Connect.js

A cross mobile platform actor library for multi-networked mobile applications

Elisa Gonzalez Boix

Christophe Scholliers

Nicolas Larrea ~ Wolfgang De Meuter

Vrije Universiteit Brussel

{egonzale,cfscholl,nlarrea,wdmeuter}@vub.ac.be

Abstract

Developing mobile applications which communicate over
multiple networking technology is a difficult task. First, de-
velopers usually have to maintain a different version of the
application for each mobile platform they target. Recent
trends in mobile cross-platform solutions may alleviate this
issue. However, developers still need to program a variation
of the application for each different network interface. In ad-
dition, the APIs for communicating over ad-hoc network-
ing technologies (eg. wifi direct), are very different from the
cloud APIs. Finally, developers need to write highly asyn-
chronous code for communication. This is often written with
callbacks which invert the control flow of the application
leading to code which is hard to debug and maintain. This
paper introduces Connect.js, a JavaScript library for writing
multi-networked cross-platform mobile applications. Appli-
cations consists of distributed objects which communicate
with one another by means of asynchronous messages via
a special kind of reference which is transparent for the un-
derlying network technology used. Connect.js also provides
dedicated language constructs for structuring asynchronous
code by means of future combinators.

1. Introduction

Today we are witnessing a convergence in mobile technol-
ogy and cloud computing trends. One the one hand, mo-
bile devices have become ubiquitous. Many of them have
more computing power than high end (fixed) computers de-
veloped 15 years ago. Moreover, they are equipped with
multiple wireless network capabilities such as cellular net-
work (3G/4G), wifi, bluetooth, wifi-direct, and NFC. As to
be expected with any new technology, multiple mobile plat-

[Copyright notice will appear here once ’preprint’ option is removed.]

forms are currently available (being the most relevant ones
Android, i0S, and Windows Mobile). Important for the pro-
grammer is that each of these platforms have a radically dif-
ferent programming environment (e.g., Java in Android, Ob-
jective C in 108, etc).

On the other hand, with the advanced on mobile broad-
band internet access, the web has evolved from data pre-
sentation layer to a data sharing and computation platform,
to wit the cloud. Implementing mobile applications employ-
ing web-based technologies (like HTML and JavaScript) has
the potential benefit of running in multiple mobile environ-
ments. However, mobile web-based applications usually per-
form worse, and do not provide a consistent look and feel
than their native counterparts.

In order to minimize the software development costs, mo-
bile cross-platform tools allow to develop one application
for multiple mobile platforms [4]. Specially relevant are in-
terpreted tools, like Appcelerator Titanium' or Xamarin?,
where developers write applications in a specific language
(e.g., JavaScript or C++) and the tool builds a native appli-
cation for the different targeted mobile platforms. They pro-
vide a number of built-in APIs for constructing native GUI
and accessing the underlying hardware without requiring de-
tailed knowledge of the targeted platform. The resulting rich
mobile applications (RMAs) contribute to the intersection of
mobile and cloud computing [1].

In this paper, we focus on a new breed of rich mobile
applications which make use of both P2P communication
and centralised wireless network access to coordinate and
share data. Such multi-networked RMAs enable communi-
cation over both infrastructure-less networks of mobile de-
vices, and the cloud. Developing such multi-networked ap-
plications burdens developers with the following tasks:

e Programmers need to implement a variation of the ap-
plication for each network interface, and write complex
failure handling code to support for reliable communica-
tion over multiple networking interfaces. Moreover, the
API’s for communicating over mobile ad hoc networking

!http://www.appcelerator.com

2 http://xamarin.com

2015/9/15

technologies like wifi-direct or bluetooth, are very differ-
ent from the cloud API’s. While the cloud typically re-
quires a client-server communication model, the lack of
infrastructure in ad hoc networking technologies requires
a peer-to-peer communication model, in which services
can be directly discovered in proximate devices.

e Programmers need to write highly asynchronous code for
the network communication. This is often written with
callbacks. However, these callbacks invert the control
flow of the application leading to code which is hard to
debug and maintain.

To overcome these issues we propose Connect.js, a mo-
bile cross-platform development library for multi-networked
mobile applications. In order to be able to communicate over
multiple networking technologies, Connect.js introduces a
novel kind of remote object reference which abstract over
the kind of network interface being used, called network
transparent references (NTR). As a result, applications can
seamlessly communicate over the cloud or using an infras-
tructureless mobile network depending on the underlying
available networking technology. NTRs offer reliable com-
munication and as such, programmers do not need to man-
ually verify the delivery of each message sent over multi-
ple network interfaces. In order to mitigate the negative ef-
fects of callbacks, Connect.js provides dedicated language
constructs for structuring asynchronous code by means of
future combinators. Future combinators treat futurized mes-
sages as monads and provide a number of operators to com-
bine futurized message passing while avoiding deep nesting
associated with callbacks. We believe that the combination
of NTRs and future combinators eases programming multi-
networked rich mobile applications.

2. Connect.js

Connect.js is a mobile cross-platform library integrated in
Appcelerator Titanium which allows programmers to write
their distributed mobile applications in JavaScript and de-
ploy it on several mobile platforms, namely iOS and An-
droid. Figure 1 shows the general architecture of Connect.js.
Programmers write mobile applications in JavaScript im-
porting the Connect.js library in their Titanium project for
distributed programming. The abstractions provided by the
Connect.js API are based on the ambient-oriented program-
ming model from AmbientTalk[2] which treats network par-
titions as a normal mode of operation. As in AmbientTalk,
every device hosts at least one actor which encapsulates
one or more objects. Objects can communicate with ob-
jects in another actor system by means of sending asyn-
chronous messages via a special remote reference called a
far-reference. To this end, Connect.js incorporates a built-in
service discovery mechanism which allows to discover ser-
vices in devices accessible under the same ad hoc network
or via the cloud, independently of the mobile platform of

the device (explained in the next section). From an imple-
mentation point of view, Connect.js contains two different
native modules (also called plugins) for service discovery on
an ad hoc network based on zero-configuration networking
technologies specific to the mobile platform. The iOS plugin
uses Bonjour 3, and the Android plugin employs NDS * We
then rely on the JavaScript - Java/ObjectiveC bridge from
Titanium to transform the JavaScript code into native appli-
cations in the targeted mobile platform.

aMobileApplication.js

Uniform Distributed API

Connect.js

1S
§ JavaScript - Java/ObjectiveC
Bridge
> 7 <
Native Application 8
iOS ans20I>

\

Figure 1. Architectural Overview of Connect.js.

2.1 Network Transparent References (NTRs)

Connect.js considers actors as the unit of distribution, and as
such two objects are said to be remote when they are owned
by different actors. The only type of communication allowed
on remote object references is asynchronous message pass-
ing. Any messages sent via a remote reference to an object
are enqueued in the message queue of the owner of the ob-
ject and processed by the owner itself.

In Connect.js actors communicate with one another over
wireless links or mobile broadband access. As such, remote
references in Connect.js abstract the underlying network-
ing technology being used for communication. Such network
transparent references (NTRs) are resilient to network fluc-
tuations by default. When a network technology (e.g. wifi)
is not available, the NTR attempts to transmit messages sent
to it using another networking technology, i.e. 3G. If all
networking interfaces are down, the remote reference starts
buffering all messages sent to it. When the network partition
is restored at a later point in time, the far reference flushes

3 https://developer.apple.com/bonjour/
4 http://developer.android.com/reference/android/net/nsd/NsdManager.html

2015/9/15

all accumulated messages to the remote object in the same 1
order as they were originally sent. As such, temporary net- 2
work failures or fluctuations on the availability of the differ-
ent network interfaces does not have an immediate impact +
on the applications’ control flow. 5

To illustrate NTRs and the different distributed program-
ming constructs in Connect.jsconsider the following code
snippet from a chat application:

var buddyList = {};
var Ambient = require("js/connectjs/ConnectJS");
function initializeMessenger (name) {
/S
Ambient .wheneverDiscovered ("MESSENGER",
function(ntr){
var msg = Ambient.createMessage(getName, [1);
var future = ntr.asyncSend(msg,"twoway");
future.whenBecomes (function(reply) {
buddyList [reply] = ntr;
// send a salute message
IO
B

Listing 1: Example use of asynchronous message passing
over NTRs

The wheneverDiscovered function takes as arguments
a string representing the service type and a function serving !
as callback. Whenever an actor is encountered in the ad hoc 2
network that exports a matching object, the callback function 3
is executed. The ntr parameter of the function is bound to
a network transparent reference to the exported messenger
object of another device.

In order to define objects exporting service to the net-
work, the exportAs function is employed. Code snippet be-
low shows how to create an object which implements a ser-
vice corresponding to the chat application using the string
MESSENGER as service type.

var remoteObj = Ambient.createObject ({
"getName": function () { return myName; },
"talkTo":

b

Ambient.exportAs(remoteObj, "MESSENGER") ;

With the code provided two phones can already commu-
nicate with each other when they are within direct commu-
nication range. However, when the phones are not in direct
communication range, Connect.js allows the phones to com-
municate with each other through a centralised node server.
To this end, the programmer needs to configure a node server
so that service objects are allowed to be exported as well via
in an intermediary server in the cloud. The code to configure
the node server is shown below.

var Ambient=require("js/connectjs/ConnectJS"),
express = require("express"),
nodeServer = require("http").Server(express());
nodeServer.listen(3000);
Ambient.initServer (nodeServer) ;

2.2 Future as a Monad

The use of asynchronous communication has proven to be
beneficial to build distributed mobile applications because
it mitigates the negative effects of frequent network fail-
ures. However, asynchronous primitives suffers from similar
problems as traditional callbacks. In this section we give an
overview of how defining futures in terms of a monad allows
programmers to better structure their asynchronous code. We
also present a number of combinators which turn out to be
useful but do not follow the monadic structure.

2.2.1 The Future Monad

The basic constructs of futures can be formulated as a
monad [3]. Listing 2 shows the unit and bind type signa-
ture of the monad typeclass in Haskell. A monad has two
operations, bind (>>=) and unit. Bind takes a monad of x
and a function which takes a value of type x and returns a
monad m y. Unit lifts a regular value of type x into a monad
of x.

class Monad m where
G>) tmx > &E->my) >ny
unit :: x > m x

Listing 2: Monad typeclass in Haskell

While we can not reap the advantages of the Haskell type
system to enforce monadic behaviour we can still implement
the basic bind an unit operators over futures in Javascript.
Pseudo code 3 for the bind operator as defined in the future
prototype in Connect.js is defined in listing 3. When bind
is applied on a future F, a new future R is created (line 2).
This new future is also the result of applying bind (line 9).
Bind registers an anonymous function on the future F. This

function (msg) { displayMessage(msg) ;}anonymous function resolves the future R with the result

of applying the function f to the value where the future F
resolves to (line 4-8).

More easily the return operator lifts a normal value into a
future value. Return simply creates a new future and imme-
diately resolves the future with the given value.

2.3 Future Combinators

The basic monadic operators together with the lift construct
provide a very useful set of abstractions for composing asyn-
chronous computations. However, in our context program-
mers often need some more high-level abstractions. Our li-

5 For clarity we omitted the code for future pipelining here.

2015/9/15

// bind :: (z-> futurely]) -> futurely]
function bind(f) {
var R = new Future();
self.register(function(v) {
f(v).register(function(res){
R.resolve(res);
s
s

return R;

Listing 3: Monad bind in the Future Prototype of Connect.js

brary therefore defines a set of operators implemented on top
of these basic monadic combinators. An overview of these
operators is shown in tabel 1. Note that the in the type sig-
nature £ [a] should be read as: A future which will resolve
to an array of a’s.

Conditionals

if f a->(a->Bool) -> f a
or fa->fb->(fal fb)
Simple synchronisation

first fa->fb->(Ealfhb)
last fa->fb->(alfhb)
Group synchronisation

many f[a]->(a->Bool)->f [a]
some f[a]->(a->Bool)->f [a]

all f[a]->(a->Bool)->f [a]
Array operators

filter f[a]->(a->Bool)->f [a]

map flal->(a->b)->f [b]

Table 1. Overview of the basic future combinators.

2.3.1 Future Combinator: Chat example

In this section we give a small example to showcase how the
asynchronous nature of the communication can be hidden by
the use of our future combinators. Consider the implementa-
tion of sending a friendly message to your two best buddies.
We first define a (synchronous) function which checks that
the user is either Christophe or Elisa (lines 1-4). Next we de-
fine a function which sends out a friendly message to each
user in a given array of users (lines 5-7). Finally we first get
the list of all our friends from the server (line 8), we filter
this list (line 10), we transform the list of users to a list of
user objects (line 11), and send a message to each of them
with the function sendFriendlyMsgs (line 12).

3. Validation

In order to compare our approach to existing approaches we
have implemented two example applications: a chat applica-
tion and a distributed unit test suite. For both applications we
have compared the percentage of lines which are attributed

var filterBuddy = function(user) {
return "Christophe" == user.firstname
[l "Elisa" == user.firstname;
s
var sendFriendlyMsgs = function(users) {
users.map(sendFriendlyVMsg)

};

var msg = Ambient.createMessage("getFriendList");

server.asyncSend(msg, "twoway")
.filter(filterBuddy)
.reduce (makeBudObj,{})
.whenBecomes (sendFriendlyMsgs) ;

Listing 4: Example use of future combinators

to the application logic compared to the lines of code for
communication. The chat application has been implemented
twice in Connect.js, once with network aware references and
once without. For the unit testing framework we also imple-
mented the tests twice, once with normal futures and once
with future combinators. The results for both the chat appli-
cation and the unit testing framework are shown in figure 2.
As shown in the figure in both cases there is a clear shift
from the percentage of lines spent for the application logic
compared to the lines of code attributed to the communica-
tion logic. While not shown in the figure the absolute lines
of code for each application also reduced.

0,9
0,675
0,45
0,225

Chat

Chat JS UnitTest UnitTest FJS

Il Application Logic Il Communication

Figure 2. Comparison in usage distribution

4. Conclusion

In this paper we reported on initial work on Connect.js

a cross mobile-platform actor library for multi-networked
RIA applications. With Connect.js the programmer does
no longer need to write complex network code in order to
exploit the use of both P2P communication and commu-
nication over a centralised wireless network. To this end,
Connect.js provides the programmers with a new kind of
distributed object reference called network transparant ref-
erences. When one network interface fails these reference
automatically and transparently tries to send the message
over another network interface. Finally, in order to min-
imise the negative effects of writing asynchronous code Con-
nect.js provides a set of future combinators. Initial valida-
tion of our artefact on two small applications shows promis-
ing results.

2015/9/15

References

[1] S. Abolfazli, Z. Sanaei, A. Gani, F. Xia, and L. T. Yang. Re-
view: Rich mobile applications: Genesis, taxonomy, and open
issues. J. Netw. Comput. Appl., 40:345-362, April 2014. ISSN
1084-8045. .

[2] T. V. Cutsem, E. G. Boix, C. Scholliers, A. L. Carreton,
D. Harnie, K. Pinte, and W. D. Meuter. Ambienttalk: program-
ming responsive mobile peer-to-peer applications with actors.
Computer Languages, Systems & Structures, 40(34):112 — 136,
2014. ISSN 1477-8424. .

[3] E. Moggi. Computational lambda-calculus and monads. In
Proceedings of the Fourth Annual Symposium on Logic in Com-
puter Science, pages 14-23, Piscataway, NJ, USA, 1989. IEEE
Press. ISBN 0-8186-1954-6.

S. Xanthopoulos and S. Xinogalos. A comparative analysis
of cross-platform development approaches for mobile applica-
tions. In Proceedings of the 6th Balkan Conference in Infor-
matics, BCI ’13, pages 213-220, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1851-8.

[4

—

2015/9/15

