
Programming Abstractions for Augmented Worlds

Angelo Croatti
DISI, University of Bologna

Via Sacchi, 3 – Cesena, Italy
a.croatti@unibo.it

Alessandro Ricci
DISI, University of Bologna

Via Sacchi, 3 – Cesena, Italy
a.ricci@unibo.it

ABSTRACT
The impressive development of technologies is reducing the
gulf between the physical and the digital matter, reality
and virtuality. In the short future, the design and devel-
opment of augmented worlds – as software systems extend-
ing the physical space and environment with computational
functionalities and an augmented reality-based appearance
– could become an important aspect of programming, calling
for novel programming abstractions and techniques. In this
paper we introduce this vision, discussing mirror worlds as
augmented worlds programmed in terms of agent-oriented
abstractions.

1. INTRODUCTION
In the short future, the design and development of aug-
mented worlds could become an important aspect of
programming, not only related to specific application
domains—such as the ones traditionally targeted by aug-
mented/mixed/hyper reality [3, 2, 28, 6].

The notion of augmentation that we consider in this paper
concerns different aspects, spanning from augmented/mixed
reality as a primary one, to human augmentation – enabled
by mobile/wearable technologies – and environment aug-
mentation – based on pervasive computing and Internet of
Things (IoT).

Mixed reality refers to the merging of real and virtual worlds
to produce new environments and visualizations where phys-
ical and digital objects co-exist and interact in real time [5].
As defined by P. Milgram and F. Kishino, it is “anywhere
between the extrema of the virtuality continuum” [13], that
extends from the completely real through to the completely
virtual environment with augmented reality (AR) and aug-
mented virtuality ranging between. In recent years, there
has been an impressive development of hardware technolo-
gies related to mobile and wearable supporting different de-
grees of AR—the main example is given by smart glasses.
Conceptually, this kind of devices allows to extend people

cognitive capabilities, improving the way in which they per-
form their tasks [26]. This can be interpreted as a form of
human augmentation, in a way that recalls the Augmented
System conceptual framework introduced by the computer
science pioneer Doug Engelbart more than 50 years ago [8].
As remarked in [31], it is not only a matter of an hardware
augmentation: the software plays a key role here such that
we can talk about software-based augmentation.

These technologies can have a huge impact from an appli-
cation point view, allowing for rethinking the way in which
people work, interact and collaborate—escaping from the
limits that current mobile devices such as smartphones and
tablets enforce. A main one is about requiring users to use
their hands and watch 2D screens. Smart-glasses allow to
free users’ hands and perceive application output while per-
ceiving the physical reality where they are immersed.

The vision of pervasive/ubiquitous computing [29, 22, 11,
18], which is more and more entering in the mainstream with
the IoT [10, 33], provides a further and related form of aug-
mentation of the physical world. In this case, the augmenta-
tion is given by open ecosystems of connected and invisible
computing devices, embedded in physical objects and spread
in the physical environment, equipped with different kinds
of sensors and actuators. Data generated by these devices is
typically collected and managed in the cloud, and accessed
by mobile/cloud applications. This embedded computing
layer augments the functionalities of the physical things that
people use everyday and, again, are going to have a strong
impact on how people work, interact and collaborate [16].
This view about environment augmentation strongly recalls
the idea of computer-augmented environments by P. Wellner
et al. [30], in which the digital (cyber) world is merged with
the physical one.

In literature, these forms of augmentation are discussed in
separated contexts, mainly focusing on solving issues related
to the enabling hardware/software technologies and to de-
velop ad hoc systems for specific application domains. In
this paper we are interested to consider these augmentations
from a programming perspective. In particular we see a con-
vergence that can be captured by the idea of computation-
as-augmentation of the physical reality, and – more specifi-
cally – of computer programs designed to be an extension of
the physical environment where people live and work in. To
capture this viewpoint, in this work we propose the notion of
augmented worlds as a conceptual framework to start explor-



ing the main concepts, principles and problems underlying
these kinds of programs, their design and development. An
augmented world is a computer program augmenting the
functionalities of some physical environment by means of
full-fledge computational objects located in the space that
users can perceive and interact with by means of proper
mobile/wearable devices. These augmented entities – being
them objects, actors or agents – can model also extensions
of existing physical things, so that their state can be affected
by their physical counterpart, and, viceversa, this one can
be affected by events/actions occurring at the digital level.

In the remainder of this paper, we first provide an overview
of main concepts and features related to augmented worlds
(Section 3), abstracting from any specific programming
paradigm that can be adopted to implement them. Then, we
focus on programming, first providing a general overview of
the programming issues that concern the adoption of specific
paradigms (Section 4) and then discussing mirror worlds
(Section 5), which provide a concrete agent-oriented pro-
gramming model to develop augmented worlds.

Mirror worlds have been introduced in literature in the con-
text of smart environments modelled in terms of agents and
multi-agent systems [20]. Inspired by them, the idea of aug-
mented worlds represent a generalization aimed at capturing
the main principles concerning these new kinds of systems,
as well as discussing the main aspects involved by their de-
sign and programming.

Besides introducing the idea of augmented worlds, the aim
of this paper is also to provide an overview of some main
research challenges and open issues (Section 6), eventually
defining a first research agenda for future work.

Before describing more extensively the main concepts that
characterize augmented worlds, in next section we review
the main research work and technologies that are related to
the vision proposed here.

2. BACKGROUND
The level of sophistication achieved by the techniques de-
veloped in the context of Augmented/Mixed Reality and
Mobile Augmented Reality (MAR) research [3, 5, 24, 23]
– supported by the availability of more and more powerful
hardware (sensors, processors, displays, wearables) – makes
it possible today to focus on the design of augmented worlds
assuming that the basic enabling functionalities – such as
indoor/outdoor tracking, to determine the location and ori-
entation of things in the real world – are available, provided
by a bottom layer of the software stack. This does not con-
cern only the location—which is however an essential aspect
in our case, like in location-based applications. It may in-
clude also other elements that more generally define the user
context—in fact, the techniques developed in context-aware
computing [7] are another enabling brick of the vision.

The maturity of these technologies is witnessed by the
products and solutions that are entering into the main-
stream. Among the others, a main recent one is Microsoft
HoloLens [1]—in which we find many points of the aug-
mented world vision. By exploiting an holographic hel-
met, Microsoft HoloLens generates a multi-dimensional im-

age visible to the user wearing the helmet so that he or she
perceives holographic objects in the physical world. Holo-
graphic objects are similar to GUI objects whose canvas is
the real world—they can be pinned, or anchored, to physical
locations chosen by the user, moved according to their own
rules, or remain in a specific location within user’s field of
view regardless of where the user is or in which direction
she/he is looking. Beside the many similarities, the kind
of augmentation provided in augmented worlds is concep-
tually different. In particular, holographic objects – as far
as authors’ understanding from the information currently
available about HoloLens [1] – are meaningful only if there
is a user who (generates and) perceives them. Conversely,
an augmented world has an objective existence which does
not depend on the users that are located inside: it is first of
all a computational augmentation of the environment, which
can be then perceived by users with proper devices.

Augmented worlds are typically multi-user systems—a main
goal is to ease the development of applications supporting
collaborative hands-free human activities. From this point
view, the augmented worlds vision shares many similari-
ties with online multi-user distributed collaborative envi-
ronments such as Croquet [25]. The main difference is that,
instead of being purely virtual, augmented worlds are de-
ployed in the physical world.

The kind of augmentation typically provided by AR/MAR
system is information-oriented, i.e., the objective is to over-
lay on the physical reality a set of 2D/3D objects that pro-
vide some information content about that physical reality,
that can be perceived by proper AR browsers [12]. An im-
portant exception is given by MAR games [27], which have
many points in common with the augmented world view.
In fact, they typically create multi-user immersive environ-
ments blended with the physical reality composed not only
by informational objects but computational elements with
a behavior—e.g., game bots and characters. In this paper
we argue that the usefulness of this kind of extended aug-
mentation goes beyond games, making the investigation of
general purpose programming frameworks and abstractions
to support them a relevant research topic.

Finally, the vision proposed in this paper is strongly related
to any research work that investigates computing systems
in which the physical space become a first-order concept of
the computation layer, beyond the perspectives already de-
veloped in distributed and mobile computing. To authors’
knowledge, in literature this view has been developed so
far by spatial computing [32]—whose perspective, however,
is quite different from the one discussed in this paper. In
fact, spatial computing systems are typically based on very
large set of mobile computing devices locally-connected and
location-aware that support the execution of distributed
computations in which the spatial configuration of the el-
ements has a primary role.

3. AUGMENTED WORLDS – CONCEPTS
In this section we identify and discuss the main features that
characterize augmented worlds. These features are mostly
independent from the specific programming paradigms that
can be adopted to implement them – for this reason we will
try to abstract as much as possible from them.



Figure 1: A simple representation of an Augmented
World, focusing on spatial coupling aspect of aug-
mented entities.

3.1 Spatial Coupling
The main distinguishing feature that characterizes aug-
mented worlds is to be composed by computational objects
that are situated in some specific location of the physical
reality (see Figure 1). In the following we will refer to
these computational objects as augmented entities, abstract-
ing from the specific programming paradigm that be used
to implement them – they could be objects in OOP, actors
in actor programs, etc.

An augmented entity is instantiated at runtime by specifying
also its location, that could be either directly a geographical
position or indirectly the reference to a physical object living
in the physical reality. The location can be specified with
respect to a local system of reference defined by the aug-
mented world. An important point here is that augmented
entities are meant to model not just data items – like in the
case of POIs (Point-of-Interests) as found in MAR applica-
tions – but any full-fledged computational entity, eventually
encapsulating a state and a behaviour. This is the basic
fundamental feature which is useful in particular to build
applications where the augmentation is not just an informa-
tion layer about physical things, but more complex services
or functionalities involving processing and interaction.

It is worth clarifying that an augmented entity is bound to
some physical location not (necessarily) because it is run-
ning on some hardware device physically situated at that
location—like in the case of e.g., spatial computing [32].
The code, data and runtime state of augmented entities are
meant to be managed by one or multiple computing server
nodes hosting augmented worlds execution, possibly in the
cloud.

Besides the location, an augmented entity can have a ge-
ometry modeling the extension of the object in the physical
space, like in classic AR application. This geometry can be
described e.g., as a set of 3D points defined with respect to
a local system of reference.

Both the location and the geometry are part of the com-
putational state of the entity, and can change at runtime

then by virtue of the computation and interaction occurring
inside the augmented world.

3.2 Discovery and Observability
The spatiality of augmented entities can be exploited to en-
rich the ways in which these computational objects are dis-
covered, observed and more generally how they interact with
each other—including interaction with users.

About discovery, inside an augmented world (as a system in
execution), the reference to an augmented entity could be
retrieved by lookup functions – provided by the augmented
world runtime – specifying the region of the world to be
queried, among the possible filters. This is essentially a
pull-based approach to discovery.

Besides, a push-based/event-driven modality is useful as
well, that is: retrieving the reference to an augmented entity
as soon as it becomes observable, given its position with re-
spect to the position of the observing entity. In order to sup-
port this modality, the augmented entity abstraction can be
further characterized by two observation-related properties:
an observability neighborhood and an observation neighbor-
hood, defining a spatial-based constraint on the set of entities
that – respectively – can observe/perceive the augmented
entity and can be observed/perceived by the augmented en-
tity. The simplest kind of spatial neighborhood can be de-
fined in terms of distances between the position where the
entities are located. In this case, these properties can be
simply referred as an observability radius and observation
radius (see Figure 2, left).

As a simple example about the usefulness of these prop-
erties, an augmented entity representing a message can be
left in a specific point in a city and can be observed (read)
only by entities that are in message’s proximity (e.g., the
ones representing human users immersed in the augmented
world). As another example, a counter entity left in a spe-
cific geographical location with the purpose to count how
much entities pass near the counter, may be defined to per-
ceive all entities in a very short observation radius, but the
observability radius can be set to zero, so other entities does
not necessarily perceive the counter.

Also the properties related to observability can change at
runtime, depending on the functionality of the augmented
entity, its computing behaviour and interaction within the
world.

3.3 User Modeling and Interaction
User interaction is a main aspect of augmented worlds,
whose primary objective is to model applications where hu-
man users – and robots, eventually – are engaged in some
kind activity in some physical environment.

An augmented world is typically a multi-user application,
where multiple users perceive, share and interact within the
same augmented entities. An effective way to model a user
in an augmented world is to associate her/him with an aug-
mented entity – as a kind of augmented body – with features
that are useful for controlling user input/output and a com-
putational state reifying the dynamic information about the
user (state) that can be relevant at the application level. By



Figure 2: (left) In this time instant, the entity E1 can perceive E2 but cannot be observed by other entities
(no entities within its observability radius). Viceversa, E3 can perceive E4 and can be observed by all others
entities within its observability radius. (center) An human wearing glasses can perceive ghost entity through
its associated assistant entity. (right) Physical Embedding and Coupling issue representation.

exploiting the observation-related features, it is possible to
determine which entities of the world the user is perceiving
and their observable state (see Figure 2, center). This state
can include also the geometry of the entity, which can be
eventually exploited for constructing the view perceived by
the user.

Besides, a key aspect of this modeling is that it allows for
programming augmented entities that perceive the presence
of the users, by exploiting the same mechanisms. This fea-
ture can be useful in particular to simplify the design of
smart environments that react to events related to user state
and behavior, reified in the corresponding augmented body.

3.4 Physical Embedding
The notion of augmentation in augmented worlds eventually
means also the extension of the functionalities of existing
physical objects (see Figure 2, right). Such an extension
can be useful at two different (but related) levels.

A first one is for human users interacting with the physical
objects, extending the object affordances by means of vir-
tual interfaces to control or inspect the state of the physical
object.

A second one is for enriching the physical object function-
alities, exploiting the computing capabilities given by the
augmented layer (either embedded or not in the object it-
self). For instance, an alarm clock on the bedside table –
exploiting the associated augmented entity – can provide to
a user the functionality to seamless schedule wake-up times,
considering morning appointments on calendar or – in the
short future – considering the monitored sleep status (by
another augmented device) and adjusting wake-up timing
consequently.

This kind of augmentation requires in general some kind of
coupling between the physical objects and the correspond-
ing augmented entities providing their extension, such that
changes to the physical state of the objects are tracked and
reified in the augmented level. In other words, the aug-
mented level always needs to be informed about changes
into the physical world. When this is not possible, due to
e.g. a lack of connectivity, the augmented world’s infras-
tructure has to update a kind of meta-information for each

information/data related to physical world (like a “degree of
freshness”) to infer if and when a specific information/data
could be no longer aligned to the real state.

4. TOWARDS A PROGRAMMING MODEL
After sketching the main characteristics of augmented
worlds, we consider now the issue of how to implement them,
what kind of programming abstractions can be adopted.

OOP provides an effective approach to model the basic
structural aspects of augmented worlds. Augmented entities
can be directly mapped into simple objects – encapsulating
augmented entity state and behaviour – possibly exploiting
interfaces and classes to define the type and hierarchies of
augmented entities. An augmented object would have basic
operations to manage aspects such as the position inside the
augmented world. An augmented world in this case can be
modelled as the container of the augmented objects, pro-
viding services for their management. The observer pattern
could be used in this case to model the observability features
discussed in previous section.

This OOP modeling however is not effective to capture con-
currency and asynchronous interactions, which are main fun-
damental aspects of this kind of systems. Augmented worlds
are inherently concurrent systems. From a control point of
view, augmented entities are independent computing enti-
ties, whose computations can be triggered asynchronously
by virtue of different kind of events—user(s) actions and
other entities requests. At the logical level, they are dis-
tributed, given their spatial coupling.

These aspects can effectively captured by concurrency model
integrating objects with concurrency, such actors and actor-
like entities such as active/concurrent objects. This choice
allows for strengthening the level of encapsulation, devis-
ing augmented worlds as collections of autonomous entities
encapsulating a state, a behaviour and the control of the
behaviour. Modelling augmented entities as actors means
using direct asynchronous message passing to model every
kind of interaction occurring inside an augmented world.
In this case, the observation-related features can be imple-
mented as a framework on top, by means of, e.g., pre-defined
actors providing functionalities related to lookup/discovery
and spatial-driven observation. Alternatively, these features



can be embedded in the actor framework/language, extend-
ing the basic model.

The observation-related features can be directly captured
instead by adopting an agent-oriented modelling. In that
case, an augmented world can be modeled in terms of au-
tonomous agents situated into a virtual environment making
the bridge between the physical and augmented layer. The
augmented entities would be the basic bricks composing such
environment, which can be observed and manipulated by the
agents by means of the environment interface (i.e. the set
of actions/percepts).

In next section we go deeper in this modeling, by discussing
a first example of agent-oriented augmented world program-
ming based on mirror worlds.

5. THE CASE OF MIRROR WORLDS
Mirror words (MW) have been introduced in [20] as an
agent-oriented approach to conceive the design of future
smart environments, integrating in the same unifying model
perspectives and visions from Distributed Systems [9], Am-
bient Intelligence (AmI) and Augmented Reality. In the
MW vision, smart spaces are modelled as digital cities
shaped in terms of the physical world to which they are
coupled, inhabited by open societies and organisations of
software agents playing the role of the inhabitants of those
cities. Mirroring is given by the fact that physical things,
which can be perceived and acted upon by humans in the
physical world, have a digital counterpart (or augmentation,
extension) in the mirror, so that they can be observed and
acted upon by agents. Viceversa, an entity in the MW that
can be perceived and acted upon by software agents, may
have a physical appearance (or extension) in the physical
world—e.g., augmenting it, in terms of AR, so that it can
be observed and acted upon by humans.

Mirror worlds are based on the A&A (Agents and Arti-
facts) [14] meta-model, introduced in agent-oriented soft-
ware engineering to exploit also the agent environment as a
first-order abstraction aside to agents to model and design
multi-agent systems. In particular, A&A introduces artifacts
as first-class abstractions to model and design the applica-
tion environments where agents are logically situated. An
artifact can be used to model and design any kind of (non-
autonomous) resources and tools used and possibly shared
by agents to do their job [21]. Artifacts have an observ-
able state that agents can perceive and a set of operations,
that agents can request as actions to affect the world. The
observable state is represented by a set of observable proper-
ties, whose value can change dynamically depending on the
actions executed on the artifact. Like objects in OOP, arti-
facts can have also a hidden state, not accessible to agents.
The concept of observable state is provided to support event-
driven forms of interaction between agents and artifacts, so
that an agent observing an artifact is asynchronously no-
tified with an event each time the state of the artifact is
updated. Artifacts are collected in workspaces, which rep-
resent logical containers defining the topology of the multi-
agent system, which may be distributed over the network.

The interactions among agents and artifacts are fully asyn-
chronous. Actions on artifacts executed by agents – which

encapsulate their own logical thread of control, like actors –
are executed by separate threads of control with respect to
the agent one. Operations are executed transactionally, so
the execution of multiple actions concurrently on the same
artifact is safe [21].

5.1 Mirror Worlds as Augmented Worlds
Given the augment worlds conceptual framework introduced
in this paper, a mirror world can be described as an agent-
oriented augmented world, implementing some of the prin-
ciples that have been discussed in Section 3.

Artifacts and workspaces are used in mirror worlds to model
the bridge between the augmented world layer and the phys-
ical reality layer. In particular, a MW is modelled in term
of a set of mirror workspaces, which extend the notion of
workspace defined in A&A with a map specifying which part
of the physical world is coupled by the MW. It could be a
part a city, a building, a room. The map defines a local
system of reference to locate mirror artifacts inside. Mirror
artifacts are simply artifacts anchored to some specific loca-
tion inside the physical world, as defined by the map. Such
location could be either a geo-location, or some trackable
physical marker/object. Thus, mirror artifacts realize the
spatial coupling defined in Section 3.

About observability, in a MW an agent can perceive and
observe a mirror artifact in two basic ways. One is exactly
the same as for normal artifacts, that is explicitly focusing
on the artifact, given its identifier [21]—focusing is like a
subscribe action in publish/subscribe systems. The second
one instead is peculiar to mirror workspace and is the core
feature of agents living in mirror workspaces, that is: per-
ceiving an artifact depending on its position, without the
need of explicit subscription (focusing). To that purpose,
an agent joining a mirror workspace can create a body arti-
fact, which is a built-in mirror artifact useful to situate the
agent in a specific location of the workspace. We call mirror
agent an agent with a body in a mirror workspace. Observ-
ability is ruled by two parameters – as defined in Section 3
– the observability radius and the observation radius. The
observability radius is defined for each mirror artifact and
defines the maximum distance within which an agent (body)
must be located in order to perceive the artifact. The ob-
servation radius instead is defined for each agent body and
defines the maximum distance within which a mirror arti-
fact must be located in order to be perceived by an agent.
Thus, a mirror artifact X located at the position Xpos, with
an observability radius Xr is observable by a mirror agent
with a body B, located in Bpos, with an observation radius
BR, iff d <= Xr and d <= BR, being d the distance be-
tween Xpos and Bpos. Both parameters can be changed at
runtime.

The user interface in MW is currently realized by user assis-
tant mirror agents with a body coupled to the physical loca-
tion of the human user, by means of a smart device—glass,
phone, whatever. Such agents perceive mirror artifacts in
the nearby of the user location, their observable state, and
can select and represent them on the smart-glass worn by
the user. The representation can range from simple mes-
sages and cues to full-fledged augmented reality rendering,
eventually superimposing virtual 3D objects on the image



of the physical reality.

About the physical embedding discussed in Section 3, mirror
artifacts can be either completely virtual, or coupled to some
object of the physical reality. In the first case, the geo-
position inside the mirror (and the physical environment)
is specified when instantiating the artifact, and it can be
updated then by operations provided by the artifact. In
the second case, at the infrastructure level, the state and
position of the mirror artifact is kept synchronized to the
state and position of the physical object by the MW runtime,
by means of suitable sensors/embedded devices.

5.2 Programming Mirror Worlds
A first implementation of Mirror Worlds has been developed
on top of the JaCaMo agent framework [19], which directly
supports the A&A meta-model. Agents are programmed
using the Jason agent programming language [4], which
is a practical extension and implementation of AgentS-
peak(L) [17]; Artifact-based environments are programmed
using the CArtAgO framework [21], which provides a Java
API for that purpose.

The MW API are currently a layer on top of JaCaMo, in-
cluding:

• MirrorArtifact artifact template, extending the
Artifact CArtAgO base class and representing the ba-
sic template to be further extended and specialized to
implement specific kinds of mirror artifacts. The usage
interface of this artifact includes:

– a pos observable property, containing the current
location in the mirror workspace of the artifact;

– observabilityRadius observable property, stor-
ing the current observability radius of the artifact;

– specific operations (setPos, setObservability
Radius) for updating the position and the observ-
ability radius.

The usage interface of agent bodies includes also an
observationRadius observable property, storing the
current observation radius of the agent, and the re-
lated operation setObservationRadius for updating
such radius.

• a new set of actions to be used by agents for creating
mirror workspaces and mirror artifacts inside, includ-
ing agent bodies.

• some utility artifacts are available providing function-
alities useful for agents working in the mirror. An
example is given by the GeoTool, which provides func-
tionalities for converting the coordinates and comput-
ing distances.

In the remainder of the section we give an overview of MW
programming in JaCaMo by considering a simple example
of mirror world, a kind of hello, world. An overview of
the main elements of the example is shown in Figure 3.
The mirror world is composed by a single mirror workspace
(called mirror-example) mapped onto a city zone in the

human user

MIRROR 
WORLD

hellomsg

pospos

hello

PHYSICAL 
WORLD

user ass.
agent 

mirror-example workspace

SituatedMessage

Agent
Bodypos

perceive

5nTouches

ghost agent 

touch

perceive

Agent
Body

perceive

Figure 3: Main elements included in the exam-
ple discussed in Section 5: a mobile user walking
along the streets and the corresponding user assis-
tant agent, with a body located at the position de-
tected by the GPS. A situated message, modelled as
a SituatedMessage mirror artifact. A ghost, as a mir-
ror agent autonomously walking through the streets.

center of a city (Cesena, in this case, in Italy). The mir-
ror workspace is dynamically populated of mirror artifacts
representing messages situated in some specific point of the
city (template SituatedMessage). Besides keeping track of
a message, these artifacts embed a counter and a touch op-
eration to increment it. Mobile human users walk around
the streets along with their user assistant agents, running
on their mobile device (e.g, the smartphone or directly the
smart glasses). As soon as user assistant agents perceive a
situated message, they display it on the smart glasses worn
by the users. In the MW there are also some ghost mirror
agents that are moving around autonomously along some
streets of the city, perceiving and interacting with the sit-
uated messages as well. They react to situated messages
perceived while walking, eventually executing a touch ac-
tion on the mirror artifact encountered. Besides, if/when a
ghost agent reaches a human user, it hugs her/him, which
is physically perceived by a trembling of the smartphone.
This occurs by executing a tremble action on the artifact
modeling the user mobile device.

The example includes also a control room (see Figure 4),
which is a remote desktop application which allows to track
the real-time state of the running mirror world, showing the
position of mirror agents (red circles) – actually the body of
mirror agents – and the position of mirror artifacts, i.e. the
situated messages in the example.

This simple example contains most of the main ingredients
of an augmented/mirror world. The situated messages rep-
resent stateful augmented entities, with a simple behaviour;
Such augmented entities are shared, perceived and manip-
ulated by both the human users (indirectly through the
user assistant agents) and the other autonomous agents liv-
ing in the mirror—i.e., the ghosts. Through the mirror,
such agents can have an effect also on the physical world
(trembling of the smartphones). An aspect which is quite
overlooked in the example is the visual representation of
augmented objects, which is currently fairly simple (just
messages)—more sophisticated AR-based views are planned



human
user

MIRROR 
WORLD hellomsg

pospos

helloPHYSICAL 
WORLD

user ass.
agent 

mirror-example
workspace

Situated
Message
artifact

Agent
Body

Figure 4: The map visualised by the control room,
showing the position of mirror agents (red circles)
– that is, the body of mirror agents – and the po-
sition of mirror artifacts, i.e. situated messages in
the example.

in the future.

In order to have a concrete taste of MW programming, in
the following we show some details about how the mirror
agents and artifacts are programmed—the full code is avail-
able in [15], along with the experimental JaCaMo distribu-
tion supporting mirror worlds.

5.2.1 Defining Mirror Artifacts
The situated messages of the example are implemented by
the the SituatedMessage mirror artifact—Figure 5 shows
the implementation of the Java class representing the arti-
fact template. Artifacts in CArtAgO can be defined as classes
extending the Artifact base class. Methods annotated
with @OPERATION define the operations available to agents.
Observable properties are managed by means of prede-
fined primitives (e.g. defineObsProperty, getObsProperty,
. . . )—implemented as protected methods of the base class.
Operation execution is atomic, so – similarly to monitors –
only one operation at a time can be running inside an arti-
fact. Changes to the observable properties are made observ-
able to agents only when an operation has completed. Fur-
ther details about the artifact model are described in [21].

A mirror artifact can be defined by extending the base
MirrorArtifact class—which is an extension itself of
the CArtAgO Artifact class. SituatedMessage has
two observable properties (besides the ones inherited by
MirrorArtifact), msg and nTouches, storing the content
of the message and the counter keeping track of the num-
ber of times that the message has been touched. The touch
operation allows to increment the counter.

5.2.2 Implementing Agents in the Mirror
Agents in the mirror are normal Jason agents, with more
actions available—given by the new artifacts introduced by
the MW framework. In particular, specific actions are avail-
able for creating mirror workspaces and instantiating mir-
ror artifacts. As an example, Figure 6 shows the code of

1 public class SituatedMessage extends MirrorArtifact {
2
3 public void init(String msg){
4 super.init(msg);
5 defineObsProperty("msg",msg);
6 defineObsProperty("nTouches",0);
7 }
8
9 @OPERATION void touch(){

10 updateObsProperty("nTouches",
11 getObsProperty("nTouches").intValue()+1);
12 }
13 }

Figure 5: Source Code of the mirror artifact repre-
senting a situated message.

1 /* initial beliefs */
2
3 /* the center of the mirror -- latitude/longitude */
4 poi("isi_cortile", 44.13983, 12.24289).
5
6 /* the point of interests, where to put the messages */
7 poi("pasolini_montalti",44.13948, 12.24384).
8 poi("sacchi_pasolini",44.13952, 12.24340).
9

10 /* initial goal*/
11 !setupMW.
12
13 /* the plans */
14
15 +!setupMW
16 <- ?poi("isi_cortile",Lat,Long);
17 createMirrorWorkspace("mirror-example",Lat,Long);
18 joinWorkspace("mirror-example");
19 /* create an aux artifact to help coordinate conversion */
20 makeArtifact("geotool","GeoTool",[Lat,Long]);
21 /* create the situated messages */
22 !create_messages;
23 println("MW ready.").
24
25 /* to create the situated message mirror artifacts */
26 +!create_messages
27 <- ?poi("pasolini_montalti",Lat,Lon);
28 toCityPoint(Lat,Lon,Loc);
29 createMirrorArtifactAtPos("a1","SituatedMessage",
30 ["hello #1"],Loc,2.5);
31 ?poi("sacchi_pasolini",Lat2,Lon2);
32 toCityPoint(Lat2,Lon2,Loc2);
33 createMirrorArtifactAtPos("a2","SituatedMessage",
34 ["hello #2"],Loc2,2.5).

Figure 6: Code of the majordomo agent.

a majordomo agent, whose task is to setup the initial en-
vironment of the MW of our example. The agent creates
a mirror workspace, called mirror-example (line 17), and
a couple of SituatedMessage mirror artifacts (plan at lines
26-34), located at two POIs tagged as pasolini_montalti
and sacchi_pasolini (which are two street intersections on
the map). The action createMirrorArtifactAtPos makes
it possible to instantiate a new mirror artifact, specifying its
logical name, the template (the Java class name), its loca-
tion pos and the observability radius (in meter). The utility
artifact (GeoTool template) used by the agent provides func-
tionalities to manage geographical coordinates, in particular
to convert global latitude/longitude coordinates into the lo-
cal one of the mirror workspace (toCityPoint operation).

The first example of mirror agent is given by user assistant
agents, whose code is shown in Figure 7. The agent first cre-



ates (in its default/local workspace) a SmartGlassDevice
artifact (line 8), to be used as output device to display
messages, by means of the displayMsg operation. Then,
the agent joins the mirror workspace and creates its body,
with observation radius of 10 meters—to this purpose the
createAgentBody action is used, specifying the observing
and observability radii (line 14). The body is bound to
a GPSDeviceDriver device driver artifact (line 18), previ-
ously created (line 16). The device driver implements the
coupling between the position detected by the GPS sensor,
available on the smartphone of the user. When the human
user approaches a point in the physical world where a sit-
uated message is located, the user assistant agent perceives
the message and reacts by simply displaying it on the glasses
(lines 23-25). When (if) the human user moves away from
the mirror artifact, the belief about the message is removed
and the use assistant agent reacts by displaying a further
message (lines 27-29).

Figure 8 shows the code of the ghost mirror agents, au-
tonomously walking through some streets of the mirror
world. They have a walk_around goal (line 8), and the
plan for that goal (line 12) consists in repeatedly doing
the same path, whose nodes (a list of point-of-interests) is
stored in the path belief (line 5). They move by changing
the position of their body, by executing a moveTowards ac-
tion available in each mirror artifact—specifying the target
point (to define the direction) and the distance to be covered
(in meters). The plan for reaching an individual destina-
tion of the path (lines 23-29) simply computes the distance
from the target (exploiting the computeDistanceFrom, pro-
vided by the GeoTool artifact) and then, if the distance is
greater than one meter, it moves the body of 0.5 meter and
then goes on reaching, by requesting recursively the sub-
goal !reach_dest; otherwise it completes the plan (the des-
tination has been reached). Ghosts too react to messages
perceived while walking (plan at lines 38-41), eventually ex-
ecuting a touch action on each message encountered and
printing to the console the current number of touches ob-
served on the message. Instead, when a ghost perceives a
human (lines 43-46) – by perceiving the body of the user
assistant agent – it reacts by making a trembling on the
smartphone owned by the human user. body is an observ-
able property provided by each agent body artifact, contain-
ing the identifier of the user assistant agent which created
the body. Trembling happens by executing a tremble ac-
tion on the artifact which the user assistant agent created
to enable the physical interaction with the corresponding
human user. By convention, in the example, these artifacts
are created with the name user-dev-X, where X is name of
the user assistant agent. This convention allows the ghost
agent to retrieve the identifier of the artifact dynamically
given its logic name, by doing a lookup (line 45).

5.3 Remarks
The example, in spite of its simplicity and of the de-
tails about Jason/CArtAgO programming, should provide a
first idea about the level of abstraction provided by agent-
oriented programming for designing and programming aug-
mented worlds. The main strength is that it allows to model
the augmented world in a way which is similar to the real
world—even more similar in our opinion than the modeling
provided by paradigms such as actors or concurrent objects.

1 /* User assistant agent */
2
3 /* goal of the agent */
4 !monitor_and_display_messages.
5
6 +!monitor_and_display_messages
7 <- /* setup the smart glass device */
8 makeArtifact("viewer","SmartGlassDevice",[],Viewer);
9 /* keep track of the device id with a viewer belief */

10 +viewer(Viewer);
11 /* join the mirror workspace */
12 joinWorkspace("mirror-example");
13 /* create the agent body */
14 createAgentBody(1000,10,Body);
15 /* create the artifact used as MW coupling device */
16 makeArtifact("driver","GPSDeviceDriver",Dev);
17 /* bind the body to the device */
18 bindTo(Body)[artifact_id(Dev)];
19 println("ready.").
20
21 /* plans reacting to situated messages perceived in the mirror worlds */
22
23 +msg(M) : viewer(Dev)
24 <- .concat("new message perceived: ",M,Msg);
25 displayMsg(100,50,Msg)[artifact_id(Dev)].
26
27 -msg(M) : viewer(Dev)
28 <- .concat("message ",M," no more perceived. ",Msg);
29 displayMsg(100,50,Msg)[artifact_id(Dev)].

Figure 7: Code of the user-assistant agents.

1 /* ghost agent initial beliefs */
2
3 start_pos("pasolini_chiaramonti").
4 /* path of the walk - 2 steps*/
5 path(["sacchi_pasolini","pasolini_montalti"]).
6
7 /* initial goal */
8 !walk_around.
9

10 /* plans */
11
12 +!walk_around <- !setup; !moving.
13
14 +!moving <- ?path(P); !make_a_trip(P); !moving.
15
16 +!make_a_trip([POI|Rest])
17 <- ?poi(POI,Lat,Lon);
18 !reach_dest(Lat,Lon);
19 !make_a_trip(Rest).
20 +!make_a_trip([])
21 <- ?start_pos(Start); ?poi(Start,Lat,Lon); !reach_dest(Lat,Lon).
22
23 +!reach_dest(Lat,Lon) : myBody(B)
24 <- toCityPoint(Lat,Lon,Target);
25 computeDistanceFrom(Target,Dist)[artifact_id(B)];
26 if (Dist > 1){
27 moveTowards(Target,0.5)[artifact_id(B)];
28 .wait(50);
29 !reach_dest(Lat,Lon)}.
30
31 +!setup
32 <- joinWorkspace("mirror-example",Mirror);
33 lookupArtifact("geotool",Tool); focus(Tool);
34 ?start_pos(Point); ?poi(Point,Lat,Lon); toCityPoint(Lat,Lon,P);
35 createAgentBodyAtPos(P,1000,10,Body);
36 +myBody(Body); .my_name(Me); +me(Me).
37
38 +msg(M) [artifact_id(Id)]
39 <- touch [artifact_id(Id)];
40 ?nTouches(C)[artifact_id(Id)];
41 println("new message perceived: ",M," - touch count: ",C).
42
43 +body(Who) : me(Me) & Who \== Me
44 <- .concat("user-dev-",Who,Dev);
45 lookupArtifact(Dev,DevId);
46 tremble [artifact_id(DevId)].

Figure 8: Code of ghost agents.



In particular, both in the real world and the augmented
worlds, a main role is played by indirect interactions (vs.
direct message passing) based on the (asynchronous) ob-
servation of events occurring in the environment. This is
directly captured by the agent/environment abstractions.

6. CHALLENGES AND FUTURE WORK
The development of augmented worlds relies on the avail-
ability of enabling technologies that deal with issues and
challenges of different kinds. An example is given by track-
ing and registration, which are a main concern of the AR
and MAR layer [3, 5].

Besides the challenges in the enabling layers, there are fur-
ther issues that specifically concern the augmented worlds
model.

A main general one is related to the level of real-time cou-
pling and synchronization between the computational aug-
mented layer and the physical layer. This coupling/synchro-
nization is critical from users’ perspective, since it impacts
on what users perceive of an augmented world, and then
how they reason about it and act consequentially. Being a
multi-user system, two users must perceive the same observ-
able state of the shared augmented entities. If a part of the
augmented world is temporarily disconnected – because of,
e.g., some network transient failure – users must be able to
realize this.

These aspects are challenging in particular because – like
in distributed systems in general – it is not feasible in an
augmented world to assume a single clock defining a cen-
tralized notion of time. Conversely, it is fair to assume that
each augmented entity has its own local clock and the events
generated inside an augmented world can be only partially
ordered. In spite of the distribution, causal consistency must
be guaranteed, in particular related to chains of events that
span from the physical to the digital layer and viceversa.
That is, if an augmented entity produces a sequence of two
events concerning the change of its observable state, the
same sequence must be observed by different human users
immersed in the augmented world.

Similar challenges are found in online multi-user distributed
collaborative systems. As a main example, Croquet is based
on TeaTime [25], a scalable real-time multi-user architec-
ture which manages the communication among objects, and
their synchronization. The spatial coupling and physical
embedding properties of augmented worlds introduce fur-
ther elements and complexities, that are not fully captured
by strategies adopted in purely virtual systems.

Finally, the aim of this paper was to introduce the vi-
sion about augmented worlds, along with a first conceptual
framework discussing some main features of their program-
ming abstractions. Clearly, a more rigorous and compre-
hensive approach is needed to tackle the development and
engineering of non-naive augmented worlds, and, more gen-
erally, to achieve a deeper understanding of the computation-
as-augmentation view. This understanding includes, e.g.,
investigating if and how spatial coupling impacts on system
modularity, compositionality, extensibility. To this purpose,
the definition of formal models capturing the main aspects

and properties of this kind of programs appears an impor-
tant future work. Another important investigation concerns
the design of proper tools supporting the development/de-
bugging/profiling of augmented worlds. These tools must
provide specific features to deal with the characteristics de-
scribed in Section 3. To this purpose, the design of proper
real-time simulators – allowing to run an augmented world
like, e.g., a first-person perspective video-game – appears an
interesting solution to explore.

7. CONCLUSION
The fruitful integration of enabling technologies concerning
augmented reality, mobile/wearable computing and perva-
sive computing makes it possible to envision a new genera-
tion of software systems in which computation and program-
ming can be exploited to shape various forms of augmenta-
tion of the physical reality.

Augmented worlds – introduced in this paper – are programs
that are meant to extend the physical world by means of full-
fledge computational entities logically situated in some phys-
ical location, possibly enriching the functionalities of exist-
ing physical objects. Mirror words [20, 19] provide a con-
crete agent-oriented programming model for building aug-
mented worlds—based on the A&A conceptual model and
the JaCaMo platform.

The main contribution of this work is to lay down the first
basic bricks about the augmented worlds vision, and to trig-
ger further research and practical investigations, including
the engineering of real-world and robust applications based
on these ideas.

8. REFERENCES
[1] Microsoft HoloLens, Official web site.

https://www.microsoft.com/microsoft-hololens.
[2] R. Azuma, Y. Baillot, R. Behringer, S. Feiner,

S. Julier, and B. MacIntyre. Recent advances in
augmented reality. Computer Graphics and
Applications, IEEE, 21(6):34–47, 2001.

[3] R. T. Azuma et al. A survey of augmented reality.
Presence, 6(4):355–385, 1997.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldrige.
Programming Multi-Agent Systems in AgentSpeak
using Jason. Wiley Series in Agent Technology. John
Wiley & Sons, 2007.

[5] E. Costanza, A. Kunz, and M. Fjeld. Human machine
interaction. chapter Mixed Reality: A Survey, pages
47–68. Springer-Verlag, Berlin, Heidelberg, 2009.

[6] K. Curran, D. McFadden, and R. Devlin. The role of
augmented reality within ambient intelligence. Int.
Journal of Ambient Computing and Intelligence,
3(2):16–33, 2011.

[7] A. K. Dey. Understanding and using context. Personal
and ubiquitous computing, 5(1):4–7, 2001.

[8] D. C. Engelbart and W. K. English. A research center
for augmenting human intellect. In Proceedings of the
December 9-11, 1968, Fall Joint Computer
Conference, Part I, AFIPS ’68 (Fall, part I), pages
395–410, New York, NY, USA, 1968. ACM.

[9] D. H. Gelernter. Mirror Worlds: or the Day Software
Puts the Universe in a Shoebox...How It Will Happen



and What It Will Mean. Oxford, 1992.
[10] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami.

Internet of things (iot): A vision, architectural
elements, and future directions. Future Gener.
Comput. Syst., 29(7):1645–1660, 2013.

[11] S. Kurkovsky. Pervasive computing: Past, present and
future. 5th IEEE International Conference on
Information and Communications Technology
(ICICT), 2007.

[12] T. Langlotz, T. Nguyen, D. Schmalstieg, and
R. Grasset. Next-generation augmented reality
browsers: Rich, seamless, and adaptive. Proceedings of
the IEEE, 102(2):155–169, Feb 2014.

[13] P. Milgram and F. Kishino. A taxonomy of mixed
reality visual displays. IEICE Trans. Information
Systems, E77-D(12):1321–1329, Dec. 1994.

[14] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the
A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems,
17(3):432–456, 2008.

[15] Pervasive Software Lab – DISI, University of Bologna.
JacaMo-MW – mirror worlds in JaCaMo.
https://bitbucket.org/pslabteam/mirrorworlds, 2015.

[16] R. Poovendran. Cyber-physical systems: close
encounters between two parallel worlds. Proceedings of
the IEEE, 98(8), 2010.

[17] A. S. Rao. Agentspeak (l): Bdi agents speak out in a
logical computable language. In Agents Breaking
Away, pages 42–55. Springer, 1996.

[18] S. Reeves. Envisioning ubiquitous computing. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, pages
1573–1582. ACM, 2012.

[19] A. Ricci, A. Croatti, P. Brunetti, and M. Viroli.
Programming Mirror-Worlds: an Agent-Oriented
Programming Perspective. In Engineering Multi-Agent
Systems Third International Workshop, EMAS 2015,
Revised Selected Papers, LNCS. Springer, 2015. To
Appear.

[20] A. Ricci, M. Piunti, L. Tummolini, and
C. Castelfranchi. The mirror world: Preparing for
mixed-reality living. IEEE Pervasive Computing,
14(2):60–63, 2015.

[21] A. Ricci, M. Piunti, and M. Viroli. Environment
programming in multi-agent systems: an
artifact-based perspective. Autonomous Agents and
Multi-Agent Systems, 23(2):158–192, Sept. 2011.

[22] M. Satyanarayanan. Pervasive computing: Vision and
challenges. IEEE Personal Communications, 8:10–17,
2001.

[23] D. Schmalstieg, T. Langlotz, and M. Billinghurst.
Augmented reality 2.0. In G. Brunnett, S. Coquillart,
and G. Welch, editors, Virtual Realities, pages 13–37.
Springer Vienna, 2011.

[24] D. Schmalstieg and G. Reitmayr. The world as a user
interface: Augmented reality for ubiquitous
computing. In G. Gartner, W. Cartwright, and
M. Peterson, editors, Location Based Services and
TeleCartography, Lecture Notes in Geoinformation
and Cartography, pages 369–391. Springer Berlin
Heidelberg, 2007.

[25] D. A. Smith, A. Kay, A. Raab, and D. P. Reed.
Croquet-a collaboration system architecture. In
Creating, Connecting and Collaborating Through
Computing, 2003. C5 2003. Proceedings. First
Conference on, pages 2–9. IEEE, 2003.

[26] T. Starner. Project Glass: An Extension of the Self.
Pervasive Computing, IEEE, 12(2):14–16, April 2013.

[27] B. H. Thomas. A survey of visual, mixed, and
augmented reality gaming. Comput. Entertain.,
10(3):3:1–3:33, Dec. 2012.

[28] J. Tiffin and N. Terashima. HyperReality: Paradigm
for the Third Millenium. Routledge, 2001.

[29] M. Weiser. The computer for the 21st century.
SIGMOBILE Mob. Comput. Commun. Rev.,
3(3):3–11, July 1999.

[30] P. Wellner, W. Mackay, and R. Gold.
Computer-augmented environments: back to the real
world. Communications of the ACM, 36(7), 1993.

[31] C. Xia and P. Maes. The design of artifacts for
augmenting intellect. In Proceedings of the 4th
Augmented Human International Conference, pages
154–161. ACM, 2013.

[32] F. Zambonelli and M. Mamei. Spatial computing: An
emerging paradigm for autonomic computing and
communication. In M. Smirnov, editor, Autonomic
Communication, volume 3457 of Lecture Notes in
Computer Science, pages 44–57. Springer Berlin
Heidelberg, 2005.

[33] D. Zhang, L. T. Yang, and H. Huang. Searching in
internet of things: Vision and challenges. in Proc.
IEEE 9th Int. Symp. Parallel Distrib. Process. Appl.

(ISPA), 2011.


