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Abstract
Diderot is a parallel domain-specific language designed to
provide biomedical researchers with a high-level mathemat-
ical programming model where they can use familiar ten-
sor calculus notations directly in code without dealing with
underlying low-level implementation details. These oper-
ations are executed as parallel independent computations,
called strands, in a bulk synchronous parallel (BSP) fashion.
The original BSP model of Diderot limited strand creation
to initialization time and did not provide any mechanisms
for communication between strands. For algorithms, such as
particle systems, where strands are used to explore the image
space, it is useful to be able to create new strands dynami-
cally and share data between strands.

In this paper, we present an updated BSP model with
three new features: a spatial mechanism that retrieves nearby
strands based on their geometric position in space, a global
mechanism for global computations (i.e., parallel reduc-
tions) over sets of strands and a mechanism for dynamically
allocating new strands. We also illustrate through examples
how to express these features in the Diderot language. More,
generally, by providing a communication system with these
new mechanisms, we can effectively increase the class of
applications that Diderot can support.

Keywords Actor Model, Domain Specific Languages, Im-
age Analysis, Scientific Visualization, Parallelism,

1. Introduction
Biomedical researchers use imaging technologies, such as
computed tomography (CT) and magnetic resonance (MRI)
to study the structure and function of a wide variety of bio-
logical and physical objects. The increasing sophistication of
these new technologies provide researchers with the ability

to quickly and efficiently analyze and visualize their com-
plex data. But researchers using these technologies may not
have the programming background to create efficient paral-
lel programs to handle their data. We have created a language
called Diderot that provides tools and a system to simplify
image data processing.

Diderot is a parallel domain specific language (DSL) that
allows biomedical researchers to efficiently and effectively
implement image analysis and visualization algorithms.
Diderot supports a high-level mathematical programming
model that is based on continuous tensor fields. We use ten-
sors to refer to scalars, vectors, and matrices, which contain
the types of values produced by the medical imaging tech-
nologies stated above and values produced by taking spatial
derivatives of images. Algorithms written in Diderot can be
directly expressed in terms of tensors, tensor fields, and ten-
sor operations, using the same mathematical notation that
would be used in vector and tensor calculus. Diderot is tar-
geted towards image analysis and visualization algorithms
that use real image data, where the data is better processed
as parallel computations.

We model these independent computations as autonomous
lightweight threads called strands. Currently, Diderot only
supports applications that allow strands to act independently
of each other, such as direct volume rendering [7] or fiber
tractography [9]. Many of these applications only require
common tensor operations or types (i.e., reconstruction and
derivatives for direct volume rendering or tensor fields for
fiber tractography), which Diderot already provides. How-
ever, Diderot is missing features needed for other algorithms
of interest, such as particle systems,where strands are used
to explore image space and may need to create new strands
dynamically or share data between other strands.

In this paper, we present new communication mecha-
nisms for our parallelism model that include support for
inter-strand communication, global computations over sets
of strands, and dynamic allocation of strands. Inter-strand
communication is a spatial mechanism that retrieves the state
information of nearby strands based on their geometric posi-
tion in space. Global communication is a mechanism based
on sharing information on a larger scale within the program
using parallel reductions. Finally, new strands can be created



during an execution step and will begin running in the next
iteration.

The paper is organized as follows. In the next section, we
discuss our parallelism model and applications that benefit
from this new communication system. We then present the
communication system’s design details in Section 3 and de-
scribe important aspects of our implementation in Section 4.
A discussion of related work is presented in Section 5. We
briefly summarize our system and describe future plans for
it in Section 6.

2. Background
Diderot is based around two fundamental design aspects: a
high-level mathematical programming model, and an effi-
cient execution model. The mathematical model is based on
linear algebra and properties of tensor calculus. More back-
ground details about our mathematical model and its design
are covered in an earlier paper [5]. This paper focuses more
on the execution model of Diderot. This deterministic model
executes these independent strands in a bulk-synchronous
parallel (BSP) fashion [20] [21]. This section provides a
brief overview of our execution model and discusses poten-
tial new applications that benefit from these new features.

2.1 Program Structure
Before discussing our execution model, it would be bene-
ficial to provide a simple example that describes the struc-
ture of a Diderot program. A program is organized into three
sections: global definitions, which include program inputs;
strand definitions, which define the computational core of
the algorithm; and initialization, which defines the initial set
of strands. We present a program that uses Heron’s method
for computing square roots (shown in Figure 1) to illustrate
this structure.

Lines 1–3 of Figure 1 define the global variables of our
program. Line 3 is marked as an input variable, which
means it can be set outside the program (input variables
may also have a default value, as in the case of eps).
Lines 1–2 load the dynamic sequence of integers from the
file "numbers.nrrd", binds the sequence to the variable
args and retrieves the number of elements in args.

Similar to a kernel function in CUDA [18] or OpenCL [14],
a strand defintion in Diderot encapsulates the computational
core of the application. Each strand has parameter(s) (e.g.,
arg on Line 5), a state (Line 7) and an update method
(Lines 8–12). The strand state variables are initialized when
the strand is created. State variables can be declared as one of
our five concrete types: booleans, integers, strings, tensors,
and fixed-size sequences of values; some variables may be
annotated as output variables (Line 7), which define the
part of the strand state that is reported in the program’s out-
put. Heron’s method begins with choosing an arbitrary initial
value (the closer to the actual root of arg, the better). In this
case, we assign the initial value of root to be our real num-

1 int{} args = load("numbers.nrrd");
2 int nArgs = length(args);
3 input real eps = 0.00001;
4
5 strand SqRoot (real arg)
6 {
7 output real root = arg;
8 update {
9 root = (root + arg/root) / 2.0;

10 if (|rootˆ2 - arg| / arg < eps)
11 stabilize;
12 }
13 }
14
15 initially { SqRoot(args{i}) |
16 i in 0 .. nArgs-1 };

Figure 1: A complete Diderot program that uses Heron’s
method to compute the square root of integers loaded from a
file.

ber arg. Unlike globals, strand state variables are mutable.
In addition, strand methods may define local variables (the
scoping rules are essentially the same as C’s).

The update method of the SqRoot strand performs the
approximation step of Heron’s method (Line 9). The idea is
that if root is an overestimation to the square root of arg
then arg

root will be an underestimate; therefore, the average
of these two numbers provides a better approximation of
the square root. In Line 10, we check to see if we achieved
our desired accuracy as defined by eps, in which case we
stabilize the strand (Line 11), which means the strand ceases
to be updated.

The last part of a Diderot program is the initialization sec-
tion, which is where the programmer specifies the initial set
of strands in the computation. Diderot uses a comprehen-
sion syntax, similar to those of Haskell or Python, to define
the initial set of strands. When the initial set of strands is
specified as a collection, it implies that the program’s output
will be a one-dimension array of values; one for each stable
strand. In this program, each square root strand will produce
the approximate square root of an integer.

2.2 Execution Model
Our BSP execution model is shown in Figure 2. In this
model, all active strands execute in parallel execution steps
called super-steps. There are two main phases to a super-
step: a strand update phase and a global computation phase.
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Figure 2: Illustrates two iterations of our current bulk syn-
chronous model.

The strand update phase executes a strand’s update method,
which changes its state. During this phase, strands may read
the state of other strands but cannot modify it. Strands see
the states as they were at the beginning of a super-step. This
property means we must maintain two copies of the strand
state. One for strand reading purposes and one for updating a
strand state during the execution of an update method. Also,
strands can create new strands that will begin executing in
the next super-step. The idle periods represent the time from
when the strand finishes executing its update method to the
end of the strand update phase. Stable strands remain idle
for the entirety of its update phase. Dead strands are sim-
ilar to stable strands where they remain idle during their
update phase but also do not produce any output. Before
the next super-step, an optional global computation phase is
executed. Inside this phase, global variables can be updated
with new values. In particular, global variables can be up-
dated using common reduction operations. These updated
variables can be used in the next super-step, but note they
are immutable during the strand update phase. Finally, the
program executes until all of the strands are either stable or
dead.

2.3 Supporting Applications
Particle systems is a class of applications that greatly benefit
from this updated BSP model. One example is an algorithm
that distributes particles on implicit surfaces. Meyer uses a
class of energy functions to help distribute particles on im-
plicit surfaces within a locally adaptive framework [16]. The
idea of the algorithm is to minimize the potential energy as-
sociated with particle interactions, which will distribute the
particles on the implicit surface. Each particle creates a po-
tential field, which is a function of the distances between the
particle and its neighbors that lie within the potential field.
The energy at each particle is defined to be the sum of the
potentials of its interacting neighbors. The global energy of

the system is then the sum of all the individual particle ener-
gies. The derivative of the global energy function produces
a repulsive force that defines the necessary velocity direc-
tion. By moving each particle in the direction of the energy
gradient, a global minimum is found when the particles are
evenly spaced across the surface. The various steps within
this algorithm require communication in two distinct ways:
interactions between neighboring particles (i.e., computing
the energy at a particle is the sum of its neighbors’ poten-
tials) and interactions between all particles (i.e., computing
the global energy of the entire system). These distinctions
motivate us to design a communication system that provides
mechanisms for both local and global interactions. Strands
need a way for only interacting with a subset of strands or
with all the strands in the system.

Figure 3: Glyph packing on synthetic data [15]. The red grids
are specialized queries for retrieving neighboring glyphs.
The orange glyphs represent the neighbors of the blue glyph
performing the query.

Another design goal for inter-strand communication is to
provide different ways of collecting nearby neighbors. For
example, Kindlmann and Westin [15] uses a particle system
to locate tensors at discrete points according to tensor field
properties and visualize these points using tensor glyphs.
Particles are distributed throughout the field by a dense pack-
ing method. The packing is calculated using the particle sys-
tem where particles interactions are determined via a poten-
tial energy function derived from the tensor field. Since the
potential energy of a particle is affected by its surrounding
particles, neighboring particles can be chosen based on the
current distribution of the particles. Figure 3 illustrates an
example of using glyph packing on a synthetic dataset. We
use this figure to show two possible ways in which neigh-
bors are collected: hexagonal encapsulation and rectangu-
lar encapsulation. Both mechanisms only retrieve the parti-
cles defined within those geometric encapsulations and use
queries that represent the current distribution in their area. In
this example, using specialized queries can lead to a better
representation on the underlying continuous features of the
field. We need to provide various means of strand interac-



tion, where researchers have the option of choosing the best
query that suits their algorithm or their underlying data.

3. Communication design
A major design goal of Diderot is to provide a programming
notation that makes it easy for programmers to implement
new algorithms. With the addition of our communication
system, we want to continue that philosophy by designing
these new features to ease the burden of developing pro-
grams. This section provides an overview of the design of
the new communication system and examples of its syntax.

3.1 Spatial Communication
The idea behind spatial communication is shown in Figure 4.
A Strand Q needs information about its neighboring strands.
One way to retrieve Strand Q’s neighbors is by encapsulat-
ing it within a spherical shape (the green circle) given a ra-
dius r. Any strand contained within this circle is returned to
Strand Q as a collection of strands (i.e., Strands A, B, and
C). In Diderot, this process is done using predefined query
functions. The queries are based on the strand’s position in
world space. Currently we only support this spherical or cir-
cle (in the 2D case) type of query, but plan to support various
other type of queries, such as encapsulating the strand within
a box. Once the collection is returned by the query, Strand
Q can then retrieve state information from the collection of
neighbors.

r

A

B

C

D

Q r

Figure 4: An example of showing a spherical query (i.e.,
a circle in 2D). Strand Q (red) produces an encapsulating
circle (green) with a predefined radius. Any strands within
the encapsulating circle is returned to Strand Q. In this case,
the query would return Strands A, B, and C.

Query functions produce a sequence of strand states. Us-
ing the strand state, a strand can then gain access to its neigh-
bor’s state variables. As mentioned earlier, queries are based
on a strand’s position in world space; therefore, the strand
state needs to contain a state variable called pos. The po-
sition variable needs to be defined as a real pos, vec2
pos, or vec3 pos. The position of a strand is a dynamic

value that can be updated during a super-step. Thus, query
functions could return varying strand sequences in future
super-steps if strands are moving through out the world.

Processing the queried sequence of strands is performed
using a new Diderot mechanism called the foreach state-
ment. The foreach statement is very similar to for statements
used in many modern languages, such as Python and Java.
An iteration variable will be assigned to each strand in the
collection returned by the query function. During each itera-
tion of the loop, a strand can use this iterator variable to gain
access to its neighbor’s state. Inside foreach block, strands
can access the neighbor’s state by using the selection oper-
ator (i.e., the . symbol) followed by the name of the strand
state variable and then the name of the field (similar to ac-
cessing a field in a struct variable in the C language).

1 real{} posns = load("positions.nrrd");
2 real{} energy = load("energies.nrrd");
3
4 strand Particle (real e, real x,real y) {
5 vec2 pos = [x,y];
6 real energy = e;
7 output real avgEnergy = 0.0;
8 update {
9 int neighborCount = 0;

10 real total = 0.0;
11 foreach(Particle p in sphere(10.0)){
12 neighborCount += 1;
13 total += p.energy;
14 }
15 avgEnergy = total/count;
16 stabilize;
17 }
18 }

Figure 5: A snippet of code demonstrating the spatial com-
munication mechanism.

An example of using spatial communication is shown in
Figure 5. This code snippet calculates the average energy of
all the neighbors for each particle. The code loads positions
and energies from a file (Lines 1-2) and assigns (Lines 5-
6) each particle (i.e., a strand) a position and energy. It
declares accumulator variables (Line 9-10) to hold the total
energy and count of the neighbors. The foreach statement
(Line 11) declares variable p with its typing being the strand
name. The program uses a spherical query with a given
radius (e.g., the value of 10 in this example) to retrieve the
collection of neighbors. Each neighbor will then be assigned
to p for an iteration of the loop. The accumulator variable,
neighborCount, is incremented for each neighbor within the
collection (Line 12). We use the selection operator (Line 13)
to retrieve the energy state variable and added it to the total
energy. Finally, we use the accumulator variables (Line 15)
to calculate the final output, avgEnergy.



3.2 Global Communication
As mentioned earlier, strands may want to interact with a
subset of strands, where they may not be spatially close
to one another. This mechanism can be seen as allowing
strand state information to flow through a group of strands
to produce a result that gives insightful information about
the entire state of a group. Once the result is computed, a
strand can then use it as a way updating their state during
the update phase or updating a global property (i.e., a global
variable) of the system. We call this flow of information
global communication. This feature is performed by using
common reduction operations, such as product or sum.

Figure 6 shows the syntax of a global reduction in
Diderot. r represents the name of the reduction. Table 1 pro-
vides the names of the reductions and a detailed description
of their semantics. The expression e has strand scope. Only
strand state and global variables can be used in e along with
other basic expression operations (e.g., arithmetic or rela-
tional operators). The variable x is assigned to each strand
state within the set t. This variable can then be used within
the expression e to gain access to state variables. The set
t can contain either all active strands, all stable strands, or
both active and stable strands for an iteration. N represents
the name of the strand definition in the program. Syntac-
tically, if a strand P was defined as the strand definition
name then a program can retrieve the sets as follows: P.active
(all active Ps), P.stable (all stable Ps), or P.all (all active and
stable Ps).

t ::= N.all strand sets
| N.active
| N.stable

e ::= ... previously defined expressions
| r{e | x in t} reduction expression

Figure 6: Syntax of a global reduction

The reduction operations reside in a new definition block
called global. Global reductions can only be assigned to
local and global variables in this block. Reductions are not
permitted to be used inside the strand definition. Before
the addition of the global block, global variables were im-
mutable but now they can be modified within this block.

A trivial program that finds the maximum energy of all
active and stable strands is shown in Figure 7. Similar to
the spatial code, this code loads energies from a file (Line
1) and assigns each strand an energy value (Line 6). The
program also defines a global variable maxEnergy (Line 3)
that holds the maximum energy of all the strands. Inside the
global block (Lines 16-18), the max reduction is used to find
the maximum of the energy state variable. The reduction
scans through each P.energy value from all active and stable

Table 1: The meanings of reduction operations

Reduction Semantics Identity
all For each strand, S, in the set t com-

pute the value e and return TRUE
if all the e values in t evaluate to
TRUE, otherwise FALSE.

true

max For each strand, S, in the set t com-
pute the value e and return the max-
imum e value from the set s.

−∞

min For each strand, S, in the set t com-
pute the value e and return the min-
imum e value from the set t.

+∞

exists For each strand, S, in the set t com-
pute the value e and return TRUE if
any one of the e values in t evaluate
to TRUE, otherwise FALSE.

false

product For each strand, S, in the set t com-
pute the value e and return the prod-
uct of all the e values in t.

1

sum For each strand, S, in the set t com-
pute the value e and return the sum
of all the e values in t.

0

mean For each strand, S, in the set t com-
pute the value e and return the mean
of all the e values in t.

0

variance For each strand, S, in the set t com-
pute the value e and return the vari-
ance of the e values in t.

0

strands and assigns maxEnergy the highest value. Inside the
update method (Lines 7-9), the strand with the maximum
energy prints it out and all strands stabilize. An important
aspect to note about this particular code is the need for the
iter global variable. Remember, the first evaluation of the
global computation phase is only after the first execution
of the strand update phase. Thus, maxEnergy will not have
the actual maximum energy until the second iteration. This
caveat is why the strands stabilize and the maximum energy
is printed when iter reaches two.

3.3 Dynamic Strand Allocation
Diderot does allow the number of strands to vary dynami-
cally, via its die statement, but there is no way to increase
the number of active strands in a program. New strands can
be allocated during the strand update phase by using the new
statement within the update method. Using the new state-
ment:

new P (arguments);

where P is the name of the strand definition, a new strand
is created and initialized from the given arguments. Figure 8
shows a snippet of code that uses the new statement. If a



1 int{} energies = load("energies.nrrd");
2 int nEnergies= length(energies);
3 real maxEnergy = -∞;
4 int iter = 1;
5 strand Particle (real initEnergy) {
6 real energy = initEnergy;
7 update {
8 if(iter == 2 && maxEnergy == energy)
9 print(maxEnergy);

10 if(iter == 2)
11 stabilize;
12 }
13 }
14
15 global {
16 iter += 1;
17 maxEnergy = max{P.energy |
18 P in Particle.all};
19 }
20 initially [ Particle(energies(vi)) |
21 vi in 0..(nEnergies-1)];

Figure 7: Retrieves the maximum energy of all active and
stable strands in the program.

strand is wandering alone in the world then it may want to
create more strands in its neighborhood. In this case, new
strands are created by using the strand’s position plus some
desired distance from the strand.

1 real d = 5.0;
// desired distance of a new particle.

2 ...
3 strand Particle (real x, real y) {
4 vec2 pos = [x,y];
5 update {
6 int count = 0;
7 foreach(Particle p in sphere(10.0)){
8 count = count + 1;
9 ...

10 }
11 if(count < 1) {
12 new Particle(pos[0] + d, pos[1] + d);
13 }
14 ...
15 }
16 }

Figure 8: A snippet of code showing how new strands are
created when there are no surrounding neighbors.

4. Implementation
The addition of strand communication to the Diderot com-
piler produced minimal changes for its front end and inter-

mediate representations. But we added a significant amount
of code to our runtime system. In particular, implement-
ing the spatial scheme for spatial communication and de-
termining an efficient way of executing global reductions
was required. In this section, we give a brief overview of the
Diderot compiler and runtime system and discuss the imple-
mentations details of the communication system.

4.1 Compiler Overview
The Diderot compiler is a multi-pass compiler that handles
parsing, type checking, multiple optimization passes and
code generation [5]. A large portion of the compiler deals
with translating from the high-level mathematical surface
language to efficient target code. This process occurs over
a series of three intermediate representations (IRs), ranging
from a high-level IR that supports the abstractions of fields
and derivatives to a low-level language that decomposes
these abstractions to vectorized C code. Also at each IR
level, we perform a series of traditional optimizations, such
as unused-variable elimination and redundant-computation
elimination using value numbering [4]. The code the com-
piler produces depends on the target specified. We have sep-
arate backends for various targets: sequential C code with
vector extensions [10], parallel C code, OpenCL [14]. Be-
cause these targets are all block-structured languages, the
code generation phase converts the lowest IR into a block-
structured AST. The target-specific backends translate this
representation into the appropriate representation and aug-
ment the code with type definitions and runtime support. The
generated code is then passed to the host system’s compiler.

4.2 Runtime Targets
The runtime system implements the Diderot execution model
on the specified target and provides additional supporting
functions. For a given program, the runtime system com-
bines target-specific library code and specialized code pro-
duced by the compiler. We current support three versions of
the runtime system:

4.2.1 Sequential C
The runtime implements this target as a loop nest, with the
outer loop iterating once per super-step and the inner loop
iterating once per strand. This execution is done on a single-
processor and vectorized operations.

4.2.2 Parallel C
The parallel version of the runtime is implemented using
the Pthreads API. The system creates a collection of worker
threads (the default is one per hardware core/processor) and
manages a work-list of strands. To keep synchronization
overhead low, the strands in the work-list are organized into
blocks of strands (currently 4096 strands per block). During
a super-step, each worker grabs and updates strands until
the work-list is empty. Barrier synchronization is used to
coordinate the threads at the end of a super step. Note,



however, that the compiler will omit barrier synchronization
when it is not required (e.g., when the program does not use
strand communication), which results in better performance.

4.2.3 GPUs
Lastly, the GPU runtime is implemented using the OpenCL
API. In OpenCL, work items (i.e., threads) are separated
into workgroups and execution is done by warps (i.e., 32
or 64 threads running a single instruction). Similar to the
parallel C runtime, strands are organized into blocks. Each
strand block contains a warp’s worth of strands for execu-
tion. Instead of the runtime using the GPU scheduler, the
system implements the idea of persistent thread to manage
workers [12]. We use multiple workers per compute unit to
hide memory latency. Currently, the communication system
is implemented only for the sequential and parallel C targets.
We plan to add communication support for GPUs in the fu-
ture.

4.3 Spatial Execution
When choosing a spatial scheme, it is important to con-
sider how it affects a program’s performance. For instance,
if a Strand Q queried for its neighbors using a spherical
query then a naive implementation would sequentially per-
form pairwise tests with the rest of the strand population to
determine if a strand lies within the sphere’s radius. For n
strands, this requires: O(n2) pairwise tests [8]. A Diderot
program can contain thousands of active strands at any given
super step. This scheme can become too expensive even with
a moderate number of strands due to the quadratic complex-
ity. We use a tree-based spatial partitioning scheme, specif-
ically, k-d trees [1][11]. A k-d tree allows one to divide a
space along one dimension at a time. We use the traditional
approach of splitting along x, y, and z in a cyclic fashion.
With this spatial scheme, nearest neighbor searches can be
done more efficiently and quickly because we are search-
ing smaller regions versus the entire system. This process
thereby reduces the number of comparisons needed.

As stated earlier, the position state variable of a strand is
used for constructing the spatial tree. We use a parallel ver-
sion of the medians of medians algorithm [3] to select the
splitting value. As the tree is built, we cycle through the axes
and use the median value as the splitting value for a partic-
ular axis. A strand’s position can potentially change during
the execution of the update method, or new strands can be
created during an update. Thus, the tree is rebuilt before the
beginning of the update method to take into account these
changes. To improve performance, this reconstruction pro-
cess is done in parallel.

4.4 Global Reductions
As stated previously, the global reductions reside in the new
global block. This block of code allows for the modification
of global variables and is executed at the end of the super-
step. The parallel C target uses one of its threads to execute

the block in a sequential fashion with the exception of re-
ductions. The process of executing reductions is described
below:

4.4.1 Reduction Phases
The reductions inside the global block are executed in paral-
lel phases. Each reduction is assigned and grouped into exe-
cution phases with other reductions. After parsing and type
checking, a typed AST is produced and converted into a sim-
plified representation, where temporaries are introduced for
intermediate values and operators are applied only to vari-
ables. It is during this stage of the compiler reductions are
assigned their phase group. The phase in which a reduction
is assigned is dependent on whether an another reduction is
used to calculate the final value for a global variable. Fig-
ure 9 shows an example on how reductions are grouped. Ini-
tially, each global variable assigned to a reduction will au-
tomatically begin in phase 0 and added to a hash-map that
contains all global reduction variables. If the right hand side
(rhs) expression contains other global reduction variables the
phase assigned to the variable will be: 1 + θ, where θ is the
highest phase among the rhs global reduction variables. Spit-
ting reductions into phases is important for increasing per-
formance. Calculating a reduction in parallel occurs a large
amount of overhead for running and synchronizing threads.
Thus, reductions that can be executed in parallel with other
reductions reduces this overhead.

a

Variable Phase

0

b 1

c 0

d 2

e 0

a = mean(...); 
b = sum(...) + a; 
c = sum(...) * 10;
d = mean(...)/ b;  
e = product(...) + 3.0;

Figure 9: Reduction variables are assigned into phase groups
for execution. A phase group for a variable is incremented
depending on whether other reduction variables reside in the
same expression. This process greatly reduces the amount
of overhead of performing a reduction versus individual
execution.

4.4.2 Reduction Lifting
Also during phase identification, we perform an operation
called reduction lifting. This process is shown in Figure 9.
Each reduction expression is replaced with a temporary vari-
able and lifted into a new block called the reduction block.
Lifting reductions simplifies the grouping of reductions into
their correct phase groups during code generation.



a = mean(...); 
b = sum(...) + a; 
c = sum(...) * 10;
d = mean(...)/ b;  
e = product(...) + 3.0;

a = r1; 
b = r2 + a; 
c = r3 * 10;
d = r4 /b; 
e = r5 + 3.0; 

Reduction Block

Global Block

lift

transform

r1 =  mean(...); 
r3 = sum(...); 
r5 = product(...);

r2 = sum(...);  

r4 = mean(...); 

phase 0

phase 1

phase 2

Figure 10: Reduction lifting makes it easier to group re-
ductions when generating target code. Each reduction is re-
placed with a new variable in the expression and is lifted into
a special code block for reductions.

4.4.3 Phase Execution
The code generation phase breaks the reductions into their
assigned phases. This phase also determines at what time to
execute a particular phase. The assignments inside the global
block are scanned for reduction variable usage. If a reduction
variable is used on the rhs then we look up its phase group
and insert a phase execution call before the assignment as
shown in Figure 9. The phase execution call is only needed
before the first occurrence of any reduction variable in that
particular phase.

a = r1; 
b = r2 + a; 
c = r3 * 10;
d = r4 /b; 
e = r5 + 3.0; 

phase(0); 
a = r1; 
c = r3 + 3.0;  
e = r5 * 10;
phase(1); 
b = r2 + a; 
phase(2); 
d = r4 /b; 

Global Block

Figure 11: Phase execution calls are inserted before the exe-
cution of the assignment that uses the reduction.

4.5 Allocating Strands
Diderot maintains a contiguous chuck of memory that rep-
resents the strand states for a program. During world initial-
ization (i.e., before the first update method call), We allo-
cate this chunk of memory with enough space to allocate
the initial set of strands along with an additional amount
of strands that will remain uninitialized. Remember, worker
threads process blocks of strands during a super-step. If a

worker thread needs to allocate a new strand then it can re-
quest an uninitialized strand from that block memory, which
it then can initialize once received.

5. Related Work
The work presented in this paper is novel to the area of
visualization and image analysis languages. Currently, we
are unaware of any other languages that provide the spatial
query mechanism that is directly built into the language it-
self. Although, the concepts of spatial and global communi-
cation are studied in various other research fields.

The ideas behind spatial communication in Diderot was
influenced by previous works that use agent-based models
[13]. These models use simulations based on local interac-
tions of agents in an environment. These agents can rep-
resent variety of different objects such as: plants, animals,
or autonomous characters in games. With regards to spatial
communication, we explored models that are spatially ex-
plicit in their nature (i.e., agents are associated with a loca-
tion in geometric space).

Craig Reynolds’s boids simulation is an example of an
spatially explicit environment [19]. This algorithm sim-
ulates the flocking behavior of various species. Flocking
comes from the practice of birds flying or foraging together
in a group. A flock is similar to groups of other animals,
such as the swarming of insects. Reynolds developed a pro-
gram called Boids that simulates local agents (i.e., boids)
that move according to three simple rules: separation, align-
ment, and cohesion. The boids simulation influenced our
spatial communication design in regards to how it retrieved
its neighbors. When boids are searching for neighboring
boids, they are essentially performing a query similar to our
queries in Diderot. In particular, they are performing a circle
query that encapsulates the querying boid and any nearby
boids bounded within a circle. However, our query performs
much faster because we use tree-based scheme to retrieve
neighbors, while Reynold’s query runs in O(n2) because it
requires each boid to be pairwise tested with all other boids.

Agent interactions have also been modeled using inter-
process communication systems [17] and computer net-
works [22]. In these models, processes or nodes can send
and receive messages (i.e., data or complex data structures
that represent tasks) to other processes. Once agents are
mapped to processes, they then can use the messaging pro-
tocol defined by the system to query about nearby agents
or exchange state information with each other. However,
this process requires an application to explicitly adapt or
layer its spatial communication model to work within these
systems. In Diderot, there is only an implicit notion that
strands are defined within a geometric space and one uses
query functions to retrieve state information of neighboring
strands, which differs from the layering requirement needed
for these other communication systems.



The execution of global reductions in Diderot is simi-
lar to the MapReduce model developed by Dean and Ghe-
mawat [6]. MapReduce is a programming model used to pro-
cess parallelize problems that use large data sets, where data
mapped into smaller sub-problems and is collected together
to reduce to a final output. Many data parallel languages
have supported parallel map-reduce, such as the NESL lan-
guage [2], which has also influenced our design of global re-
ductions. The global block allows reductions to be mapped
to global variables. After each super-step, the global phase
(i.e., our “reduce” step) executes the global block, which
performs the actual computation for each reduction. Pro-
grammers do not need to worry about lifting the reductions
into their own phase because this process is handled by the
Diderot compiler.

6. Discussion and Future Work
The original design and implementation of Diderot was lim-
ited in that it only supported computations involving com-
pletely autonomous strands [5]. This limitation excluded al-
gorithms of interest, such as particle systems. These algo-
rithms require additional communication mechanism to be
supported by the language. With the addition of spatial com-
munication and global reductions we have given program-
mers the ability to implement and explore more applications
with the Diderot language. Although, there are few areas in
we plan to improve and work on in the future to provide a
better communication system.

Currently we only support a limited number of query
functions. We plan to provide additional query functions
such as ellipsoidal and hexagonal, to bring more diversity to
the options researchers can use within their algorithms. We
also are exploring the ability to support abstraction spatial
relationships. For example, defining a query to retrieve the
26-neighbors in a 3D grid, or support mesh based methods,
where a strand corresponds to a triangle in a finite-element
mesh. Query functions are the basis behind spatial commu-
nication in Diderot, so allowing for various query options
gives a larger range in the types of algorithms we can sup-
port.

The new BSP communication mechanism poses a diffi-
cult implementation challenge for our GPU target. GPUs are
not as flexible in terms of allocating memory dynamically,
which can only be done on the host side device. This restric-
tion means that we have to produce a scheme for managing
memory efficiently. This scheme needs to determine the ap-
propriate times to dynamically allocate more memory, which
can incur a large overhead cost if done naively. With having
various components of a Diderot program being allocated on
the GPU (i.e., strand state information, spatial tree informa-
tion, GPU scheduler information, and potential image data),
we can potentially run out of memory on the device. If this
happens then we may need to come up with a scheme that of-
floads certain components to the CPU and load only the data

that is need for a given iteration. These complications need
to be considered when implementing strand communication
on the GPU.
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