantics of how the receipt of these messages
affects the state of the agent. For example, an achieve mes-
sage causes a goal to be adopted by the receiving agent, and
a tell message causes a belief to be adopted by the receiv-
ing agent. In order to capture additional information about
the source of the belief / goal, Jason has introduced an an-
notation mechanism. For example, the sender of a tell is
captured as a source(X) annotation that is appended to the
generated belief. The advantage of this approach is that it al-
lows additional functionality to be added to AgentSpeak(L)
without the need to modify the set of event models. The dis-

advantage is that any additional information is stored as an-
notations. This, in effect, pushes the complexity of knowl-
edge representation into the annotation mechanism.

1 agent Test {
2 module Console C;
3 module System S;
4

5 rule +!main(list args) {
6 send(inform , S.name(), count (0));
7 }
8

9 rule @message(inform , string from , count(int X)) :
X < 10 {

10 C.println("X=" + X);
11 send(request , S.name(), count(X+1));
12 }
13

14 rule @message(inform , string from , count(int X)) {
15 C.println("X=" + X);
16 C.println("STOPPED");
17 S.exit();
18 }
19 }

Figure 9. ASTRA agent that talks to itself

An alternative approach is to introduce additional event
types, allowing each event type to appropriately capture the
information that is relevant to the event. For example, re-
ceipt of a message can be modeled as a separate event type,
known as a message event. An example of this is illustrated
in Figure 9, which illustrates a simple ASTRA agent that
sends a message to itself. It is useful to note that, even though
the agent receives an inform message (the ASTRA equiv-
alent of a Jason tell message), the agent does not need to
adopt a belief or a subgoal (as is the case in Jason). Instead,
it is left to the developer to implement code that does this.
One arguable disadvantage is that an agent does not have any
guarantees on the effect of informing another agent of some-
thing. While we have used a specific speech act in this exam-
ple, the type system (as described in Section 4.1) provides a
speech act type that can be used to declare triggering events
that match any performative. Similarly, the formula type can
be used to match any type of message content. The use of
these extended event types does not necessarily impact on
the number of rules, as without them the event would need
to be handled through the adoption of a belief or a goal. The
benefit of this approach is simply that we do not attempt to
shoehorn other event types into the belief/goal event model.

Overall, the use of extended event types can be, concep-
tually, less appealing than the Jason approach as it intro-
duces another event type, but practically, we believe that this
may be a better approach because it more clearly identifies
plan rules that are intended to handle interaction with other
agents. It also maintains a cleaner separation between be-
liefs - which come from internal actions or the environment
- and messages. Finally, the approach can be used to further
augment the functionality of the language and to maintain
a clean separation of concerns between the core function-
ality and the new extended functionality. Such an approach
has been used to provide integrated support for environments

like CArtAgO [22] and extended conversation management
functionality, such as ACRE [18].

5. Conclusions
In this paper, we have presented a practical conceptual map-
ping between AgentSpeak(L) and Object-Oriented Program-
ming (OOP). The purpose of this mapping has been to at-
tempt to find a way of reducing the cognitive gap for de-
velopers, experienced in OOP, who wish to learn Agent-
Oriented Programming (AOP). In developing the mapping,
we are not attempting to reduce one paradigm to the other,
but instead aim to provide a stepping stone that will help
developers wishing to learn AOP make their first steps.

In addition to the benefit such a mapping provides for
those wishing to learn AgentSpeak(L), a second benefit is
that it provides language designers with valuable insights
into how their languages might be used in practice. To this
end, Section 3 reflects on the mappings and identifies a
number of possible issues and potential opportunities:

1. the potential of using a type system to improve the link
between the agent and object layers and to reduce run-
time defects through static type checks.

2. the provision of an extended suite of plan operators in-
cluding a subset that mirror the typical constructs offered
in procedural languages to support the use of existing al-
gorithmic problem solving skills when developing agent
behaviours and the curtailing of rule explosion that was
evident in Figure 1.

3. the provision of mutual exclusion support for intentions
to facilitate management of critical sections.

4. the use of an extended suite of event types rather than
attempting to force all events to conform to AgentS-
peak(L)’s original model of belief and goal events.

While we believe that we have come to these conclusions
through a novel route, we do not claim to be the first to
reach them. Certainly, Jason includes support for atomic
behaviours and has an extended suite of plan operators.
In terms of the latter, we do believe that our perspective
offers some benefit: while Jason does include support for if
statements and for and while loops, we do not believe that
it offers support for local variable declaration or assignment,
both of which are considered a core concept in pseudo code.
Indeed, as was discussed in Section 3.3, lack of such support
can in fact lead to an explosion of critical sections, which
results in a widespread necessity for mutual exclusion.

The principal outcome of our work has been to drive
the development of ASTRA, an implementation of AgentS-
peak(L) that is targeted towards reducing the cognitive gap.
In 2014, ASTRA was made available to students on the
M.Sc. in Advanced Software Engineering mentioned in the
introduction. Students learned ASTRA over 5 days, during
which they wrote a range of programs. What was interesting

to note, from informal observation, was the size and com-
plexity of programs written on the first day of the course.
Previous years have seen program sizes that were typically
less than 30 lines of code, whereas through the use of AS-
TRA program sizes typically increased dramatically to over
100 lines of code. The complexity of problems attempted
was also much higher. It was also clear that students found
it easier to understand control flow within their programs,
as their solutions were more procedural in nature at first.
This relatively gentle introduction to agent programming
meant that the students were in a better position to appre-
ciate the benefits of the higher-level agent abstraction later
in the week.

On the last day, the students were assigned a complex
problem to solve [23, pp. 167–180] and were asked to com-
plete a questionnaire relating to both the problem and more
generally agents. Details of the results of the relevant parts
of this questionnaire are presented in [8]. We believe that the
feedback positively reflects our decision to include both the
language level type system and the suite of plan operators
into ASTRA.

References
[1] Documentation for Jason while-loop implementation.

http://jason.sourceforge.net/api/jason/stdlib/

loop.html. Accessed: 2015-08-13.

[2] ASTRA Language Website. http://www.astralanguage.
com/. Accessed: 2015-06-21.

[3] M. Baldoni, C. Baroglio, and F. Capuzzimati. Typing Multi-
Agent Systems via Commitments. In F. Dalpiaz, J. Dix,
and M. B. van Riemsdijk, editors, Engineering Multi-Agent
Systems, volume 8758 of Lecture Notes in Computer Sci-
ence, pages 388–405. Springer International Publishing, 2014.
ISBN 978-3-319-14483-2. .

[4] R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming
Multi-Agent Systems in AgentSpeak using Jason. John Wiley
& Sons, 2007. ISBN 978-0-470-02900-8.

[5] J. Botia. Debugging huge multi-agent systems: group and so-
cial perspectives, 2005. Agentlink Technical Forum 3, Bu-
dapest.

[6] W. Clocksin and C. S. Mellish. Programming in PROLOG.
Springer Science & Business Media, 2003.

[7] R. W. Collier. Debugging agents in agent factory. In Program-
ming Multi-Agent Systems, pages 229–248. Springer Berlin
Heidelberg, 2007.

[8] R. W. Collier, S. Russell, and D. Lillis. Reflecting on Agent
Programming with AgentSpeak(L). In Procedings of the 18th
Conference on Principles and Practice of Multi-Agent Sys-
tems (PRIMA 2015), 2015.

[9] M. Dastani. 2APL: A Practical Agent Programming Lan-
guage. Autonomous Agents and Multi-Agent Systems, 16(3):
214–248, 2008. ISSN 1387-2532. .

[10] M. Dastani, M. van Birna Riemsdijk, and J.-J. C. Meyer.
Programming Multi-Agent Systems in 3APL. In Multi-Agent
Programming, pages 39–67. Springer, 2005.

[11] A. Dhaon and R. W. Collier. Multiple Inheritance in AgentS-
peak (L)-Style Programming Languages. In Proceedings of
the 4th International Workshop on Programming based on Ac-
tors Agents & Decentralized Control (AGERE! 2014, pages
109–120. ACM, 2014.

[12] D. Doan Van Bien, D. Lillis, and R. W. Collier. Space-Time
Diagram Generation for Profiling Multi Agent Systems. In
L. Braubach, J.-P. Briot, and J. Thangarajah, editors, Program-
ming Multi-Agent Systems, volume 5919 of Lecture Notes in
Computer Science, pages 170–184. Springer Berlin Heidel-
berg, 2010.

[13] K. V. Hindriks. Programming Rational Agents in GOAL.
In A. El Fallah Seghrouchni, J. Dix, M. Dastani, and R. H.
Bordini, editors, Multi-Agent Programming:, pages 119–157.
Springer US, 2009. ISBN 978-0-387-89298-6. .

[14] K. V. Hindriks. Debugging Is Explaining. In I. Rahwan,
W. Wobcke, S. Sen, and T. Sugawara, editors, PRIMA 2012:
Principles and Practice of Multi-Agent Systems, volume 7455
of Lecture Notes in Computer Science, pages 31–45. Springer
Berlin Heidelberg, 2012. ISBN 978-3-642-32728-5. .

[15] K. V. Hindriks, B. Van Riemsdijk, T. Behrens, R. Korstanje,
N. Kraayenbrink, W. Pasman, and L. De Rijk. Unreal Goal
Bots. In Agents for Games and Simulations II, pages 1–18.
Springer, 2011.

[16] N. R. Jennings. On agent-based software engineering. Artifi-
cial intelligence, 117(2):277–296, 2000.

[17] D. N. Lam and K. S. Barber. Debugging Agent Behavior in
an Implemented Agent System. In R. H. Bordini, M. Das-
tani, J. Dix, and A. El Fallah Seghrouchni, editors, Program-
ming Multi-Agent Systems, volume 3346 of Lecture Notes in
Computer Science, pages 104–125. Springer Berlin Heidel-
berg, 2005. ISBN 978-3-540-24559-9. .

[18] D. Lillis. Internalising Interaction Protocols as First-Class
Programming Elements in Multi Agent Systems. PhD thesis,
University College Dublin, 2012.

[19] R. Pı́bil, P. Novák, C. Brom, and J. Gemrot. Notes on
Pragmatic Agent-Programming with Jason. In Programming
Multi-Agent Systems, pages 58–73. Springer, 2012.

[20] A. Ricci and A. Santi. Designing a General-purpose Program-
ming Language Based on Agent-oriented Abstractions: The
simpAL Project. In Proceedings of the Compilation of the
Co-located Workshops on DSM’11, TMC’11, AGERE! 2011,
AOOPES’11, NEAT’11, & VMIL’11, SPLASH ’11 Work-
shops, pages 159–170, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-1183-0. .

[21] A. Ricci and A. Santi. Typing Multi-agent Programs in sim-
pAL. In M. Dastani, J. F. Hübner, and B. Logan, editors,
Programming Multi-Agent Systems, volume 7837 of Lecture
Notes in Computer Science, pages 138–157. Springer Berlin
Heidelberg, 2013. ISBN 978-3-642-38699-2. .

[22] A. Ricci, M. Viroli, and A. Omicini. CArtAgO: A Frame-
work for Prototyping Artifact-Based Environments in MAS.
In D. Weyns, H. V. D. Parunak, and F. Michel, editors, En-
vironments for Multi-Agent Systems III, volume 4389 of Lec-
ture Notes in Computer Science, pages 67–86. Springer Berlin
Heidelberg, 2007. ISBN 978-3-540-71102-5. .

[23] S. Russell. Real-Time Monitoring and Validation of Waste
Transportation using Intelligent Agents and Pattern Recogni-
tion. PhD thesis, University College Dublin, 2015.

[24] S. Russell, H. R. Jordan, G. O’Hare, and R. W. Collier. Agent
Factory: A Framework for Prototyping Logic-Based AOP
Languages. In F. Klügl and S. Ossowski, editors, Multia-

gent System Technologies, volume 6973 of Lecture Notes in
Computer Science, pages 125–136. Springer Berlin Heidel-
berg, 2011. ISBN 978-3-642-24602-9. .

[25] Y. Shoham. Agent-oriented programming. Artificial intelli-
gence, 60(1):51–92, 1993.

