
AGERE! at SPLASH 2015

5th International Workshop on Programming based on
Actors, Agents, and Decentralized Control

Workshop held at ACM SPLASH 2015
26 October 2015

Pittsburgh, PA, USA

Companion Proceedings

AGERE! is an ACM SIGPLAN workshop

Introduction

ago, agis, egi, actum, agere
latin verb meaning to act, to lead, to do,
common root for actors and agents

The fundamental turn of software into concurrency and distribution is not only a
matter of performance, but also of design and abstraction. It calls for programming
paradigms that, compared to current mainstream ones, would allow us to think about,
design, develop, execute, debug, and profile – more naturally – systems exhibiting dif-
ferent degrees of concurrency, asynchrony, and physical distribution. To this purpose,
the AGERE! workshop is aimed at focusing on programming systems, languages and
applications based on actors, agents and other programming paradigms promoting a
decentralized-control mindset in solving problems and developing software. The work-
shop is designed to cover both the theory and the practice of design and programming,
bringing together researchers working on the models, languages and technologies, and
practitioners developing real-world systems and applications.

This volume contains the work-in-progress and short papers accepted and presented
at the 5th edition of the AGERE! workshop, not included in the formal proceedings
available on the ACM Digital Library.

Acknowledgment

The organizing committee would like to thank all program committee members, au-
thors and participants. Thank you to ACM and SPLASH organizers for their support.
We look forward to a productive workshop.

3

Committee

Program Committee

Gul Agha, University of Illinois at Urbana-Champaign
Sylvan Clebsch, Imperial College London
Rem Collier, University College Dublin
Travis Desell, University of North Dakota
Amal El Fallah Seghrouchni, LIP6 Univ. P and M. Curie, Paris, France
Ludovic Henrio, INRIA
Jomi Hübner, Federal University of Santa Catarina
Shams Imam, Rice University
Stefan Marr, INRIA, France
Francisco Sant’Anna, PUC-Rio
Tom Van Cutsem, Alcatel-Lucent Bell Labs
Wei-Jen Wang, National Central University
Takuo Watanabe, Tokyo Institute of Technology
Nabuko Yoshida, Imperial College London
Damien Zu↵ereu, MIT

5

Organizing Committee & PC Chairs

Eliza Gonzalez Boix, Vrije Universiteit Brussel, Belgium
Philipp Haller, KTH Royal Institute of Technology, Sweden
Alessandro Ricci, University of Bologna, Italy
Carlos Varela, Rensselaer Polytechnic Institute, NY, USA

Steering Committee

Gul Agha, University of Illinois at Urbana-Champaign, USA
Rafael H. Bordini, FACIN–PUCRS, Brazil
Assaf Marron, Weizmann Institute of Science, Israel
Alessandro Ricci, University of Bologna, Italy

List of the papers included in this volume

Actario: A Framework for Reasoning About Actor Systems.
Shohei Yasutake and Takuo Watanabe – Tokyo Institute of Technology, Japan

Programming Abstractions for Augmented Worlds.
Angelo Croatti and Alessandro Ricci – University of Bologna, Italy

A Model-based Approach to Secure Multi-party Distributed Systems.
Najah Ben Said, Saddek Bensalem, Marius Bozga – Univ. Grenoble Alpes, VER-
IMAG, CNRS, France
Takoua Abdellatif – University of Carthage, Tunis

Bulk-Synchronous Communication Mechanisms in Diderot
John Reppy and Lamont Samuels – University of Chicago, US

A Performance and Scalability Analysis of Actor Message Passing and Migration in
SALSA Lite
Travis Desell – University of North Dakota, US
Carlos A. Varela – Rensselaer Polytechnic Institute, US

Optimizing Communicating Event-Loop Languages with Tru✏e
Stefan Marr and Hanspeter Mössenböck – Johannes Kepler University Linz, Austria

Connect.js – A cross mobile platform actor library for multi-networked mobile
applications
Elisa Gonzalez Boix Christophe Scholliers Nicolas Larrea Wolfgang De Meuter – Vrije
Universiteit Brussel, Belgium

Towards Verified Privacy Policy Compliance of an Actor-based Electronic Medical
Record Systems
Tom MacGahan, Claiborne Johnson, Armando L. Rodriguez, Mark Apple, Jianwei
Niu, Je↵ery von Ronne – The University of Texas at San Antonio, US

Actario: A Framework for Reasoning About Actor Systems

Shohei Yasutake
Tokyo Institute of Technology
yasutake@psg.cs.titech.ac.jp

Takuo Watanabe
Tokyo Institute of Technology

takuo@acm.org

Abstract
The two main characteristics of the Actor model are asyn-
chronous message passing and dynamic system topology.
The latter relies on the on-the-fly creation of actor names that
often complicates the formal treatment of systems described
in the Actor model. In this paper, we introduce Actario, a for-
malization of the Actor model in Coq. Actario incorporates
a name creation mechanism that is formally proved to gen-
erate a consistent set of actor names. The mechanism helps
proper handling of names in modeling and reasoning about
actor-based systems. Actario also provides a code extraction
mechanism that generates Erlang programs.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs—Mechanical verification

General Terms Actors, Formal Models

Keywords Actor Model, Formalization, Actario, Coq, Er-
lang

1. Introduction
The Actor model[3] is a kind of concurrent computation
model, in which a system is expressed as a collection of au-
tonomous computing entities called actors that communicate
each other only with asynchronous messages. On receiving
a message, an actor may (1) send messages to other actors
(or itself) whose names are known to the sender, (2) create
new actors and (3) change its behavior for the next message.

Starting from the 1970s, the Actor model and its varia-
tions such as concurrent objects[15] have a long research
history. They are today regarded as popular high-level ab-
stractions for concurrent and parallel programming used
in some industrial strength language and libraries such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AGERE!@SPLASH, Oct., 2015, Pittsburgh, PA, USA.
Copyright c⃝ 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Erlang[7], Scala[10] and Akka[4]. Because of this situation,
establishing a mechanized formal verification method for
actor-based systems is a pressing issue.

Several methods and systems for formally verifying
actor-based systems have been presented recently. Rebeca[11]
is a modeling language that allows model-checking. For de-
ductive verification using proof assistants, formalizations
using Athena[9] and Coq[8] have been presented.

A name1 in the Actor model is a unique conceptual loca-
tion associated with each actor. The concept of name unique-
ness denotes that each name uniquely refers an actor and
each actor should be referred by a single name. In the im-
plementations of actor systems including Erlang, Scala, and
Akka, naming of actors is implicit; we don’t need to manu-
ally assign a fresh name to a newly created actor. The name
uniquness may be broken if the naming is explicit in com-
plex systems. Implicit naming, however, might complicate
the formal treatment of actor-based systems. Thus, some for-
malization adopts explicit naming.

In this paper, we propose Actario[1], a Coq framework
for implementing and verifying actor-based systems. The
framework (1) supports Erlang-like notation for describing
an actor system, (2) allows verifying desired properties of
the system using the proof mechanism in Coq, and (3) gen-
erates executable Erlang code from the system description.

To be close to realistic actor languages and libraries, we
designed Actario to support implicit naming. This is the
main difference between our formalization and formaliza-
tions using Athena[9] or Coq[8]. The naming mechanism
behind the scene is formally proved to satisfy the name
uniqueness. We also proved other properties including the
persistence of actors and messages. The proof scripts of
these properties are available in the GitHub repository of
Actario[1].

The layout of the rest of this paper is as follows. The next
section describes the overview of Actario. In Section 3, we
give the operational semantics of the Actor model formal-
ized in Actario. Section 4 outlines the proof of the unique-
ness property on dynamically generated names. In Section 5,
we discuss fairness properties formalized in Actario. The
code extraction mechanism is described in Section 6. Finally,

1 The term mail address is used in some other literature.

Section 7 overviews related work and Section 8 concludes
the paper.

2. Overview of Actario
2.1 Programming in Actario
Actario is a Coq framework for defining and verifying actor-
based systems. A typical workflow using Actario is as fol-
lows.

1. Describe an actor system using types and notations de-
fined in the framework.

2. Specify and verify desired properties of the system.

3. Extract the Erlang version of the system using the code
extraction mechanism of Coq.

Note that Actario does not provide a dedicated language for
describing actor systems. The framework offers a set of Coq
vocabularies (types and notations described in Section 2.2)
for that purpose.

Example: Recursive Factorial System We use a simple
example to illustrate a system description in Actario. Fig-
ure 1 shows the definition of an actor system that implements
the continuation-passing style factorial function adapted
from [3]. In this definition, the function factorial_system
sets up a system that initially consists of a single factorial

actor whose behavior is defined as factorial_behv. The
actor can receive a tuple of a natural number and the name
of a customer actor (cust) that is intended to receive the
result. If the first component of tuple is more than zero, i.e.,
it matches the successor pattern S n, the actor creates a new
continuation actor (cont) and recursively sends itself a pair
of n and cont. The behavior of continuation actors is speci-
fied as factorial_cont_behv.

2.2 Types and Notations
2.2.1 Types
Figure 2 shows the inductively defined type of messages
delivered among actors, each of whose constructors corre-
sponds to a kind of messages. In the current version of Ac-
tario, a message may be empty, an actor name, a value of
basic types (Boolean, natural number or string), or a tuple of
two messages.

Figure 3 defines two mutually coinductive types: actions
and behavior. They specify sequences of actions per-

formed by actors and behaviors of actors respectively. Each
constructor of actions corresponds to a single action em-
bedded in an action sequence as follows.

new b f creates a new actor with initial behavior b and ap-
plies f to the name of the created actor. Then continues
to the action sequence that f returns.

send n m α sends message m to the actor with name n and
then continues to action sequence α.

1 Definition factorial_cont_behv (val : nat)
2 (cust : name) :=
3 receive (fun msg ⇒
4 match msg with
5 | nat_msg arg ⇒
6 cust ! nat_msg (val * arg);
7 become empty_behv
8 | _ ⇒ become empty_behv
9 end).

10
11 CoFixpoint factorial_behv :=
12 receive (fun msg ⇒
13 match msg with
14 | tuple_msg (nat_msg 0) (name_msg cust) ⇒
15 cust ! nat_msg 1;
16 become factorial_behv
17 | tuple_msg (nat_msg (S n))
18 (name_msg cust) ⇒
19 cont ← new
20 (factorial_cont_behv (S n) cust);
21 me ← self;
22 me ! tuple_msg (nat_msg n)
23 (name_msg cont);
24 become factorial_behv
25 | _ ⇒ become factorial_behv
26 end).
27
28 Definition factorial_system (n : nat)
29 (cust : name) :=
30 init "factorial" (
31 x ← new factorial_behv;
32 x ! tuple_msg (nat_msg n) (name_msg cust);
33 become empty_behv
34).

Figure 1. Recursive Factorial System in Actario

self f retrieves the name of the actor that executes this
action and applies f to it. Then continues to the action
sequence that f returns.

become b sets b as the next behavior of the actor that ex-
ecutes this action. This action should end an action se-
quence.

In the Actor model, an actor persists indefinitely. Thus, as
shown in Figure 1, that a behavior may have become actions
that specify itself or other behaviors eventually recurring
to the original one. The reason for using CoFixpoint and
defining actions and behavior coinductively is to model
such behaviors.

2.2.2 Notations
In addition to the types defined above, Actario provides a
collection of notations (syntactic sugaring) described in Fig-
ure 4. Using the notations, we can write actor behaviors in-
tuitively without being complicated by CPS. Figure 5 com-

1 Inductive message : Set :=
2 | empty_msg : message
3 | name_msg : name → message
4 | str_msg : string → message
5 | nat_msg : nat → message
6 | bool_msg : bool → message
7 | tuple_msg : message → message →

message.

Figure 2. Message Type

1 CoInductive actions : Type :=
2 | new : behavior → (name → actions) →

actions
3 | send : name → message → actions →

actions
4 | self : (name → actions) → actions
5 | become : behavior → actions
6 with behavior : Type :=
7 | receive : (message → actions) →

behavior.

Figure 3. Types for Actions and Behaviors

1 Notation "n ’← ’ ’new’ behv ; cont" :=
2 (new behv (fun n ⇒ cont))
3 (at level 0, cont at level 10).
4 Notation "n ’!’ m ’;’ a" :=
5 (send n m a) (at level 0, a at level 10).
6 Notation "me ’← ’ ’self’ ’;’ cont" :=
7 (self (fun me ⇒ cont))
8 (at level 0, cont at level 10).

Figure 4. Notations for Actions

new b (fun x ⇒
self (fun s ⇒
send x (name_msg s)
(become b′)))

(a) without notations

x ← new b;
s ← self;
x ! (name_msg s);
become b′

(b) with notations

Figure 5. Example Use of Notations

pares the descriptions of a simple action sequence with-
out/with the notations.

1 Inductive name : Set :=
2 | toplevel : string → name
3 | generated : nat → name → name.

Figure 6. name

1 Record actor := {
2 actor_name : name;
3 remaining_actions : actions;
4 next_num : gen_number
5 }.

Figure 7. actor

3. Semantics
In this section, we explain the formalization of the opera-
tional semantics of the Actor model in Actario. First, for
the explanation of formalization of operational semantics,
we describe name type, actor type, in_flight_message
type, and config type. And then, we explain how to formal-
ize the operational semantics in Actario.

3.1 Actor Name
In Actario, actor name is defined as the disjoint sum of the
case of an actor with no parent and the case of an actor
generated by another actor (Figure 6). We call the actors
having no parent top level actor. Top level actor represents
initial actors in the system. And we call the actors generated
by another actor generated actor. The name of a generated
actor consists of the name of parent actor and the number
that the parent actor generated so far. We call the number
generation number. To keep name uniqueness, we introduce
generation number. For more detail about name uniqueness,
see Section 4.

3.2 Actor
We explain how actor is defined in Actario. Actor consists
of its name, sequence of remaining actions, and next gen-
eration number to use in generating next child (Figure 7).
If remaining actions are only become, the actor is ready for
receiving a message.

3.3 Messages in Flight
Next, we define in_flight_message type which repre-
sents messages in flight in the configuration.
in_flight_message consists of the name of the destina-
tion, the name of the sender, and the content of the message
(Figure 8).

3.4 Configuration
configuration represents a snapshot of the actor system. con-
figuration is used to formulate operational semantics of the

1 Record in_flight_message := {
2 to : name;
3 from : name;
4 content : message
5 }.

Figure 8. in flight message

1 Record config := {
2 in_flight_messages :
3 list in_flight_message;
4 actors : list actor
5 }.

Figure 9. config

1 Inductive label :=
2 | Receive (to : name) (from : name)
3 (content : message)
4 | Send (from : name) (to : name)
5 (content : message)
6 | New (child : name)
7 | Self (me : name).

Figure 10. label

Actor model. In Actario, a configuration consists of a list of
actors and a list of messages in flight.

3.5 Transition Label
Actario formulates operational semantics of the Actor model
as labeled transition system, so we define label (Figure 10).
The explanations of each label are as follows.

Receive (to : name) (from : name)
(content : message)
This represents that the actor named to receives the mes-
sage content sent from the actor named from.

Send (from : name) (to : name)
(content : message)
This represents that the actor named from sends the mes-
sage content to the actor named to.

New (child : name)
This represents that the actor named child is generated.

Self (me : name)
This represents that the actor named me gets the name
itself.

c ∈ Configuration = Set(InFlight)× Set(Actor)
a ∈ Actor = Name× Actions× N
n ∈ Name ::= toplevel(s)

| generated(g, n)
m ∈ Message = Name + PrimVal+

Message× · · ·×Message
i ∈ InFlight = Name× Name×Message
b ∈ Behavior = Message→ Actions
α ∈ Actions ::= send(n,m,α)

| new(b,κ)
| self(κ)
| become(b)

l ∈ Label ::= Receive(n, n,m)
| Send(n, n,m)
| New(n)
| Self(n)

κ ∈ Name→ Actions
g ∈ N

Figure 11. Configuration

3.6 Semantics
We formulate operational semantics of the Actor model as
labeled transition system. For the later explanation, we de-
fine the symbols as shown in Figure 11.

The labeled transition system used in Actario is defined
like Figure 12. The explanations for each of transitions are
the followings.

RECEIVE
RECEIVE is the transition for Receive label. The actor
which is ready to receive a message, in other words, the
actor whose remaining actions are only become, receives
a message and generate new remaining actions decided
by the behavior and the content of the message.

SEND
SEND is the transition for Send label. The actor which
want to send a message sends a message, and then the
message is added into messages in flight.

NEW
NEW is the transition for New label. An actor generates
its child actor by the given behavior. And then, do the
followings:
• The child actor is added into the configuration. The

next generation number of child actor is 0.
• The next generation number of the parent actor in-

creases by 1.
• The child actor is ready to receive a message.

SELF
SELF is the transition for Self label. An actor gets the self
name and applies it to the continuation.

The definition in Actario is in Appendix A.

(I ! {(nto, nfrom,m)}, A ∪ {(nto, become(b), g)}) Receive(nto,nfrom,m)! (I, A ∪ {(nto, b(m), g)}) (RECEIVE)

(I, A ∪ {(nfrom, send(nto,m,α), g)}) Send(nfrom,nto,m)! (I ! {(nto, nfrom,m)}, A ∪ {(nfrom,α, g)})
(SEND)

(I, A ∪ {(n, new(b,κ), g)}) New(n′)! (I, A ∪ {(n,κ(n′), g + 1), (n′, become(b), 0)})
where n′ := generated(g, n)

(NEW)

(I, A ∪ {(n, self(κ), g)}) Self(n)! (I, A ∪ {n,κ(n), g}) (SELF)

Figure 12. labeled transition semantics

1 Theorem actor_persistence :
2 ∀ c c’ l n,
3 n \in map actor_name (actors c) →
4 c ~(l)! c’ →
5 n \in map actor_name (actors c’).

Figure 13. Actor Persistence

1 Theorem message_persistence :
2 ∀ c c’ l m (n : nat),
3 n == count_mem m (in_flight_messages c) →
4 c ~(l)! c’ →
5 if l == Receive (to m) (from m)
6 (content m) then
7 count_mem m (in_flight_messages c’)
8 == n.-1
9 else

10 if l == Send (from m) (to m)
11 (content m) then
12 count_mem m (in_flight_messages c’)
13 == n.+1
14 else
15 count_mem m (in_flight_messages c’) == n.

Figure 14. Message Persistence

3.7 Actor Persistence and Message Persistence
In this semantics, actor persistence property (the property
that actors do not disappear) and message persistence prop-
erty (the property that messages in flight do not disappear
except of receiving) are formally proved. Each of the defi-
nitions is shown in Figure 13 and Figure 14. The number of
lines of the proofs is less than 100 lines in Actario 2.

2 https://github.com/amutake/actario/blob/
d9e5084c87e7e0bc630ffa0f96b0b3b49d65fa9a/src/
persistence.v

4. Name Uniqueness
In programming languages or libraries providing the Actor
model such as Erlang or Akka, the system automatically
generates actors with fresh names without specifying the
name explicitly by the programmer. In Actario, the propo-
sition that all actor names in the configuration are not dupli-
cate by any transitions is proved.

To prove, we define an invariant about actor names pre-
served between any transitions. It is named trans invariant.
The trans invariant consists of the following three predicates
for configuration.

trans invariant(c) :=
chain(c) ∧ gen fresh(c) ∧ no dup(c)

The brief explanations of chain, gen fresh, and no dup
are followings:

chain
For each actor in the configuration, if the actor is gener-
ated by another actor, then the parent actor is also in the
configuration.

gen fresh
For each actor in the configuration, actor name genereted
by the actor in the next is fresh.

no dup
For all actor name in the configuration are unique.

4.1 Functions
Before starting the explanation and the proof, we define
some functions used in this section.

actors : Configuration→ Set(Actor)
actors returns the set of actors in the given configura-
tion.

parent : Actor→ Actor
parent returns the parent actor of the given actor. If the
given actor is toplevel actor, the function returns nothing.

gen number : Actor→ N
gen number returns generated number of the name of

the given actor. If the given actor is toplevel actor, the
function returns nothing.

next number : Actor→ N
next number returns next generation number of the
given actor.

name : Actor→ Name
name returns the name of the given actor.

names : Set(Actor)→ Set(Name)
names returns names of the given set of actors.

4.2 Chain Property
We define a predicate of configuration, called chain. chain
is the predicate that, for each actor in the given configuration,
if it is generated by another actor, the parent actor is also in
the configuration. chain is defined as the following.

chain(c) :=
∀a ∈ actors(c), ∀p, p = parent(a)⇒ p ∈ actors(c)

Then, we can prove chain preservation property that
chain is preserved between any transitions. The proof is
by case analysis on the label. chain is decided by only
actor names, and the transition which have a possibility to
change the names in the configuration is only NEW transi-
tion. Therefore, we consider only the case of NEW transition.

LEMMA 1. chain preservation

∀c, c′ ∈ Configuration, ∀l ∈ Label,
chain(c) ∧ c

l! c′ ⇒ chain(c′)

4.3 Gen Fresh Property
We define gen fresh predicate that, for each actor in the
configuration, the name of its child is always fresh. The
definition of gen fresh is complicated a little. We translate
the proposition that next generated name is fresh to the
following.

gen fresh(c) :=
∀a ∈ actors(c), ∀p ∈ actors(c), p = parent(a)⇒

gen number(a) < next number(p)

It is guaranteed that the actor name generated in the next
is fresh if satisfying gen fresh predicate by the relation
of next generation numbers and actor names. However, the
actor name generated after the next is not always fresh name.
For example, if there are two actors (A and B) that have the
same name and the same next generation number and actor
A generates a child actor and actor B generates a child actor,
although gen fresh holds, these child actors have the same
name. Furthermore, if the parent of the actor A does not exist
in the configuration and the parent of the parent exists in the
configuration, and the parent of the parent actor generates an
actor and it also generates an actor, then the name is possible
to have the same as A’s one.

Thus, to prove gen fresh preservation proposition that
gen fresh is preserved between transitions, it is necessary
to use chain and no dup as hypotheses.

LEMMA 2. gen fresh preservation

∀c, c′ ∈ Configuration, ∀l ∈ Label,
chain(c) ∧ gen fresh(c) ∧ no dup(c) ∧ c

l! c′ ⇒
gen fresh(c′)

4.4 No Dup Property
We define no dup predicate that all actor names in the given
configuration are unique. This is the property we have to
prove. no dup is defined as the following.

no dup(c) :=
∀a ∈ actors(c), name(a) /∈ names(actors(c) \ {a})

We proved no dup preservation property defined as the
following. It represents that if the actor names in the config-
uration is not duplicate and the next generated actor name is
fresh, then no dup holds in the next configuration.

LEMMA 3. no dup preservation

∀c, c′ ∈ Configuration, ∀l ∈ Label,
gen fresh(c) ∧ no dup(c) ∧ c

l! c′ ⇒ no dup(c′)

4.5 Proof of Name Uniqueness Property
Then, we start to prove name uniqueness. First, we prove
trans invariant preservation that trans invariant is preserved
between transitions. This is obvious by chain preservation,
gen fresh preservation and no dup preservation.

LEMMA 4. trans invariant preservation

∀c, c′ ∈ Configuration, ∀l ∈ Label,
trans invariant(c) ∧ c

l! c′ ⇒
trans invariant(c′)

Next, we prove that if trans invariant holds in initial con-
figuration, trans invariant holds after arbitrary transitions.

LEMMA 5. trans invariant preservation star

∀c, c′ ∈ Configuration, ∀l ∈ Label,

trans invariant(c) ∧ c
l! ⋆ c′ ⇒

trans invariant(c′)

c
l! ⋆ c′ represents reflexive transitive closure of transition.

The proof is by induction of reflexive transitive closure of
transition and trans invariant preservation.

Finally, we can prove name uniqueness.

THEOREM 1. name uniqueness

∀c, c′ ∈ Configuration, ∀l ∈ Label,

trans invariant(c) ∧ c
l! ⋆ c′ ⇒ no dup(c′)

This is obvious by trans invariant preservation star because
no dup is in trans invariant.

5. Fairness
fairness is a property that reception of a message does not
delay infinitely. There are two variants of fairness property,
weak fairness and strong fairness. Weak fairness is that if
an actor is infinitely always ready to receive the message,
the message is eventually received. Strong fairness is that if
an actor is infinitely often ready to receive the message, the
message is eventually received. The Actor model satisfies
strong fairness. We have not proved any properties using
strong fairness yet, but for a case study, we explain how to
define strong fairness in Actario.

5.1 Transition Path
Generally, fairness is represented in using operators of tem-
poral logic. We have to encode temporal logic because Coq
does not support temporal logic. We use transition path,
which represents transition sequence of configuration, to de-
fine fairness as a predicate of transition path. This method is
used in Applπ [2].

We define transition path as a function of N to option
config. In this definition, N represents the number of tran-
sitions from initial configuration and the reason why the re-
turn value is wrapped with option is that it may be no more
transitions.

1 Definition path := nat → option config.

And we define the predicate that the given path is correct
transition path.

1 Definition is_transition_path
2 (p : path) : Prop :=
3 ∀ n,
4 (∀ c, p n = Some c →
5 (∃ c’ l, p (S n) = Some c’ /\
6 c ~(l)! c’) \/
7 p (S n) = None) /\
8 (p n = None → p (S n) = None).

5.2 Enabled
We define the predicate that the transition from the given
configuration with the given label is possible, called enabled.
In Actario, enabled is defined as there exists a configura-
tion after transitioning from the configuration with the label,
as follows.

1 Definition enabled (c : config)
2 (l : label) : Prop :=
3 ∃ c’, c ~(l)! c’.

5.3 Infinitely Often Enabled
We define the predicate that the transition is infinitely of-
ten enabled in the transition path. It is named infinitely
often enabled.

1 Definition infinitely_often_enabled
2 (l : label) (p : path) : Prop :=
3 ∀ n c, p n = Some c →
4 enabled c l →
5 ∃ m c’, m > n /\
6 p m = Some c’ /\
7 enabled c’ l.

5.4 Eventually Processed
We define eventually processed that is the predicate of
label and transition path. It represents that the transition with
the label is processed eventually in the path. It is defined as
follows.

1 Definition eventually_processed
2 (l : label) (p : path) : Prop :=
3 ∃ n c c’,
4 p n = Some c /\
5 p (S n) = Some c’ /\
6 c ~(l)! c’.

5.5 Definition of Fairness
Then we can define fairness predicate for transition
path. For the given transition path and for each label, if
infinitely often enabled holds, then eventually
processed holds. is postfix of predicate is used for
representing ’infinite’. If is postfix of is not used, the
transition may not be processed after the transition is pro-
cessed although the transition is processed in whole the path.
To prevent it, if inifinitely often enabled holds then
eventually processed holds for arbitrary postfix path by
using is postfix path.

1 Definition is_postfix_of
2 (p’ p : path) : Prop :=
3 ∃ n, (∀ m, p’ m = p (m + n)).
4

5 Definition fairness : Prop :=
6 ∀ p p’, is_postfix_of p’ p →
7 (∀ l,
8 infinitely_often_enabled l p’ →
9 eventually_processed l p’).

6. Extraction
Extraction is a Coq feature which enables to convert Coq
programs to the programs of other languages. Normal Coq
can extract programs to OCaml, Haskell, and Scheme. If

1 (* Inductive nat := *)
2 (* | O : nat *)
3 (* | S : nat → nat. *)
4

5 O (* ⇒ {o} *)
6 S (S (S O)) (* ⇒ {s, {s, {s, o}}} *)

Figure 15. example of extraction of algebraic data types

1 CoFixpoint behvA :=
2 receive (fun msg ⇒
3 match msg with
4 | name_msg sender ⇒
5 me ← self;
6 sender ! name_msg me;
7 become behvA
8 | _ ⇒
9 child ← new behvB;

10 child ! msg;
11 become behvA
12 end)

Figure 16. Extraction example: Actario code

we want to extract to other languages or use custom ex-
traction algorithm, we have to implement it as plugins or
patches. Actario has custom extraction mechanism for the
programs using Actario. It can extract to Erlang. In Actario,
ActorExtraction command is defined for extracting actor
systems. It is used like traditional Extraction command.

6.1 Data Types
Values of algebraic data types are extracted to a tuple with
the label. Value constructor is extracted to a label, and argu-
ments are extracted to the second and the following elements
of the tuple. Figure 15 is an example of extraction of the nat-
ural number type.

However, actions of actors, for example, send, new, self,
become and behavior are implemented as value construc-
tor of actions and behavior type We handle these con-
structors as special to generate the corresponding syntax of
Erlang.

For example, Actario code shown in Figure 16 is ex-
tracted to Erlang code shown in Figure 17.

6.2 Name
In Actario, a programmer does not make actor names from
constructors, so that all of actor names are in variables.
Therefore, all of actor names in extracted code are variables.
These variables are bound by values of name type in Actario,
but in Erlang, these variables are bound by process ids.

1 behvA() →
2 receive Msg → case Msg of
3 {name_msg, Sender} →
4 Me = self(),
5 Sender ! {name_msg, Me},
6 behvA()
7 _ →
8 Child = spawn(fun() → behvB() end),
9 Child ! Msg

10 behvA()
11 end.

Figure 17. Extraction example: Erlang code

6.3 Execution
The program extracted by Actario is impossible to execute
by itself. So Actario’s programmers have to write executor to
execute the extracted Actor system in Erlang. For example,
we consider factorial system described in Section 2.

1 Definition factorial_system (n : nat)
2 (parent : name) : config :=
3 init "factorial" (
4 x ← new factorial_behv;
5 x ! tuple_msg (nat_msg n)
6 (name_msg parent);
7 become empty_behv
8).

factorial_system is extracted to the following Erlang
code.

1 factorial_system(N, Parent) →
2 X = spawn(fun() →
3 factorial_behv()
4 end),
5 X ! {tuple_msg, {nat_msg, N},
6 {name_msg, Parent}},
7 empty_behv().

To execute this, we have to write executor like Figure 18.
nat2int and int2nat are auxiliary functions for convert-
ing Coq’s natural number and Erlang’s integer.

6.4 Future Work for Erlang Extraction
Currently, it is not proved that the extraction mechanism
does not change the meanings of Actario programs and Er-
lang programs and properties such as name uniqueness. In
order to show these properties, we have to formalize Erlang
in Coq and extraction mechanism, write extraction mecha-
nism in Coq, and prove the preservation of a certain prop-
erty.

1 -module(fact_main).
2 -export([fact/1]).
3

4 fact(N) →
5 _ = spawn(factorial, factorial_system,
6 [int2nat(N), self()]),
7 receive
8 {nat_msg, Result} →
9 io:fwrite("fact(~w) = ~w~n",

10 [N, nat2int(Result)]);
11 _ →
12 io:fwrite("error~n")
13 end.

Figure 18. Example: user code to execute factorial system

Furthermore, we like to provide bridge library between
user code and extracted code for convenience, for example,
nat2int and int2nat in Figure 18.

7. Related Work
Applπ is a Coq library for modeling and verifying concur-
rent programs [2]. Actario is very inspired by Applπ, for ex-
ample, the definition of fairness, continuation passing style
in actions and framework design. The main difference of
Applπ and Actario is that Applπ adopts π-calculus for its
concurrent computation basic, but Actario adopts the Actor
model for its concurrent computation basic.

Musser and Varela[9] formalized the Actor model for the
Athena theorem prover[5]. Within their formalization, main-
taining the uniqueness of actor names is formally proved.
However, one must manually specify a fresh name for each
new actor. In contrast, the automatic actor naming mecha-
nism in Actario eases the specification of complex systems.
In addition, Actraio provides an extraction mechanism of
runnable Erlang code.

Verdi is a framework for constructing and verifying fault-
tolerant distributed systems [14]. A system assumed no net-
work failure is converted to the system which tolerates drop-
ping packets, duplication of packets, and machine failure.
One of the purposes of Actario is also to build and verify
fault-tolerant distributed systems. We will introduce super-
visor mechanism to achieve building fault-tolerant systems
generally used in Erlang and Akka.

Tony Garnock-Jones, Sam Tobin-Hochstadt, and Matthias
Felleisen give a formalization of the Actor model using Coq
[8]. In this paper, the operational semantics is formalized so
that transition is decidable. Due to this, it is difficult to apply
the formalization to realistic concurrent systems.

8. Concluding Remarks
In this paper, we present Actario, a Coq framework for de-
scribing and verifying actor-based systems. Actario is de-

signed to support implicit naming of actors. This simplifies
the description of actor systems. We have formally proved
that the underlying execution model provided in the frame-
work satisfies important properties including name unique-
ness, actor persistence and message persistence. The fact im-
plies that a system described using Actario is guaranteed to
have these actor properties.

Actario is currently under development and still does not
provide convenient libraries of predicates, lemmas, tactics
and so forth. Thus, verifying a user-defined actor system
may involve a large amount of work. Providing such libraries
should be included in the future work.

In addition, we like to extend Actario to support extended
Actor models. For example, extensions that support high-
level synchronization mechanisms such as [6], coordination
models[12], and reflective models such as [13].

A. Labeled Transition Semantics in Actario
The full labeled transition semantics described in Section 3
is shown in Figure 19. The each of inductive constructors
corresponds to each transitions of Figure 12.

References
[1] Actario. Actario: A framework for verifying actor based

systems. https://github.com/amutake/actario.

[2] R. Affeldt and N. Kobayashi. A Coq library for verifi-
cation of concurrent programs. In Fourth International
Workshop on Logical Frameworks and Meta-Languages
(LFM 2004), volume 199 of Electronic Notes in Theo-
retical Computer Science, pages 17–32, 2008. . URL
http://www.sciencedirect.com/science/article/
pii/S1571066108000765.

[3] G. Agha. Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press, 1986. URL http://
mitpress.mit.edu/books/actors.

[4] Akka. Akka. http://akka.io/.

[5] K. Arkoudas. Athena. http://proofcentral.org/
athena.

[6] J. De Koster, T. Van Cutsem, and T. D’Hondt. Domains: Safe
sharing among actors. In Proceedings of the 2nd edition on
Programming Systems, Languages and Applications based
on Actors, Agents, and Decentralized Control Abstractions
(AGERE!@SPLASH 2012), pages 11–22. ACM, ACM, 2012.
.

[7] Erlang. Erlang programming language. http://www.
erlang.org/.

[8] T. Garnock-Jones, S. Tobin-Hochstadt, and M. Felleisen. The
network as a language construct. In Programming Languages
and Systems (ESOP 2014), volume 8410 of Lecture Notes
in Computer Science, pages 473–492. Springer-Verlag,
2014. . URL http://www.ccs.neu.edu/home/tonyg/
esop2014/.

[9] D. R. Musser and C. A. Varela. Structured reasoning about
actor systems. In Workshop on Programming based on Actors,

1 Reserved Notation "c1 ’~(’ t ’)!’ c2" (at level 60).
2 Inductive trans : label → config → config → Prop :=
3 (* receive transition *)
4 | trans_receive :
5 ∀ to from content f gen sendings_l sendings_r actors_l actors_r,
6 (sendings_l ++ Build_sending to from content :: sendings_r)
7 ◃▹ (actors_l ++ Build_actor to (become (receive f)) gen :: actors_r)
8 ~(Receive to from content)!
9 (sendings_l ++ sendings_r) ◃▹ (actors_l ++ Build_actor to (f content) gen :: actors_r)

10 (* send transition *)
11 | trans_send :
12 ∀ from to content cont gen sendings_l sendings_r actors_l actors_r,
13 (sendings_l ++ sendings_r)
14 ◃▹ (actors_l ++ Build_actor from (send to content cont) gen :: actors_r)
15 ~(Send from to content)!
16 (sendings_l ++ Build_sending to from content :: sendings_r)
17 ◃▹ (actors_l ++ Build_actor from cont gen :: actors_r)
18 (* new transition *)
19 | trans_new :
20 ∀ parent behv cont gen sendings actors_l actors_r,
21 sendings ◃▹ (actors_l ++ Build_actor parent (new behv cont) gen :: actors_r)
22 ~(New (generated gen parent))!
23 sendings ◃▹
24 (Build_actor (generated gen parent) (become behv) 0 ::
25 actors_l ++
26 Build_actor parent (cont (generated gen parent)) (S gen) ::
27 actors_r)
28 (* self transition *)
29 | trans_self :
30 ∀ me cont gen sendings actors_l actors_r,
31 sendings ◃▹ (actors_l ++ Build_actor me (self cont) gen :: actors_r)
32 ~(Self me)!
33 sendings ◃▹ (actors_l ++ Build_actor me (cont me) gen :: actors_r)
34 where "c1 ’~(’ t ’)!’ c2" := (trans t c1 c2).

Figure 19. Labeled Transition Semantics in Actario

Agents, and Decentralized Control (AGERE!@SPLASH
2013), pages 37–48. ACM, oct 2013. .

[10] Scala. The Scala programming language. http://
scala-lang.org/.

[11] M. Sirjani and M. M. Jaghoori. Ten years of analyzing actors:
Rebeca experience. In G. Agha, O. Danvy, and J. Meseguer,
editors, Formal Modeling: Actors, Open Systems, Biological
Systems, volume 7000 of Lecture Notes in Computer Science,
pages 20–56. Springer-Verlag, 2011. .

[12] C. Talcott, M. Sirjani, and S. Ren. Comparing three
coordination models: Reo, ARC, and PBRD. Science of
Computer Programming, 76(1):3–22, 2011. .

[13] T. Watanabe. Towards a compositional reflective architec-
ture for actor-based systems. In Workshop on Program-
ming based on Actors, Agents, and Decentralized Control
(AGERE!@SPLASH 2013), pages 19–24. ACM, oct 2013. .

[14] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang,
M. D. Ernst, and T. Anderson. Verdi: A framework for
implementing and formally verifying distributed systems.

In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
2015, pages 357–368, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3468-6. . URL http://doi.acm.org/
10.1145/2737924.2737958.

[15] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented
concurrent programming in ABCL/1. In OOPSLA ’86
Conference Proceedings on Object-Oriented Programming
Systems, Languages and Applications, pages 258–268, 1986.
.

Programming Abstractions for Augmented Worlds

Angelo Croatti

DISI, University of Bologna

Via Sacchi, 3 – Cesena, Italy

a.croatti@unibo.it

Alessandro Ricci

DISI, University of Bologna

Via Sacchi, 3 – Cesena, Italy

a.ricci@unibo.it

ABSTRACT
The impressive development of technologies is reducing the
gulf between the physical and the digital matter, reality
and virtuality. In the short future, the design and devel-
opment of augmented worlds – as software systems extend-
ing the physical space and environment with computational
functionalities and an augmented reality-based appearance
– could become an important aspect of programming, calling
for novel programming abstractions and techniques. In this
paper we introduce this vision, discussing mirror worlds as
augmented worlds programmed in terms of agent-oriented
abstractions.

1. INTRODUCTION
In the short future, the design and development of aug-
mented worlds could become an important aspect of
programming, not only related to specific application
domains—such as the ones traditionally targeted by aug-
mented/mixed/hyper reality [3, 2, 28, 6].

The notion of augmentation that we consider in this paper
concerns di�erent aspects, spanning from augmented/mixed
reality as a primary one, to human augmentation – enabled
by mobile/wearable technologies – and environment aug-
mentation – based on pervasive computing and Internet of
Things (IoT).

Mixed reality refers to the merging of real and virtual worlds
to produce new environments and visualizations where phys-
ical and digital objects co-exist and interact in real time [5].
As defined by P. Milgram and F. Kishino, it is “anywhere
between the extrema of the virtuality continuum” [13], that
extends from the completely real through to the completely
virtual environment with augmented reality (AR) and aug-
mented virtuality ranging between. In recent years, there
has been an impressive development of hardware technolo-
gies related to mobile and wearable supporting di�erent de-
grees of AR—the main example is given by smart glasses.
Conceptually, this kind of devices allows to extend people

cognitive capabilities, improving the way in which they per-
form their tasks [26]. This can be interpreted as a form of
human augmentation, in a way that recalls the Augmented
System conceptual framework introduced by the computer
science pioneer Doug Engelbart more than 50 years ago [8].
As remarked in [31], it is not only a matter of an hardware
augmentation: the software plays a key role here such that
we can talk about software-based augmentation.

These technologies can have a huge impact from an appli-
cation point view, allowing for rethinking the way in which
people work, interact and collaborate—escaping from the
limits that current mobile devices such as smartphones and
tablets enforce. A main one is about requiring users to use
their hands and watch 2D screens. Smart-glasses allow to
free users’ hands and perceive application output while per-
ceiving the physical reality where they are immersed.

The vision of pervasive/ubiquitous computing [29, 22, 11,
18], which is more and more entering in the mainstream with
the IoT [10, 33], provides a further and related form of aug-
mentation of the physical world. In this case, the augmenta-
tion is given by open ecosystems of connected and invisible
computing devices, embedded in physical objects and spread
in the physical environment, equipped with di�erent kinds
of sensors and actuators. Data generated by these devices is
typically collected and managed in the cloud, and accessed
by mobile/cloud applications. This embedded computing
layer augments the functionalities of the physical things that
people use everyday and, again, are going to have a strong
impact on how people work, interact and collaborate [16].
This view about environment augmentation strongly recalls
the idea of computer-augmented environments by P. Wellner
et al. [30], in which the digital (cyber) world is merged with
the physical one.

In literature, these forms of augmentation are discussed in
separated contexts, mainly focusing on solving issues related
to the enabling hardware/software technologies and to de-
velop ad hoc systems for specific application domains. In
this paper we are interested to consider these augmentations
from a programming perspective. In particular we see a con-
vergence that can be captured by the idea of computation-
as-augmentation of the physical reality, and – more specifi-
cally – of computer programs designed to be an extension of
the physical environment where people live and work in. To
capture this viewpoint, in this work we propose the notion of
augmented worlds as a conceptual framework to start explor-

ing the main concepts, principles and problems underlying
these kinds of programs, their design and development. An
augmented world is a computer program augmenting the
functionalities of some physical environment by means of
full-fledge computational objects located in the space that
users can perceive and interact with by means of proper
mobile/wearable devices. These augmented entities – being
them objects, actors or agents – can model also extensions
of existing physical things, so that their state can be a�ected
by their physical counterpart, and, viceversa, this one can
be a�ected by events/actions occurring at the digital level.

In the remainder of this paper, we first provide an overview
of main concepts and features related to augmented worlds
(Section 3), abstracting from any specific programming
paradigm that can be adopted to implement them. Then, we
focus on programming, first providing a general overview of
the programming issues that concern the adoption of specific
paradigms (Section 4) and then discussing mirror worlds
(Section 5), which provide a concrete agent-oriented pro-
gramming model to develop augmented worlds.

Mirror worlds have been introduced in literature in the con-
text of smart environments modelled in terms of agents and
multi-agent systems [20]. Inspired by them, the idea of aug-
mented worlds represent a generalization aimed at capturing
the main principles concerning these new kinds of systems,
as well as discussing the main aspects involved by their de-
sign and programming.

Besides introducing the idea of augmented worlds, the aim
of this paper is also to provide an overview of some main
research challenges and open issues (Section 6), eventually
defining a first research agenda for future work.

Before describing more extensively the main concepts that
characterize augmented worlds, in next section we review
the main research work and technologies that are related to
the vision proposed here.

2. BACKGROUND
The level of sophistication achieved by the techniques de-
veloped in the context of Augmented/Mixed Reality and
Mobile Augmented Reality (MAR) research [3, 5, 24, 23]
– supported by the availability of more and more powerful
hardware (sensors, processors, displays, wearables) – makes
it possible today to focus on the design of augmented worlds
assuming that the basic enabling functionalities – such as
indoor/outdoor tracking, to determine the location and ori-
entation of things in the real world – are available, provided
by a bottom layer of the software stack. This does not con-
cern only the location—which is however an essential aspect
in our case, like in location-based applications. It may in-
clude also other elements that more generally define the user
context—in fact, the techniques developed in context-aware
computing [7] are another enabling brick of the vision.

The maturity of these technologies is witnessed by the
products and solutions that are entering into the main-
stream. Among the others, a main recent one is Microsoft
HoloLens [1]—in which we find many points of the aug-
mented world vision. By exploiting an holographic hel-
met, Microsoft HoloLens generates a multi-dimensional im-

age visible to the user wearing the helmet so that he or she
perceives holographic objects in the physical world. Holo-
graphic objects are similar to GUI objects whose canvas is
the real world—they can be pinned, or anchored, to physical
locations chosen by the user, moved according to their own
rules, or remain in a specific location within user’s field of
view regardless of where the user is or in which direction
she/he is looking. Beside the many similarities, the kind
of augmentation provided in augmented worlds is concep-
tually di�erent. In particular, holographic objects – as far
as authors’ understanding from the information currently
available about HoloLens [1] – are meaningful only if there
is a user who (generates and) perceives them. Conversely,
an augmented world has an objective existence which does
not depend on the users that are located inside: it is first of
all a computational augmentation of the environment, which
can be then perceived by users with proper devices.

Augmented worlds are typically multi-user systems—a main
goal is to ease the development of applications supporting
collaborative hands-free human activities. From this point
view, the augmented worlds vision shares many similari-
ties with online multi-user distributed collaborative envi-
ronments such as Croquet [25]. The main di�erence is that,
instead of being purely virtual, augmented worlds are de-
ployed in the physical world.

The kind of augmentation typically provided by AR/MAR
system is information-oriented, i.e., the objective is to over-
lay on the physical reality a set of 2D/3D objects that pro-
vide some information content about that physical reality,
that can be perceived by proper AR browsers [12]. An im-
portant exception is given by MAR games [27], which have
many points in common with the augmented world view.
In fact, they typically create multi-user immersive environ-
ments blended with the physical reality composed not only
by informational objects but computational elements with
a behavior—e.g., game bots and characters. In this paper
we argue that the usefulness of this kind of extended aug-
mentation goes beyond games, making the investigation of
general purpose programming frameworks and abstractions
to support them a relevant research topic.

Finally, the vision proposed in this paper is strongly related
to any research work that investigates computing systems
in which the physical space become a first-order concept of
the computation layer, beyond the perspectives already de-
veloped in distributed and mobile computing. To authors’
knowledge, in literature this view has been developed so
far by spatial computing [32]—whose perspective, however,
is quite di�erent from the one discussed in this paper. In
fact, spatial computing systems are typically based on very
large set of mobile computing devices locally-connected and
location-aware that support the execution of distributed
computations in which the spatial configuration of the el-
ements has a primary role.

3. AUGMENTED WORLDS – CONCEPTS
In this section we identify and discuss the main features that
characterize augmented worlds. These features are mostly
independent from the specific programming paradigms that
can be adopted to implement them – for this reason we will
try to abstract as much as possible from them.

Figure 1: A simple representation of an Augmented

World, focusing on spatial coupling aspect of aug-

mented entities.

3.1 Spatial Coupling
The main distinguishing feature that characterizes aug-
mented worlds is to be composed by computational objects
that are situated in some specific location of the physical
reality (see Figure 1). In the following we will refer to
these computational objects as augmented entities, abstract-
ing from the specific programming paradigm that be used
to implement them – they could be objects in OOP, actors
in actor programs, etc.

An augmented entity is instantiated at runtime by specifying
also its location, that could be either directly a geographical
position or indirectly the reference to a physical object living
in the physical reality. The location can be specified with
respect to a local system of reference defined by the aug-
mented world. An important point here is that augmented
entities are meant to model not just data items – like in the
case of POIs (Point-of-Interests) as found in MAR applica-
tions – but any full-fledged computational entity, eventually
encapsulating a state and a behaviour. This is the basic
fundamental feature which is useful in particular to build
applications where the augmentation is not just an informa-
tion layer about physical things, but more complex services
or functionalities involving processing and interaction.

It is worth clarifying that an augmented entity is bound to
some physical location not (necessarily) because it is run-
ning on some hardware device physically situated at that
location—like in the case of e.g., spatial computing [32].
The code, data and runtime state of augmented entities are
meant to be managed by one or multiple computing server
nodes hosting augmented worlds execution, possibly in the
cloud.

Besides the location, an augmented entity can have a ge-
ometry modeling the extension of the object in the physical
space, like in classic AR application. This geometry can be
described e.g., as a set of 3D points defined with respect to
a local system of reference.

Both the location and the geometry are part of the com-
putational state of the entity, and can change at runtime

then by virtue of the computation and interaction occurring
inside the augmented world.

3.2 Discovery and Observability
The spatiality of augmented entities can be exploited to en-
rich the ways in which these computational objects are dis-
covered, observed and more generally how they interact with
each other—including interaction with users.

About discovery, inside an augmented world (as a system in
execution), the reference to an augmented entity could be
retrieved by lookup functions – provided by the augmented
world runtime – specifying the region of the world to be
queried, among the possible filters. This is essentially a
pull-based approach to discovery.

Besides, a push-based/event-driven modality is useful as
well, that is: retrieving the reference to an augmented entity
as soon as it becomes observable, given its position with re-
spect to the position of the observing entity. In order to sup-
port this modality, the augmented entity abstraction can be
further characterized by two observation-related properties:
an observability neighborhood and an observation neighbor-
hood, defining a spatial-based constraint on the set of entities
that – respectively – can observe/perceive the augmented
entity and can be observed/perceived by the augmented en-
tity. The simplest kind of spatial neighborhood can be de-
fined in terms of distances between the position where the
entities are located. In this case, these properties can be
simply referred as an observability radius and observation
radius (see Figure 2, left).

As a simple example about the usefulness of these prop-
erties, an augmented entity representing a message can be
left in a specific point in a city and can be observed (read)
only by entities that are in message’s proximity (e.g., the
ones representing human users immersed in the augmented
world). As another example, a counter entity left in a spe-
cific geographical location with the purpose to count how
much entities pass near the counter, may be defined to per-
ceive all entities in a very short observation radius, but the
observability radius can be set to zero, so other entities does
not necessarily perceive the counter.

Also the properties related to observability can change at
runtime, depending on the functionality of the augmented
entity, its computing behaviour and interaction within the
world.

3.3 User Modeling and Interaction
User interaction is a main aspect of augmented worlds,
whose primary objective is to model applications where hu-
man users – and robots, eventually – are engaged in some
kind activity in some physical environment.

An augmented world is typically a multi-user application,
where multiple users perceive, share and interact within the
same augmented entities. An e�ective way to model a user
in an augmented world is to associate her/him with an aug-
mented entity – as a kind of augmented body – with features
that are useful for controlling user input/output and a com-
putational state reifying the dynamic information about the
user (state) that can be relevant at the application level. By

Figure 2: (left) In this time instant, the entity E1 can perceive E2 but cannot be observed by other entities

(no entities within its observability radius). Viceversa, E3 can perceive E4 and can be observed by all others

entities within its observability radius. (center) An human wearing glasses can perceive ghost entity through

its associated assistant entity. (right) Physical Embedding and Coupling issue representation.

exploiting the observation-related features, it is possible to
determine which entities of the world the user is perceiving
and their observable state (see Figure 2, center). This state
can include also the geometry of the entity, which can be
eventually exploited for constructing the view perceived by
the user.

Besides, a key aspect of this modeling is that it allows for
programming augmented entities that perceive the presence
of the users, by exploiting the same mechanisms. This fea-
ture can be useful in particular to simplify the design of
smart environments that react to events related to user state
and behavior, reified in the corresponding augmented body.

3.4 Physical Embedding
The notion of augmentation in augmented worlds eventually
means also the extension of the functionalities of existing
physical objects (see Figure 2, right). Such an extension
can be useful at two di�erent (but related) levels.

A first one is for human users interacting with the physical
objects, extending the object a�ordances by means of vir-
tual interfaces to control or inspect the state of the physical
object.

A second one is for enriching the physical object function-
alities, exploiting the computing capabilities given by the
augmented layer (either embedded or not in the object it-
self). For instance, an alarm clock on the bedside table –
exploiting the associated augmented entity – can provide to
a user the functionality to seamless schedule wake-up times,
considering morning appointments on calendar or – in the
short future – considering the monitored sleep status (by
another augmented device) and adjusting wake-up timing
consequently.

This kind of augmentation requires in general some kind of
coupling between the physical objects and the correspond-
ing augmented entities providing their extension, such that
changes to the physical state of the objects are tracked and
reified in the augmented level. In other words, the aug-
mented level always needs to be informed about changes
into the physical world. When this is not possible, due to
e.g. a lack of connectivity, the augmented world’s infras-
tructure has to update a kind of meta-information for each

information/data related to physical world (like a “degree of
freshness”) to infer if and when a specific information/data
could be no longer aligned to the real state.

4. TOWARDS A PROGRAMMING MODEL
After sketching the main characteristics of augmented
worlds, we consider now the issue of how to implement them,
what kind of programming abstractions can be adopted.

OOP provides an e�ective approach to model the basic
structural aspects of augmented worlds. Augmented entities
can be directly mapped into simple objects – encapsulating
augmented entity state and behaviour – possibly exploiting
interfaces and classes to define the type and hierarchies of
augmented entities. An augmented object would have basic
operations to manage aspects such as the position inside the
augmented world. An augmented world in this case can be
modelled as the container of the augmented objects, pro-
viding services for their management. The observer pattern
could be used in this case to model the observability features
discussed in previous section.

This OOP modeling however is not e�ective to capture con-
currency and asynchronous interactions, which are main fun-
damental aspects of this kind of systems. Augmented worlds
are inherently concurrent systems. From a control point of
view, augmented entities are independent computing enti-
ties, whose computations can be triggered asynchronously
by virtue of di�erent kind of events—user(s) actions and
other entities requests. At the logical level, they are dis-
tributed, given their spatial coupling.

These aspects can e�ectively captured by concurrency model
integrating objects with concurrency, such actors and actor-
like entities such as active/concurrent objects. This choice
allows for strengthening the level of encapsulation, devis-
ing augmented worlds as collections of autonomous entities
encapsulating a state, a behaviour and the control of the
behaviour. Modelling augmented entities as actors means
using direct asynchronous message passing to model every
kind of interaction occurring inside an augmented world.
In this case, the observation-related features can be imple-
mented as a framework on top, by means of, e.g., pre-defined
actors providing functionalities related to lookup/discovery
and spatial-driven observation. Alternatively, these features

can be embedded in the actor framework/language, extend-
ing the basic model.

The observation-related features can be directly captured
instead by adopting an agent-oriented modelling. In that
case, an augmented world can be modeled in terms of au-
tonomous agents situated into a virtual environment making
the bridge between the physical and augmented layer. The
augmented entities would be the basic bricks composing such
environment, which can be observed and manipulated by the
agents by means of the environment interface (i.e. the set
of actions/percepts).

In next section we go deeper in this modeling, by discussing
a first example of agent-oriented augmented world program-
ming based on mirror worlds.

5. THE CASE OF MIRROR WORLDS
Mirror words (MW) have been introduced in [20] as an
agent-oriented approach to conceive the design of future
smart environments, integrating in the same unifying model
perspectives and visions from Distributed Systems [9], Am-
bient Intelligence (AmI) and Augmented Reality. In the
MW vision, smart spaces are modelled as digital cities
shaped in terms of the physical world to which they are
coupled, inhabited by open societies and organisations of
software agents playing the role of the inhabitants of those
cities. Mirroring is given by the fact that physical things,
which can be perceived and acted upon by humans in the
physical world, have a digital counterpart (or augmentation,
extension) in the mirror, so that they can be observed and
acted upon by agents. Viceversa, an entity in the MW that
can be perceived and acted upon by software agents, may
have a physical appearance (or extension) in the physical
world—e.g., augmenting it, in terms of AR, so that it can
be observed and acted upon by humans.

Mirror worlds are based on the A&A (Agents and Arti-
facts) [14] meta-model, introduced in agent-oriented soft-
ware engineering to exploit also the agent environment as a
first-order abstraction aside to agents to model and design
multi-agent systems. In particular, A&A introduces artifacts
as first-class abstractions to model and design the applica-
tion environments where agents are logically situated. An
artifact can be used to model and design any kind of (non-
autonomous) resources and tools used and possibly shared
by agents to do their job [21]. Artifacts have an observ-
able state that agents can perceive and a set of operations,
that agents can request as actions to a�ect the world. The
observable state is represented by a set of observable proper-
ties, whose value can change dynamically depending on the
actions executed on the artifact. Like objects in OOP, arti-
facts can have also a hidden state, not accessible to agents.
The concept of observable state is provided to support event-
driven forms of interaction between agents and artifacts, so
that an agent observing an artifact is asynchronously no-
tified with an event each time the state of the artifact is
updated. Artifacts are collected in workspaces, which rep-
resent logical containers defining the topology of the multi-
agent system, which may be distributed over the network.

The interactions among agents and artifacts are fully asyn-
chronous. Actions on artifacts executed by agents – which

encapsulate their own logical thread of control, like actors –
are executed by separate threads of control with respect to
the agent one. Operations are executed transactionally, so
the execution of multiple actions concurrently on the same
artifact is safe [21].

5.1 Mirror Worlds as Augmented Worlds
Given the augment worlds conceptual framework introduced
in this paper, a mirror world can be described as an agent-
oriented augmented world, implementing some of the prin-
ciples that have been discussed in Section 3.

Artifacts and workspaces are used in mirror worlds to model
the bridge between the augmented world layer and the phys-
ical reality layer. In particular, a MW is modelled in term
of a set of mirror workspaces, which extend the notion of
workspace defined in A&A with a map specifying which part
of the physical world is coupled by the MW. It could be a
part a city, a building, a room. The map defines a local
system of reference to locate mirror artifacts inside. Mirror
artifacts are simply artifacts anchored to some specific loca-
tion inside the physical world, as defined by the map. Such
location could be either a geo-location, or some trackable
physical marker/object. Thus, mirror artifacts realize the
spatial coupling defined in Section 3.

About observability, in a MW an agent can perceive and
observe a mirror artifact in two basic ways. One is exactly
the same as for normal artifacts, that is explicitly focusing
on the artifact, given its identifier [21]—focusing is like a
subscribe action in publish/subscribe systems. The second
one instead is peculiar to mirror workspace and is the core
feature of agents living in mirror workspaces, that is: per-
ceiving an artifact depending on its position, without the
need of explicit subscription (focusing). To that purpose,
an agent joining a mirror workspace can create a body arti-
fact, which is a built-in mirror artifact useful to situate the
agent in a specific location of the workspace. We call mirror
agent an agent with a body in a mirror workspace. Observ-
ability is ruled by two parameters – as defined in Section 3
– the observability radius and the observation radius. The
observability radius is defined for each mirror artifact and
defines the maximum distance within which an agent (body)
must be located in order to perceive the artifact. The ob-
servation radius instead is defined for each agent body and
defines the maximum distance within which a mirror arti-
fact must be located in order to be perceived by an agent.
Thus, a mirror artifact X located at the position X

pos

, with
an observability radius X

r

is observable by a mirror agent
with a body B, located in B

pos

, with an observation radius
B

R

, i� d <= X
r

and d <= B
R

, being d the distance be-
tween X

pos

and B
pos

. Both parameters can be changed at
runtime.

The user interface in MW is currently realized by user assis-
tant mirror agents with a body coupled to the physical loca-
tion of the human user, by means of a smart device—glass,
phone, whatever. Such agents perceive mirror artifacts in
the nearby of the user location, their observable state, and
can select and represent them on the smart-glass worn by
the user. The representation can range from simple mes-
sages and cues to full-fledged augmented reality rendering,
eventually superimposing virtual 3D objects on the image

of the physical reality.

About the physical embedding discussed in Section 3, mirror
artifacts can be either completely virtual, or coupled to some
object of the physical reality. In the first case, the geo-
position inside the mirror (and the physical environment)
is specified when instantiating the artifact, and it can be
updated then by operations provided by the artifact. In
the second case, at the infrastructure level, the state and
position of the mirror artifact is kept synchronized to the
state and position of the physical object by the MW runtime,
by means of suitable sensors/embedded devices.

5.2 Programming Mirror Worlds
A first implementation of Mirror Worlds has been developed
on top of the JaCaMo agent framework [19], which directly
supports the A&A meta-model. Agents are programmed
using the Jason agent programming language [4], which
is a practical extension and implementation of AgentS-
peak(L) [17]; Artifact-based environments are programmed
using the CArtAgO framework [21], which provides a Java
API for that purpose.

The MW API are currently a layer on top of JaCaMo, in-
cluding:

• MirrorArtifact artifact template, extending the
Artifact CArtAgO base class and representing the ba-
sic template to be further extended and specialized to
implement specific kinds of mirror artifacts. The usage
interface of this artifact includes:

– a pos observable property, containing the current
location in the mirror workspace of the artifact;

– observabilityRadius observable property, stor-
ing the current observability radius of the artifact;

– specific operations (setPos, setObservability
Radius) for updating the position and the observ-
ability radius.

The usage interface of agent bodies includes also an
observationRadius observable property, storing the
current observation radius of the agent, and the re-
lated operation setObservationRadius for updating
such radius.

• a new set of actions to be used by agents for creating
mirror workspaces and mirror artifacts inside, includ-
ing agent bodies.

• some utility artifacts are available providing function-
alities useful for agents working in the mirror. An
example is given by the GeoTool, which provides func-
tionalities for converting the coordinates and comput-
ing distances.

In the remainder of the section we give an overview of MW
programming in JaCaMo by considering a simple example
of mirror world, a kind of hello, world. An overview of
the main elements of the example is shown in Figure 3.
The mirror world is composed by a single mirror workspace
(called mirror-example) mapped onto a city zone in the

human user

MIRROR
WORLD

hellomsg

pospos

hello

PHYSICAL
WORLD

user ass.
agent

mirror-example workspace

SituatedMessage

Agent
Bodypos

perceive

5nTouches

ghost agent

touch

perceive

Agent
Body

perceive

Figure 3: Main elements included in the exam-

ple discussed in Section 5: a mobile user walking

along the streets and the corresponding user assis-

tant agent, with a body located at the position de-

tected by the GPS. A situated message, modelled as

a SituatedMessage mirror artifact. A ghost, as a mir-

ror agent autonomously walking through the streets.

center of a city (Cesena, in this case, in Italy). The mir-
ror workspace is dynamically populated of mirror artifacts
representing messages situated in some specific point of the
city (template SituatedMessage). Besides keeping track of
a message, these artifacts embed a counter and a touch op-
eration to increment it. Mobile human users walk around
the streets along with their user assistant agents, running
on their mobile device (e.g, the smartphone or directly the
smart glasses). As soon as user assistant agents perceive a
situated message, they display it on the smart glasses worn
by the users. In the MW there are also some ghost mirror
agents that are moving around autonomously along some
streets of the city, perceiving and interacting with the sit-
uated messages as well. They react to situated messages
perceived while walking, eventually executing a touch ac-
tion on the mirror artifact encountered. Besides, if/when a
ghost agent reaches a human user, it hugs her/him, which
is physically perceived by a trembling of the smartphone.
This occurs by executing a tremble action on the artifact
modeling the user mobile device.

The example includes also a control room (see Figure 4),
which is a remote desktop application which allows to track
the real-time state of the running mirror world, showing the
position of mirror agents (red circles) – actually the body of
mirror agents – and the position of mirror artifacts, i.e. the
situated messages in the example.

This simple example contains most of the main ingredients
of an augmented/mirror world. The situated messages rep-
resent stateful augmented entities, with a simple behaviour;
Such augmented entities are shared, perceived and manip-
ulated by both the human users (indirectly through the
user assistant agents) and the other autonomous agents liv-
ing in the mirror—i.e., the ghosts. Through the mirror,
such agents can have an e�ect also on the physical world
(trembling of the smartphones). An aspect which is quite
overlooked in the example is the visual representation of
augmented objects, which is currently fairly simple (just
messages)—more sophisticated AR-based views are planned

human
user

MIRROR
WORLD hellomsg

pospos

helloPHYSICAL
WORLD

user ass.
agent

mirror-example
workspace

Situated
Message
artifact

Agent
Body

Figure 4: The map visualised by the control room,

showing the position of mirror agents (red circles)

– that is, the body of mirror agents – and the po-

sition of mirror artifacts, i.e. situated messages in

the example.

in the future.

In order to have a concrete taste of MW programming, in
the following we show some details about how the mirror
agents and artifacts are programmed—the full code is avail-
able in [15], along with the experimental JaCaMo distribu-
tion supporting mirror worlds.

5.2.1 Defining Mirror Artifacts

The situated messages of the example are implemented by
the the SituatedMessage mirror artifact—Figure 5 shows
the implementation of the Java class representing the arti-
fact template. Artifacts in CArtAgO can be defined as classes
extending the Artifact base class. Methods annotated
with @OPERATION define the operations available to agents.
Observable properties are managed by means of prede-
fined primitives (e.g. defineObsProperty, getObsProperty,
. . .)—implemented as protected methods of the base class.
Operation execution is atomic, so – similarly to monitors –
only one operation at a time can be running inside an arti-
fact. Changes to the observable properties are made observ-
able to agents only when an operation has completed. Fur-
ther details about the artifact model are described in [21].

A mirror artifact can be defined by extending the base
MirrorArtifact class—which is an extension itself of
the CArtAgO Artifact class. SituatedMessage has
two observable properties (besides the ones inherited by
MirrorArtifact), msg and nTouches, storing the content
of the message and the counter keeping track of the num-
ber of times that the message has been touched. The touch
operation allows to increment the counter.

5.2.2 Implementing Agents in the Mirror

Agents in the mirror are normal Jason agents, with more
actions available—given by the new artifacts introduced by
the MW framework. In particular, specific actions are avail-
able for creating mirror workspaces and instantiating mir-
ror artifacts. As an example, Figure 6 shows the code of

1 public class SituatedMessage extends MirrorArtifact {
2
3 public void init(String msg){
4 super.init(msg);
5 defineObsProperty("msg",msg);
6 defineObsProperty("nTouches",0);
7 }
8
9 @OPERATION void touch(){

10 updateObsProperty("nTouches",
11 getObsProperty("nTouches").intValue()+1);
12 }
13 }

Figure 5: Source Code of the mirror artifact repre-

senting a situated message.

1 /* initial beliefs */
2
3 /* the center of the mirror -- latitude/longitude */
4 poi("isi_cortile", 44.13983, 12.24289).
5
6 /* the point of interests, where to put the messages */
7 poi("pasolini_montalti",44.13948, 12.24384).
8 poi("sacchi_pasolini",44.13952, 12.24340).
9

10 /* initial goal*/
11 !setupMW.
12
13 /* the plans */
14
15 +!setupMW
16 <- ?poi("isi_cortile",Lat,Long);
17 createMirrorWorkspace("mirror-example",Lat,Long);
18 joinWorkspace("mirror-example");
19 /* create an aux artifact to help coordinate conversion */
20 makeArtifact("geotool","GeoTool",[Lat,Long]);
21 /* create the situated messages */
22 !create_messages;
23 println("MW ready.").
24
25 /* to create the situated message mirror artifacts */
26 +!create_messages
27 <- ?poi("pasolini_montalti",Lat,Lon);
28 toCityPoint(Lat,Lon,Loc);
29 createMirrorArtifactAtPos("a1","SituatedMessage",
30 ["hello #1"],Loc,2.5);
31 ?poi("sacchi_pasolini",Lat2,Lon2);
32 toCityPoint(Lat2,Lon2,Loc2);
33 createMirrorArtifactAtPos("a2","SituatedMessage",
34 ["hello #2"],Loc2,2.5).

Figure 6: Code of the majordomo agent.

a majordomo agent, whose task is to setup the initial en-
vironment of the MW of our example. The agent creates
a mirror workspace, called mirror-example (line 17), and
a couple of SituatedMessage mirror artifacts (plan at lines
26-34), located at two POIs tagged as pasolini_montalti
and sacchi_pasolini (which are two street intersections on
the map). The action createMirrorArtifactAtPos makes
it possible to instantiate a new mirror artifact, specifying its
logical name, the template (the Java class name), its loca-
tion pos and the observability radius (in meter). The utility
artifact (GeoTool template) used by the agent provides func-
tionalities to manage geographical coordinates, in particular
to convert global latitude/longitude coordinates into the lo-
cal one of the mirror workspace (toCityPoint operation).

The first example of mirror agent is given by user assistant
agents, whose code is shown in Figure 7. The agent first cre-

ates (in its default/local workspace) a SmartGlassDevice
artifact (line 8), to be used as output device to display
messages, by means of the displayMsg operation. Then,
the agent joins the mirror workspace and creates its body,
with observation radius of 10 meters—to this purpose the
createAgentBody action is used, specifying the observing
and observability radii (line 14). The body is bound to
a GPSDeviceDriver device driver artifact (line 18), previ-
ously created (line 16). The device driver implements the
coupling between the position detected by the GPS sensor,
available on the smartphone of the user. When the human
user approaches a point in the physical world where a sit-
uated message is located, the user assistant agent perceives
the message and reacts by simply displaying it on the glasses
(lines 23-25). When (if) the human user moves away from
the mirror artifact, the belief about the message is removed
and the use assistant agent reacts by displaying a further
message (lines 27-29).

Figure 8 shows the code of the ghost mirror agents, au-
tonomously walking through some streets of the mirror
world. They have a walk_around goal (line 8), and the
plan for that goal (line 12) consists in repeatedly doing
the same path, whose nodes (a list of point-of-interests) is
stored in the path belief (line 5). They move by changing
the position of their body, by executing a moveTowards ac-
tion available in each mirror artifact—specifying the target
point (to define the direction) and the distance to be covered
(in meters). The plan for reaching an individual destina-
tion of the path (lines 23-29) simply computes the distance
from the target (exploiting the computeDistanceFrom, pro-
vided by the GeoTool artifact) and then, if the distance is
greater than one meter, it moves the body of 0.5 meter and
then goes on reaching, by requesting recursively the sub-
goal !reach_dest; otherwise it completes the plan (the des-
tination has been reached). Ghosts too react to messages
perceived while walking (plan at lines 38-41), eventually ex-
ecuting a touch action on each message encountered and
printing to the console the current number of touches ob-
served on the message. Instead, when a ghost perceives a
human (lines 43-46) – by perceiving the body of the user
assistant agent – it reacts by making a trembling on the
smartphone owned by the human user. body is an observ-
able property provided by each agent body artifact, contain-
ing the identifier of the user assistant agent which created
the body. Trembling happens by executing a tremble ac-
tion on the artifact which the user assistant agent created
to enable the physical interaction with the corresponding
human user. By convention, in the example, these artifacts
are created with the name user-dev-X, where X is name of
the user assistant agent. This convention allows the ghost
agent to retrieve the identifier of the artifact dynamically
given its logic name, by doing a lookup (line 45).

5.3 Remarks
The example, in spite of its simplicity and of the de-
tails about Jason/CArtAgO programming, should provide a
first idea about the level of abstraction provided by agent-
oriented programming for designing and programming aug-
mented worlds. The main strength is that it allows to model
the augmented world in a way which is similar to the real
world—even more similar in our opinion than the modeling
provided by paradigms such as actors or concurrent objects.

1 /* User assistant agent */
2
3 /* goal of the agent */
4 !monitor_and_display_messages.
5
6 +!monitor_and_display_messages
7 <- /* setup the smart glass device */
8 makeArtifact("viewer","SmartGlassDevice",[],Viewer);
9 /* keep track of the device id with a viewer belief */

10 +viewer(Viewer);
11 /* join the mirror workspace */
12 joinWorkspace("mirror-example");
13 /* create the agent body */
14 createAgentBody(1000,10,Body);
15 /* create the artifact used as MW coupling device */
16 makeArtifact("driver","GPSDeviceDriver",Dev);
17 /* bind the body to the device */
18 bindTo(Body)[artifact_id(Dev)];
19 println("ready.").
20
21 /* plans reacting to situated messages perceived in the mirror worlds */
22
23 +msg(M) : viewer(Dev)
24 <- .concat("new message perceived: ",M,Msg);
25 displayMsg(100,50,Msg)[artifact_id(Dev)].
26
27 -msg(M) : viewer(Dev)
28 <- .concat("message ",M," no more perceived. ",Msg);
29 displayMsg(100,50,Msg)[artifact_id(Dev)].

Figure 7: Code of the user-assistant agents.

1 /* ghost agent initial beliefs */
2
3 start_pos("pasolini_chiaramonti").
4 /* path of the walk - 2 steps*/
5 path(["sacchi_pasolini","pasolini_montalti"]).
6
7 /* initial goal */
8 !walk_around.
9

10 /* plans */
11
12 +!walk_around <- !setup; !moving.
13
14 +!moving <- ?path(P); !make_a_trip(P); !moving.
15
16 +!make_a_trip([POI|Rest])
17 <- ?poi(POI,Lat,Lon);
18 !reach_dest(Lat,Lon);
19 !make_a_trip(Rest).
20 +!make_a_trip([])
21 <- ?start_pos(Start); ?poi(Start,Lat,Lon); !reach_dest(Lat,Lon).
22
23 +!reach_dest(Lat,Lon) : myBody(B)
24 <- toCityPoint(Lat,Lon,Target);
25 computeDistanceFrom(Target,Dist)[artifact_id(B)];
26 if (Dist > 1){
27 moveTowards(Target,0.5)[artifact_id(B)];
28 .wait(50);
29 !reach_dest(Lat,Lon)}.
30
31 +!setup
32 <- joinWorkspace("mirror-example",Mirror);
33 lookupArtifact("geotool",Tool); focus(Tool);
34 ?start_pos(Point); ?poi(Point,Lat,Lon); toCityPoint(Lat,Lon,P);
35 createAgentBodyAtPos(P,1000,10,Body);
36 +myBody(Body); .my_name(Me); +me(Me).
37
38 +msg(M) [artifact_id(Id)]
39 <- touch [artifact_id(Id)];
40 ?nTouches(C)[artifact_id(Id)];
41 println("new message perceived: ",M," - touch count: ",C).
42
43 +body(Who) : me(Me) & Who \== Me
44 <- .concat("user-dev-",Who,Dev);
45 lookupArtifact(Dev,DevId);
46 tremble [artifact_id(DevId)].

Figure 8: Code of ghost agents.

In particular, both in the real world and the augmented
worlds, a main role is played by indirect interactions (vs.
direct message passing) based on the (asynchronous) ob-
servation of events occurring in the environment. This is
directly captured by the agent/environment abstractions.

6. CHALLENGES AND FUTURE WORK
The development of augmented worlds relies on the avail-
ability of enabling technologies that deal with issues and
challenges of di�erent kinds. An example is given by track-
ing and registration, which are a main concern of the AR
and MAR layer [3, 5].

Besides the challenges in the enabling layers, there are fur-
ther issues that specifically concern the augmented worlds
model.

A main general one is related to the level of real-time cou-
pling and synchronization between the computational aug-
mented layer and the physical layer. This coupling/synchro-
nization is critical from users’ perspective, since it impacts
on what users perceive of an augmented world, and then
how they reason about it and act consequentially. Being a
multi-user system, two users must perceive the same observ-
able state of the shared augmented entities. If a part of the
augmented world is temporarily disconnected – because of,
e.g., some network transient failure – users must be able to
realize this.

These aspects are challenging in particular because – like
in distributed systems in general – it is not feasible in an
augmented world to assume a single clock defining a cen-
tralized notion of time. Conversely, it is fair to assume that
each augmented entity has its own local clock and the events
generated inside an augmented world can be only partially
ordered. In spite of the distribution, causal consistency must
be guaranteed, in particular related to chains of events that
span from the physical to the digital layer and viceversa.
That is, if an augmented entity produces a sequence of two
events concerning the change of its observable state, the
same sequence must be observed by di�erent human users
immersed in the augmented world.

Similar challenges are found in online multi-user distributed
collaborative systems. As a main example, Croquet is based
on TeaTime [25], a scalable real-time multi-user architec-
ture which manages the communication among objects, and
their synchronization. The spatial coupling and physical
embedding properties of augmented worlds introduce fur-
ther elements and complexities, that are not fully captured
by strategies adopted in purely virtual systems.

Finally, the aim of this paper was to introduce the vi-
sion about augmented worlds, along with a first conceptual
framework discussing some main features of their program-
ming abstractions. Clearly, a more rigorous and compre-
hensive approach is needed to tackle the development and
engineering of non-naive augmented worlds, and, more gen-
erally, to achieve a deeper understanding of the computation-
as-augmentation view. This understanding includes, e.g.,
investigating if and how spatial coupling impacts on system
modularity, compositionality, extensibility. To this purpose,
the definition of formal models capturing the main aspects

and properties of this kind of programs appears an impor-
tant future work. Another important investigation concerns
the design of proper tools supporting the development/de-
bugging/profiling of augmented worlds. These tools must
provide specific features to deal with the characteristics de-
scribed in Section 3. To this purpose, the design of proper
real-time simulators – allowing to run an augmented world
like, e.g., a first-person perspective video-game – appears an
interesting solution to explore.

7. CONCLUSION
The fruitful integration of enabling technologies concerning
augmented reality, mobile/wearable computing and perva-
sive computing makes it possible to envision a new genera-
tion of software systems in which computation and program-
ming can be exploited to shape various forms of augmenta-
tion of the physical reality.

Augmented worlds – introduced in this paper – are programs
that are meant to extend the physical world by means of full-
fledge computational entities logically situated in some phys-
ical location, possibly enriching the functionalities of exist-
ing physical objects. Mirror words [20, 19] provide a con-
crete agent-oriented programming model for building aug-
mented worlds—based on the A&A conceptual model and
the JaCaMo platform.

The main contribution of this work is to lay down the first
basic bricks about the augmented worlds vision, and to trig-
ger further research and practical investigations, including
the engineering of real-world and robust applications based
on these ideas.

8. REFERENCES
[1] Microsoft HoloLens, O�cial web site.

https://www.microsoft.com/microsoft-hololens.
[2] R. Azuma, Y. Baillot, R. Behringer, S. Feiner,

S. Julier, and B. MacIntyre. Recent advances in
augmented reality. Computer Graphics and
Applications, IEEE, 21(6):34–47, 2001.

[3] R. T. Azuma et al. A survey of augmented reality.
Presence, 6(4):355–385, 1997.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldrige.
Programming Multi-Agent Systems in AgentSpeak
using Jason. Wiley Series in Agent Technology. John
Wiley & Sons, 2007.

[5] E. Costanza, A. Kunz, and M. Fjeld. Human machine
interaction. chapter Mixed Reality: A Survey, pages
47–68. Springer-Verlag, Berlin, Heidelberg, 2009.

[6] K. Curran, D. McFadden, and R. Devlin. The role of
augmented reality within ambient intelligence. Int.
Journal of Ambient Computing and Intelligence,
3(2):16–33, 2011.

[7] A. K. Dey. Understanding and using context. Personal
and ubiquitous computing, 5(1):4–7, 2001.

[8] D. C. Engelbart and W. K. English. A research center
for augmenting human intellect. In Proceedings of the
December 9-11, 1968, Fall Joint Computer
Conference, Part I, AFIPS ’68 (Fall, part I), pages
395–410, New York, NY, USA, 1968. ACM.

[9] D. H. Gelernter. Mirror Worlds: or the Day Software
Puts the Universe in a Shoebox...How It Will Happen

and What It Will Mean. Oxford, 1992.
[10] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami.

Internet of things (iot): A vision, architectural
elements, and future directions. Future Gener.
Comput. Syst., 29(7):1645–1660, 2013.

[11] S. Kurkovsky. Pervasive computing: Past, present and
future. 5th IEEE International Conference on
Information and Communications Technology
(ICICT), 2007.

[12] T. Langlotz, T. Nguyen, D. Schmalstieg, and
R. Grasset. Next-generation augmented reality
browsers: Rich, seamless, and adaptive. Proceedings of
the IEEE, 102(2):155–169, Feb 2014.

[13] P. Milgram and F. Kishino. A taxonomy of mixed
reality visual displays. IEICE Trans. Information
Systems, E77-D(12):1321–1329, Dec. 1994.

[14] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the
A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems,
17(3):432–456, 2008.

[15] Pervasive Software Lab – DISI, University of Bologna.
JacaMo-MW – mirror worlds in JaCaMo.
https://bitbucket.org/pslabteam/mirrorworlds, 2015.

[16] R. Poovendran. Cyber-physical systems: close
encounters between two parallel worlds. Proceedings of
the IEEE, 98(8), 2010.

[17] A. S. Rao. Agentspeak (l): Bdi agents speak out in a
logical computable language. In Agents Breaking
Away, pages 42–55. Springer, 1996.

[18] S. Reeves. Envisioning ubiquitous computing. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, pages
1573–1582. ACM, 2012.

[19] A. Ricci, A. Croatti, P. Brunetti, and M. Viroli.
Programming Mirror-Worlds: an Agent-Oriented
Programming Perspective. In Engineering Multi-Agent
Systems Third International Workshop, EMAS 2015,
Revised Selected Papers, LNCS. Springer, 2015. To
Appear.

[20] A. Ricci, M. Piunti, L. Tummolini, and
C. Castelfranchi. The mirror world: Preparing for
mixed-reality living. IEEE Pervasive Computing,
14(2):60–63, 2015.

[21] A. Ricci, M. Piunti, and M. Viroli. Environment
programming in multi-agent systems: an
artifact-based perspective. Autonomous Agents and
Multi-Agent Systems, 23(2):158–192, Sept. 2011.

[22] M. Satyanarayanan. Pervasive computing: Vision and
challenges. IEEE Personal Communications, 8:10–17,
2001.

[23] D. Schmalstieg, T. Langlotz, and M. Billinghurst.
Augmented reality 2.0. In G. Brunnett, S. Coquillart,
and G. Welch, editors, Virtual Realities, pages 13–37.
Springer Vienna, 2011.

[24] D. Schmalstieg and G. Reitmayr. The world as a user
interface: Augmented reality for ubiquitous
computing. In G. Gartner, W. Cartwright, and
M. Peterson, editors, Location Based Services and
TeleCartography, Lecture Notes in Geoinformation
and Cartography, pages 369–391. Springer Berlin
Heidelberg, 2007.

[25] D. A. Smith, A. Kay, A. Raab, and D. P. Reed.
Croquet-a collaboration system architecture. In
Creating, Connecting and Collaborating Through
Computing, 2003. C5 2003. Proceedings. First
Conference on, pages 2–9. IEEE, 2003.

[26] T. Starner. Project Glass: An Extension of the Self.
Pervasive Computing, IEEE, 12(2):14–16, April 2013.

[27] B. H. Thomas. A survey of visual, mixed, and
augmented reality gaming. Comput. Entertain.,
10(3):3:1–3:33, Dec. 2012.

[28] J. Ti�n and N. Terashima. HyperReality: Paradigm
for the Third Millenium. Routledge, 2001.

[29] M. Weiser. The computer for the 21st century.
SIGMOBILE Mob. Comput. Commun. Rev.,
3(3):3–11, July 1999.

[30] P. Wellner, W. Mackay, and R. Gold.
Computer-augmented environments: back to the real
world. Communications of the ACM, 36(7), 1993.

[31] C. Xia and P. Maes. The design of artifacts for
augmenting intellect. In Proceedings of the 4th
Augmented Human International Conference, pages
154–161. ACM, 2013.

[32] F. Zambonelli and M. Mamei. Spatial computing: An
emerging paradigm for autonomic computing and
communication. In M. Smirnov, editor, Autonomic
Communication, volume 3457 of Lecture Notes in
Computer Science, pages 44–57. Springer Berlin
Heidelberg, 2005.

[33] D. Zhang, L. T. Yang, and H. Huang. Searching in
internet of things: Vision and challenges. in Proc.
IEEE 9th Int. Symp. Parallel Distrib. Process. Appl.

(ISPA), 2011.

A Model-based Approach to Secure Multi-party Distributed

Systems

Najah Ben Said, Saddek Bensalem,

Marius Bozga

Univ. Grenoble Alpes, VERIMAG, F-38000

Grenoble, France

CNRS, VERIMAG, F-38000 Grenoble, France

FirstName.LastName@imag.fr

Takoua Abdellatif

University of Carthage, Tunis

Tunisia Polytechnic School, Tunisia

takoua_abdellatif@yahoo.fr

ABSTRACT
Securing multi-party distributed systems is still a challenge.
In such distributed systems with completely distributed in-
teractions between parties with mutual distrust, it is hard
to control the illicit flowing of private information to unin-
tended parties. Unlike some existing solutions dealing with
verification of low-level cryptographic protocol in multi-party
interactions, we propose a novel approach based on model
transformations to build secure-by-construction multi-party
distributed systems. The user has to describe his system in
a component-based model and annotate it to define the sys-
tem security policy. Then, the system is checked and when
valid, a secure code, consistent with the desired security pol-
icy, is automatically generated. To validate the approach,
we present a framework that implements our method and
we use it to secure an online social network application.

Keywords
component-based systems, distributed systems, model trans-
formation, information flow security

1. INTRODUCTION
Multi-party distributed systems involve di↵erent parties

and interactions with generally mutual distrust and unse-
cure underlying communication channels. In such systems,
it is still challenging to protect people privacy and make sure
that classified information are only disclosed to intended
parties. The typical example is the online social network
(OSN) where members within groups exchange information
and events and do not necessarily control how their data are
disseminated within OSN users and storage. Furthermore,
it is di�cult to control when some public information im-
plicitly reveal some secret one (for instance, a travel ticket
price can disclose the travel destination). Indeed, many
studies on OSN such as Facebook show that the security
configuration settings fall short to ensure intended policies.
Another example of multi-party application is the Health-
Service-App, used to calculate patients profiles and make
statistics in collaboration with a set of distributed hospital
applications. It is obvious that some parties are not allowed
to access all health private details of patients. Consider-
ing an other example of data-mining, privacy preservation
is rather treated by a cryptograph-based research known
as multi-party secure computation [12]. In this field, re-
searchers adopt formal frameworks for verifying low-level
adopted cryptographic protocols.

In this work, we are interested in verifying multi-party se-
curity systems at an abstract level model before even defin-
ing protocols used in the system. The advantage of such ap-
proach is that the system designer can describe separately
his system component behavior and interactions at a high-
level and then configures security in an intuitive way. Then,
the designer automatically checks the intended security pol-
icy without worrying about the burden of the application
protocol details. Hence, we guarantee that security specifi-
cations, that can be modified within the system life cycle, are
treated independently and in parallel with functional specifi-
cations. For security checking, we adopt the non-interference
property [11] to enforce privacy and make sure that infor-
mation are not leaking in an explicit or implicit way.

Secure Code

Secure Model

Distributed

Secure Model

Centralized

(
- Asynchronous message passing

- Annotated model

(
- Multi-party interactions

- Annotated model

(
- C++ code

- TCP/IP communication

Figure 1: Model Transformation

In this paper, we present a practical automated method
to build secure-by-construction distributed systems using a
model-based approach. Starting from a multi-party central-
ized model, the system is described as a set of components
and interactions. Annotations at the level of variables and
interfaces of components and interactions allow configuring
the system security policies. The centralized model is trans-
formed to a decentralized send/receive (S/R) model that
is, scheduling and communication protocol components are
inserted to implement interactions and set-up distributed
communication protocols. Security annotations are propa-
gated to the new distributed component-based architecture
following a set of rules to preserve the non-interference prop-
erty. In the last step, the S/R model is used to produce
the distributed code. The model transformations are illus-
trated in Figure 1. To the best of our knowledge, this is the
first approach to securely decentralize high-level component-
based systems with multiparty interactions. We proved that,
whenever the input model is secure, that is, satisfies condi-
tions for event and data non-interference of [5] , the decen-

tralized model is also secure. The first transformation has
been designed such that to preserve, by construction, the
non-interference property. For the code generation, the im-
plementation is directly derived from the S/R model using
secure communication primitives. Our contribution can be
summarized in the following points:

• We define an automated method based on model trans-
formations to build a secure-by-construction multi- party
distributed system; the user has only to design his sys-
tem in a component-based model with multiparty in-
teractions.

• We provide formal definitions of non-interference for
component-based models and we correctness proofs of
di↵erent transformation steps by showing the preserva-
tion of non-interference property. We define two kinds
of non-interference: event and data non-interference
for a more rigorous and fine-grained verification in dis-
tributed systems.

• We present a framework that implements our method
and use it to secure an OSN application called Whens-
App for event organization. This application is general
enough to cover many multi-party applications with
di↵erent security configurations.

The paper is structured as follows. Section 2 introduces
the Whens-App application and motivates the need for our
work and approach. Section 3 presents the main concepts of
the component-based framework adopted in this work as well
as non-interference definitions and su�cient conditions. In
section 4, we describe the automated distribution approach
to derive secure executable code. Section 5 presents the
implementation Tool-set and evaluation section 6 discusses
the related work. The section 7 concludes and presents some
perspectives for future work. All proofs of technical results
are given in a technical report1.

2. CASE STUDY
Throughout the paper, we consider Whens-App, an OSN

application for organizing events, such as business meeting
where participants can exchange data when these meetings
take place. Figure 2 shows an overview of a fragment of the
system which consists of a finite number of Event-Creators,
each communicating with a set of Event-Receivers. Commu-
nication channels are represented by lines in the figure.

Event−Receiver1 Event−Receiver2 Event−Receiver3 Event−Receiver n

crequest

Event−Creator1

cconfir
m

cpush
cget

crequest

cconfir
m

cpush
cget

....

Event−Creator2

rrequest1

rconfirm1

rrequest2

rconfirm2

rget2
rrequest3

rrequestn

rget1
rpush1

rpush2

rconfirm3

rget3
rpush3

rconfirmn

rgetn
rpushn

Figure 2: High-level description of the Whens-App
system.

As social network application, Whens-App, entails a large
variety of security requirements, in this paper however, we
1http://www-verimag.imag.fr/Technical-
Reports,264.html?lang=en&-number=TR-2014-6

focus on some relevant requirements related to information
flow security: Assuming that components are trustful and
the network is unsecure, (1) the interception and observation
of exchanged data messages does not reveal any information
about event participants and (2) confidentiality of classified
data as well as events is always preserved and kept secret
inter- as well as intra-components. Both requirements are
ensured by using security annotations model for tracking
events and data in the system and checking that the formal
model satisfies the security constraints given in Section 3.3.
We additionally enforce privacy of participants at implemen-
tation by hiding the identity of components participating in
a secret interaction.

3. SECURE COMPONENT-BASED MODEL
The centralized secure model [5] presents a component

oriented model well adapted in describing complex systems
like heterogeneous and distributed ones. It has been care-
fully made to achieve high expressivity for component com-
position, while maintaining separation of concerns between
components behavior and their coordination. Thanks to its
modularity, it o↵ers a flexible way to develop and manage
complex systems. Particularly, for information flow security,
the explicit system architecture it provides allows tracking
easily intra and inter-components information flow. Fur-
thermore, the centralized model allows the development of
scalable validation and verification methods and tools, ex-
ploiting compositionality principles. We recall hereafter the
main concepts behind component model with a particular
focus on security annotations and the di↵erent notions of
non-interference and their verification.

3.1 Component-Based Model
The system functional model is expressed as a set of atomic

components, that is, finite state automata or 1-safe Petri
nets, extended with data. Communications inter-components
are achieved using interactions that express synchronization
constraints and do the transfer of data between the interact-
ing components. In the following, we recall the key concepts
of the used component-based model which are further rele-
vant for dealing with information flow security. In particu-
lar, we give a formal definition of atomic components and
their composition through multiparty interactions.

Definition 1 (atomic component). An atomic com-
ponent B is a tuple (L,X, P, T) where L is a set of states, X
is a set of variables, P is a set of ports and T ✓ L⇥ P ⇥ L
is a set of port labelled transitions. For every port p 2 P ,
we denote by X

p

the subset of variables exported and avail-
able for interaction through p. For every transition ⌧ 2 T ,
we denote by g

⌧

its guard, that is, a Boolean expression de-
fined on X and by f

⌧

its update function, that is, a parallel
assignment {x := ex

⌧

}
x2X

to variables of X.

Let D be the data domain of variables. Given a set of
variables Y , we call valuation on Y any function y : Y ! D
mapping variables to data. We denote by Y the set of all
valuations defined on Y . The semantics of an atomic com-
ponent B = (L,X, P, T) is defined as the labelled transi-
tion system lts(B) = (Q

B

,⌃
B

,�!
B

) where the set of states

Q
B

= L⇥X, the set of labels is ⌃
B

= P ⇥X and the set of

labelled transitions �!
B

is defined by the rule:

Atom

⌧ = `
p�! `0 2 T x00

p

2 X
p

g
⌧

(x) x0 = f
⌧

(x[X
p

 x00
p

])

(`,x)
p(x

00
p)

����!
B

(`0,x0)

That is, (`0,x0) is a successor of (`,x) labelled by p(x00
p

) i↵

(1) ⌧ = `
p�! `0 is a transition of T , (2) the guard g

⌧

holds
on the current valuation x, (3) x00

p

is a valuation of exported
variablesX

p

and (4) x0 = f
⌧

(x[X
p

 x00
p

]) meaning that, the
new valuation x0 is obtained by applying f

⌧

on x previously
modified according to x00

p

. Whenever a p-labelled successor
exist in a state, we say that p is enabled in that state.

Example 1. Figure 3 shows three atomic components,
Event-Creator, Event-Receiver1 and Event-Receiver2. The
Event-Creator component contains three control states l

1

, l
2

and l
3

and a set of ports {crequest, cconfirm, cget, cpush,
cancel}. Initially at the state l

1

, the Event-Creator sends a
request to both Event-Receivers by executing the transition
labelled with crequest port. If the event participants send
back a confirm and transition labelled by cconfirm is exe-
cuted, both atomic components can exchange data variables
notif and info through the Event-Creator, otherwise, the
event creation is canceled. The dashed squares represent se-
curity annotations that will be presented in the coming sec-
tions.

The system composition is obtained by binding atomic
components {B

i

= (L
i

, X
i

, P
i

, T
i

)}
i=1,n

trough specific com-
position operators. We consider that atomic components
have pairwise disjoint sets of states, ports, and variables
i.e., for any two i 6= j from {1..n}, we have L

i

\ L
j

= ;,
P
i

\ P
j

= ;, and X
i

\X
j

= ;. We denote P =
S

n

i=1

P
i

the
set of all the ports, L =

S
n

i=1

L
i

the set of all states, and
X =

S
n

i=1

X
i

the set of all variables.
An interaction a between atomic components is a triple

(P
a

, G
a

, F
a

), where P
a

✓ P is a set of ports, G
a

is a guard,
and F

a

is an update function. By definition, P
a

uses at most
one port of every component, that is, |P

i

\ P
a

| 1 for all
i 2 {1..n}. Therefore, we simply denote P

a

= {p
i

}
i2I

, where
I ✓ {1..n} contains the indices of the components involved
in a and for all i 2 I, p

i

2 P
i

. G
a

and F
a

are both defined on
the variables exported by the ports in P

a

(i.e.,
S

p2Pa
X

p

).

Definition 2 (composite component). A composite
component C = �(B

1

, . . . , B
n

) is obtained by applying a set
of interactions � to a set of atomic components B

1

, . . . B
n

.

Let B = �(B
1

, . . . , B
n

) be a composite component. Let
B

i

= (L
i

, X
i

, P
i

, T
i

) and lts(B
i

) = (Q
i

,⌃
i

,��!
Bi

) their se-

mantics, for all i = 1, n. The semantics of C is the labelled
transition system lts(C) = (Q

C

,⌃
C

,�!
C

) where the set of

states Q
C

= ⌦n

i=1

Q
i

, the set of labels ⌃
C

= � and the set
of labelled transitions �!

C

is defined by the rule:

Comp

a = ({p
i

}
i2I

, G
a

, F
a

) 2 �
G

a

({x
pi}i2I

) {x00
pi
}
i2I

= F
a

({x
pi}i2I

)

8i 2 I. (`
i

,x
i

)
pi(x

00
pi

)

�����!
Bi

(`0
i

,x0
i

) 8i 62 I. (`
i

,x
i

) = (`0
i

,x0
i

)

((`
1

,x
1

), . . . , (`
n

,x
n

))
a�!
C

((`0
1

,x0
1

), . . . , (`0
n

,x0
n

))

For each i 2 I, x
pi above denotes the valuation x

i

restricted
to variables of X

pi . The rule expresses that a composite
component C = �(B

1

, . . . , B
n

) can execute an interaction
a 2 � enabled in state ((`

1

,x
1

), . . . , (`
n

,x
n

)), i↵ (1) for
each p

i

2 P
a

, the corresponding atomic component B
i

can
execute a transition labelled by p

i

, and (2) the guard G
a

of
the interaction holds on the current valuation of variables
exported on ports participating in a. Execution of interac-
tion a triggers first the update function F

a

which modifies
variables exported by ports p

i

2 P
a

. The new values ob-
tained, encoded in the valuation x00

pi
, are then used by the

components’ transitions. The states of components that do
not participate in the interaction remain unchanged.

Any finite sequences of interactions w = a
1

...a
k

2 �⇤ exe-
cutable by the composite component starting at some given
initial state q

0

is named a trace. The set of all traces w from
state q

0

is denoted by traces(C, q
0

).

Example 2. Figure 3 presents a simplified composite com-
ponent from the Whens-App application previously presented
in Section 2. The composition represents an event creation
between two Event-receiver components. Here, interactions
are represented using connectors (lines) between the inter-
acting ports. All interactions between components Event-
Creator and Event-Receiver are strong synchronized binary
interactions. The interactions {get,push} implements a data
transfer between both Event-receivers , that is, an assign-
ments at exportation between variables “info” and “notif”.

rpush1

rnotifrinfo rinfo rnotifcnotif cinfo

:rinfo,rnotif :cinfo,cnotif :rinfo,rnotif

cancel

Event−CreatorEvent−Receiver2

rc
on

fir
m

2
rr

es
qu

es
t2 crequest cconfirm

Event−Receiver1

rc
on

fir
m

1

rr
es

qu
es

t1

rconfirm1

rresponse1

rconfirm2

rresponse2

cpushcgetrget2

rpush2

rpush2 rpush1rget1

rinfo,rnotif rinfo,rnotif
active=false

cinfo,cnotif
active=true

x=0

rget2
cgetcpush

cconfirm

crequest

rget1

l2

L1

L1

L2

L2 L2

L2

L2 L2 L2

l1

l2

l3

l1l1

l2

l4 l3

l3

Figure 3: Composite component

3.2 Information Flow Security
We consider information flow policies [8, 4, 11] with focus

on the non-interference property. In order to track informa-
tion we adopt the classification technique and we define a
classification policy where we annotate the information by
assigning security levels to di↵erent parts of the centralized
component model (data variables, ports and interactions).
The policy describes how information can flow from one clas-
sification with respect to the other.

The system parameters are annotated using the Decentral-
ized Label Model (DLM) introduced in [13]. In DLM, labels
are defined as pair of confidentiality and integrity policies
denoted {c; d}, where c is the confidentiality policy and d is
the integrity policy. In the rest of the paper, in order to sim-
plify the notations and since integrity is treated dually, we
concentrate only on confidentiality. The main entity used
to express policies is the principal. A principal is a atomic

component that has the power to observe and change cer-
tain aspects of the system. Principals are ordered using the
can-acts-for relation (�), which is a delegation mechanism
that enables a principal to pass some of his rights to another
principal.

A confidentiality label L contains an owner set, denoted
O(L), that are principals whose data was observed in order
to construct the data value; they are the original sources
of the information. Label L also contains for each owner
o 2 O(L) a set of readers, denoted R(L,o), representing prin-
cipals to whom the owner o is willing to release the informa-
tion value. The association of an owner o and a set of readers
R(o) defines a policy. Confidentiality label is expressed using
set of policies. For example, considering the confidentiality
label L

2

assigned to exported variables cinfo,rinfo, cnotif
and rnotif in figure 3, where L

2

:{Event-Creator: Event-
Receiver1, Event-Receiver2} where Event-Creator can act for
Event-Receiver1 and Event-Receiver2. We denote by () the
less restrictive authority, for instance label L

1

: { : } as-
signed to the request interaction that is considered a public
event.

A security domain is a lattice of the form hS,✓,[,\i
where:

• S is a finite set of security labels.

• ✓ is a partial order “can flow to” on S that indicates
that information can flow from one security level to an
equal or a more restrictive one. For two labels L

1

and
L

2

, we consider that L
1

✓ L
2

if and only if O(L
1

) �
O(L

2

) and 8o 2 O(L
1

), R(L
1

, o) � R(L
2

, o).

• [is a “join” operator for any two labels in S and
that represents the upper bound (LUB) of them. The
join of two labels L

1

and L
2

denoted L
1

[L
2

con-
tains an owner set O(L

1

[L
2

) = O(L
1

) [O(L
2

) and
8o 2 O(L

1

[L
2

) there is reader set R(L
1

[L
2

, o) =
R(L

1

, o) \R(L
2

, o)

• \ is a “meet” operator for any two levels in S that
represents the lower bound (GLB)of them. The meet
of two labels L

1

and L
2

denoted L
1

\ L
2

do contains
an owner set O(L

1

[L
2

) = O(L
1

) [O(L
2

) and 8o 2
O(L

1

[L
2

) there is reader setR(L
1

[L
2

, o) = R(L
1

, o)[
R(L

2

, o)

The intuition behind the definition of✓ relation is that (1)
the information can only flow from one owner o

1

to either
the same or a more powerful owner o

2

where o
2

can acts
for o

1

and (2) the readers allowed by R(L
2

, o) must be a
subset of the readers allowed by R(L

1

, o) where we consider
that the readers allowed by a policy include not only the
principals explicitly mentioned by the policy but also any
principal able to act for the explicitly mentioned reader is
also able to read the data.
Let C = �(B

1

, . . . B
n

) be a composite component, fixed.
Let X (resp. P) be the set of all variables (resp. ports)
defined in all atomic components (B

i

)
i=1,n

. Let hS,✓,[,\i
be a security domain, fixed.

Definition 3 (security assignment �). A security as-
signment for component C is a mapping � : X [P [� !
S that associates security levels to variables, ports and in-
teractions such that, moreover, the security levels of ports
matches the security levels of interactions, that is, for all
a 2 � and for all p 2 P it holds �(p) = �(a).

In atomic components, the security levels considered for
ports and variables allow to track intra-component informa-
tion flows and control the intermediate computation steps.
Moreover, inter-components communication, that is, inter-
actions with data exchange, are tracked by the security levels
assigned to interactions. For example, ports, variables and
interactions of previously presented example in Figure 3 are
tagged with L

1

, L
2

security levels (graphically represented
with dashed squares).

We will now formally introduce the notions of non-interference
for our component model. We start by providing few addi-
tional notations and definitions. Let � be a security assign-
ment for C, fixed. For a security level s 2 S, we define � #�

s

the restriction of � to interactions with security level at most
s that is formally, � #�

s

= {a 2 � | �(a) ✓ s}.
For a security level s 2 S, we define w|�

s

the projection of a
trace w 2 �⇤ to interactions with security level lower or equal
to s. Formally, the projection is recursively defined on traces
as ✏|�

s

= ✏, (aw)|�
s

= a(w|�
s

) if �(a) ✓ s and (aw)|�
s

= w|�
s

if �(a) 6✓ s. The projection operator |�
s

is naturally lifted to
sets of traces W by taking W |�

s

= {w|�
s

| w 2 W}.
For a security level s 2 S, we define the equivalence ⇡�

s

on states of C. Two states q
1

, q
2

are equivalent, denoted
by q

1

⇡�

s

q
2

i↵ (1) they coincide on variables having secu-
rity levels at most s and (2) they coincide on control states
having outgoing transitions labeled with ports with security
level at most s. We are now ready to define the two types of
non-interference respectively event non-interference (ENI)
and data non-interference (DNI). We consider that deduc-
ing event-related information represent a risk that should be
handled while controlling the system’s information flow in
addition to data flows.

Definition 4 (event/data non-interference). The
security assignment � ensures event (ENI) and data non-
interference (DNI) of �(B

1

, . . . , B
n

) at security level s i↵,

(ENI) 8q
0

2 Q0

C

: traces(�(B
1

, . . . , B
n

), q
0

)|�
s

=
traces((� #�

s

)(B
1

, . . . , B
n

), q
0

)

(DNI) 8q
1

, q
2

2 Q0

C

: q
1

⇡�

s

q
2

)
8w

1

2 traces(C, q
1

), w
2

2 traces(C, q
2

) : w
1

|�
s

= w
2

|�
s

)
8q0

1

, q0
2

2 Q
C

: q
1

w1��!
C

q0
1

^ q
2

w2��!
C

q0
2

) q0
1

⇡�

s

q0
2

Moreover, � is said secure for a component �(B
1

, . . . , B
n

)
i↵ it ensures both event and data non-interference, at all
security levels s 2 S.

Here non-interference is expressed as indistinguishability
between several states and traces of the system. For in-
stance, an attacker that can observe the system’s variables
and occurences of interactions at security level L

1

must not
be able to distinguish neither changes on variables or occur-
rence of interactions having higher security level L

2

.

3.3 Checking Non-interference
We established su�cient syntactic conditions that aim to

simplify the verification of non-interference and reduce it to
local constrains check on both transitions (inter-component
verification) and interactions (intra-component verification).
We recall these conditions in order to be used later in sec-
tion 4 for rechecking security correctness of the decentralized
component model. Indeed, these conditions o↵er an easy
way to automate verification and there preservation proofs
the system non-interference.

Definition 5 (security conditions). Let C = �(B
1

,
. . . , B

n

) be a composite component and let � be a security
assignment. We say that C satisfies the security conditions
for security assignment � i↵:

(i) the security assignment of ports, in every atomic com-
ponent B

i

is locally consistent, that is:

– for every pair of causal transitions:

8⌧
1

, ⌧
2

2 T
i

: ⌧
1

= `
1

p1�! `
2

, ⌧
2

= `
2

p2�! `
3

)
`
1

6= `
2

) �(p
1

) ✓ �(p
2

)

– for every pair of conflicting transitions:

8⌧
1

, ⌧
2

2 T
i

: ⌧
1

= `
1

p1�! `
2

, ⌧
2

= `
1

p2�! `
3

)
�(p

1

) = �(p
2

)

(ii) all assignments x := e occurring in transitions within
atomic components and interactions are sequential con-
sistent, in the classical sense:

8y 2 use(e) : �(y) ✓ �(x)

(iii) variables are consistently used and assigned in transi-
tions and interactions, that is,

8⌧ 2 [n

i=1

T
i

8x, y 2 X : x 2 def(f
⌧

), y 2 use(g
⌧

))
�(y) ✓ �(p

⌧

) ✓ �(x)
8a 2 � 8x, y 2 X : x 2 def(F

a

), y 2 use(G
a

))
�(y) ✓ �(a) ✓ �(x)

(iv) all atomic components B
i

are port deterministic:

8⌧
1

, ⌧
2

2 T
i

: ⌧
1

= `
1

p�! `
2

, ⌧
2

= `
1

p�! `
3

)
(g

⌧1 ^ g
⌧2) is unsatisfiable

The first family of conditions (i) is similar to Accorsi’s
conditions [1] for excluding causal and conflicting places for
Petri net transitions having di↵erent security levels. Similar
conditions have been considered in [9, 10] and lead to more
specific definitions of non-interferences and bisimulations on
annotated Petri nets. The second condition (ii) represents
the classical condition needed to avoid information leakage
in sequential assignments. The third condition (iii) tack-
les covert channels issues. Indeed, (iii) enforces the security
levels of the data flows which have to be consistent with se-
curity levels of the ports or interactions (e.g., no low level
data has to be updated on a high level port or interaction).
Such that, observations of public data would not reveal any
secret information. Finally, condition (iv) enforces deter-
ministic behavior on atomic components.

The following result, proven in [5], states that the above
security conditions are su�cient to ensure both event and
data non-interference.

Theorem 1. Whenever the security conditions hold, the
security assignment � is secure for the composite component
C.

As an illustration, consider the composite component in
Figure 3. It can be relatively easily checked that the se-
curity conditions hold. Indeed since Event-Creator acts for
Event-Receiver1 and Event-Receiver2, L1 ✓ L

2

and the se-
curity level L

2

of variables at the assignment cinfo := rinfo
is consistent with the security level L

1

of the guard’s vari-
able active. Besides, the security level of ports involved in
all interactions is also consistent (equal). Henceforth, the
composite component is secure.

4. SECURE DECENTRALIZED MODEL
In this section we first recall the key steps for decen-

tralizing the functional model from Section 3.1 following a
transformation method from [6]. This method relies on a
systematic transformation of centralized atomic components
and replacement of multiparty interaction by protocols ex-
pressed using send/receive (S/R) interactions. S/R inter-
actions are binary point-to-point and directed interactions
from one sender component (port), to one receiver compo-
nent (port) implementing message passing. The transfor-
mation guarantees that the receive port is always enabled
when the corresponding send port becomes enabled, and
therefore S/R interactions can be safely implemented using
asynchronous message passing primitives (e.g., TCP/IP net-
work communication, MPI communication, etc...). To this
end, each atomic component B

i

is transformed into a decen-
tralized BSR

i

component.

Definition 6 (composite S/R component). CSR =
�SR(BSR

1

,. . . , BSR

n

) is a S/R composite component if we can
partition the set of ports of BSR into three sets P

s

, P
r

, P
u

that are respectively the set of send-ports, receive-ports and
unary interaction ports.

• Each interaction a = (P
a

, G
a

, F
a

) 2 �SR is either (1)
a S/R interaction with P

a

= (s, r
1

, r
2

, ..., r
k

), s 2 P
s

,
r
1

, ..., r
k

2 P
r

and G
a

= true and F
a

copies the vari-
ables exported by the port s to the variables exported
by the port r

1

, r
2

..., r
k

or (2) a unary interaction P
a

=
{p} with p 2 P

u

, G
a

= true, F
a

is the identity func-
tion.

• If s is a port in P
s

, then there exists one and only one
S/R interaction a = (P

a

, G
a

, F
a

) 2 �SR with P
a

=
(s, r

1

, r
2

, ..., r
k

) and all ports r
1

, r
2

, ..., r
k

are receive
ports. We say that r

1

, r
2

, ..., r
k

are the receive ports
associated to F .

• If a = (P
a

, G
a

, F
a

) with P
a

= (s, r
1

, r
2

, ..., r
k

) is a S/R
interaction in �SR and s is enabled in some global state
of CSR then all its associated receive-ports r

1

, r
2

, ..., r
k

are also enabled at that state.

From a functional point of view, the main challenge when
transforming functional models with multiparty interactions
towards distributed models with send/receive interactions is
to enhance parallelism for execution of concurrently enabled
interactions and computations within components. That is,
in a distributed setting, each atomic component executes in-
dependently and thus has to communicate with other com-
ponents in order to ensure correct execution with respect to
the original semantics. The existing method for distributed
implementation relies on introducing an interaction proto-
col layer to handle interactions between decentralized atomic
components layer. The first layer (S/R atomic component)
includes transformed atomic components. Each atomic com-
ponent will publish its o↵er, that is the list of its enabled
ports, and then wait for a notification indicating which in-
teraction has been chosen for execution. The second layer
(IP) deals with distributed execution of interactions by im-
plementing specific interaction protocols. The interaction
protocol evaluates the guard of each interaction and executes
the associated update function. The interface between this
layer and the component layer provides ports for receiving
o↵ers and notifying the ports selected for execution.

In the rest of this section, we extend the above decentral-
ization method such that to encompass and preserve infor-
mation flow security. Here, we impose additional modifica-
tions in S/R component behavior to encompass multi-level
security annotations, as well as restrictions on the parti-
tioning of the IP components. That is, interactions must
be statically partitioned according to their security levels to
enforce isolation at event level. Despite this partitioning,
we show that di↵erent security level data still can be man-
aged within a single security interaction manager. Besides,
we provide label propagation rules to automatically enforce
the non-interference at decentralized model which enforces
security at implementation level.

Let C = �(B
1

, · · ·B
n

) be a composite component and �
be a security assignment for C with domain S, fixed. More-
over, assume that � satisfies the security conditions defined
in subsection 3.3 for C. Furthermore, to simplify presen-
tation, consider that atomic components are deterministic,
that is, for every state ` and port p there exists at most one
transition outgoing ` and labelled by p.

4.1 Atomic Components Layer
The transformation at atomic component level consists on

breaking the atomicity of there transitions. Precisely, each
transition is split into two consecutive steps: (1) an o↵er
that publishes the current state of the component, and (2) a
notification that triggers the update function. The intuition
behind this transformation is that the o↵er transition corre-
spond to sending information about component’s intention
to interact to some scheduler and the notification transition
corresponds to receiving the answer from the scheduler, once
some interaction has been completed. Update functions can
be then executed concurrently and independently by com-
ponents upon notification reception.

In contrast to [6], to protect the information flow in the
distributed context, some changes are needed. A distinct
o↵er port o

s

and a di↵erent participation number n
s

are
defined for every security level used within the corresponding
atomic component in centralized model. Thus, we ensure
that o↵ers and their corresponding notifications have the
same security level. Equally, information about execution
of interactions having di↵erent security levels is not revealed
through the observation of n

s

variable.

Definition 7 (Transformed atomic component).

Let B = (L,X, P, T) be an atomic component within C. The
corresponding transformed S/R component is BSR = (LSR,
XSR, PSR, TSR):

• LSR = L [L?, where L? = {?
`

| ` 2 L}

• XSR = X [{x
p

}
p2P

[{n
s

|s 2 S} where each x
p

is a
Boolean variable indicating whether port p is enabled,
and n

s

is an integer called a participation number (for
security level s).

• PSR = P [{o
s

| s 2 S}. The o↵er ports o
s

export
the variables XSR

os
= {n

s

}
S
{{x

p

} [X
p

| �(p) = s}
that is the participation number n

s

, the new Boolean
variables x

p

and the variables X
p

associated to ports p
having security level s. For all other ports p 2 P , we
define XSR

p

= X
p

.

• For each state ` 2 LSR, let S
`

be the set of security
levels assigned to ports labelling all outgoing transitions

of `. For each security level s 2 S
`

, we include the
following transition ⌧

os = (?
`

os�! `) 2 TSR, where the
guard g

os is true and f
os is the identity function.

• For each transition ⌧ = `
p�! `0 2 T we include a no-

tification transition ⌧
p

= (`
p�! ?

`

0) where the guard
g
p

is true. The function f
p

applies the original up-
date function f

⌧

on X, increments n
s

and updates
the Boolean variables x

r

, for all r 2 P . That is,
x
r

:= g
⌧

if 9⌧ = `0
r�! `00 2 T , and false otherwise.

x_cget

x_cpush

crequest

cconfirm

cget

cpush

cancel

x_creq

cinfo

cnotif

x_cconf

crequest

n_ecL1

n_ecL2

cgetcpush

cancel

cinfo,cnotif

fl3 =

8
>>>>>><

>>>>>>:

xcreq := false

xcconf := false

xcpush := true

xcget := true

necL2
+ +

oecL2

L2

L2

L2

oecL1

fl1 =

8
>>>>>><

>>>>>>:

xcreq := true

xcconf := false

xcpush := false

xcget := false

necL1
+ +

fl2 =

8
>>>>>><

>>>>>>:

xcreq := false

xcconf := true

xcpush := false

xcget := false

necL1
+ +

L1

fl1

?l1

?l2

l1

l2

oecL1

oecL1

L1

L1

L1

oecL2
fl3fl3

?l4

l4

l3

Figure 4: Transformation of the Event-Creator
component (Figure 3).

Example 3. Figure 4 represents the transformed S/R ver-
sion of the Event-Creator component, presented in Figure 3.
The component is initially in control state ?

l1 . It sends an
o↵er through the corresponding o↵er port o

ecL1 containing
the current enabled port x

creq

and the participation number
n
ecL1 , then reaches state l

1

. In that state, it waits for a
notification from crequest port triggers the execution of the
update function which consists on incrementing the value of
n
ecL1 and re-evaluating x

creq

and x
cconf

. At state ?
l2 , the

Event-Creator sends an o↵er through port o
ecL1 to create an

event between participants. The event is created only if all
participants are ready to join, otherwise, the event is can-
celled.

Definition 8 (security assignment �SR

for BSR

).

The security assignment �SR is defined as an extension of
the original security assignment �. For variables XSR and
ports PSR of a transformed atomic components BSR, define

�SR(x) =

8
><

>:

�(p) if x = x
p

for some p 2 P

s if x = n
s

for some s 2 S

�(x) otherwise, for any other x 2 XSR

�SR(p) =

(
s if p = o

s

for some s 2 S

�(p) otherwise, for any other p 2 PSR

As an illustration, reconsider the example depicted in Fig-
ure 4. Following the above definition, ports crequest, cconfirm
and o

ecL1 are tagged as (L
1

) and respectively ports cpush,
cget and o

ecL2 are tagged with (L
2

) where L
1

✓ L
2

.

Lemma 2. If the security assignment � satisfies the secu-
rity conditions for the atomic component B then the secu-
rity assignment �SR satisfies the security conditions for the
transformed S/R component BSR.

4.2 Interaction Protocol (IP) Layer
This layer consists of a set of components, each in charge

of execution of a subset of interactions in the initial cen-
tralized model. Each component represent a scheduler that
receives messages from S/R components then calculates the
enabled interaction and selects them for execution. The use
of the IP components allow parallel execution at components
level as well as interactions level in a distributed environ-
ment. In this section we show how to construct a secure
IP schedulers without introducing unexpected behavior nor
disallowing interleavings, which represents a compromise be-
tween liveness and security property in distributed systems.
Indeed, a parallel execution of two distinct security level in-
teraction would not need to suspend one of them to maintain
security, thus there will be no internal timing leak.

Conflicts between interactions executed by the same IP
component are resolved by that component locally. Two in-
teractions a

1

and a
2

are in conflict i↵ either, they share a
common port p (i.e p 2 a

1

\ a
2

), or there exist two conflict-
ing transitions at a local state ` of a component B

i

that are
labelled with ports p

1

and p
2

, where p
1

2 a
1

and p
2

2 a
2

.
IP components behaviors used in this layer are similar to
the ones introduced in [6]. However, to enforce event non-
interference we enforce the partitioning of interactions ac-
cording to there security levels. Let us remark that, for a
centralized component model satisfying security conditions,
the above partitioning can be proven conflict-free, that is,
no conflicts exist between interactions having di↵erent secu-
rity levels. Henceforth, all conflicts can be resolved locally
by IP components. Such a solution is practical and preserve
initial system behavior without introducing additional wait-
ing time or priorities at execution to some interactions of
certain level over others in schedulers (IP components) to
preserve security.
Nonetheless, the security of this centralized solution is

not granted for the data part. Remind that in the central-
ized model, interactions at some security level s are allowed
to transfer and/or perform arbitrary computations on data
variables with levels other than s. Therefore, in contrast to
interactions, annotations of variables requires a bit of care
to maintain the security conditions. A concrete example is
presented in Figure 6 and discussed later.
Let C = �(B

1

, · · · , B
n

) be a composite component and
�
s

= {a
i

= (P
i

, F
i

, G
i

)|a
i

2 �,�(a
i

) = s} the set of interac-
tions of level s. Let participants(�

s

) (resp. ports(�
s

)) be the
set of atomic components (resp. ports) participating (resp.
occurring) in interactions from �

s

.

Definition 9 (IP component at level s). The com-
ponent IP

s

= (LIP , XIP , P IP , T IP) handling �
s

is defined
as:

• Set of places LIP = {w
i

, r
i

| B
i

2 participants(�
s

)}
[{s

p

| p 2 ports(�
s

)}.

• Set of variables XIP = {n
is

| B
i

2 participants(�
s

)}
[{{x

p

} [X
p

| p 2 ports(�
s

)}

• Set of ports P IP = {o
si

| B
i

2 participants(�
s

)} [
{p | p 2 ports(�

s

)} where o↵er ports o
is

are associated
to variables n

is

, x
p

, and X
p

from component B
i

and
ports p are associated to variables X

p

.

• Set of transitions T IP ✓ 2L
IP

⇥ P IP ⇥ 2L
IP

. A tran-
sition ⌧ is a triple (•⌧, p, ⌧•), where •⌧ is the set of

input places of ⌧ and ⌧• is the set of output places of
⌧ . We introduce three types of transitions:

– receiving o↵ers (w
i

, o
si

, r
i

) for all components B
i

2
participants(�

s

).

– executing interaction ({r
i

}
i2I

, a, {s
pi

}
i2I

) for each
interaction a 2 �

s

such that a = {p
i

}
i2I

, where
I is the set of components involved in a. To this
transition we associate the guard [G

a

^
V

p2a

x
p

]
and we apply the original update function F

a

on
[

p2a

X
p

.

– sending notification (s
p

, p, w
i

) for all ports p and
component B

i

2 participants(�
s

).

Example 4. Figure 5 illustrates the IP
L1 component con-

structed for interactions �
L1 = {request, confirm} for the

example shown in Figure 3. For all BSR

i

components in-
volved in interactions �

L1 , we introduce a waiting (w
i

) and
receiving (r

i

) places (i.e, (w
er1

,w
ec

, w
er2

) and (r
er1

, r
ec

,
r
er2

). For all ports p involved in �
L1 we introduce a send-

ing place s
pi (i.e, (s

rreq1

, s
creq

, s
rreq2

, s
rconf1

, s
rconf2

and
s
cconf

). The IP
L1 component moves from w

i

to rcv
i

when-
ever it receives an o↵er from the corresponding component
BSR

i

. After choosing and executing interactions, the IP
L1

component moves to sending (s
p

) places to send notification
through ports p to the corresponding component.

rconfirm1 cconfirm rconfirm2rrequest1 crequest rrequest2

rrequ
est1 crequ

est
rrequ

est2
rcon

firm
1

rcon
firm

2
ccon

firm

xcconf]
[xrconf1 xrconf2^^

L1 L1L1 L1 L1 L1L1L1L1

wec

oer2oecoer1

srconf1

wer1

IPL1

wer1
wer2wec wec

srconf2

wer2

[xrreq1 xrreq2 ^^
xcreq]

rer1
rec rer2

wer1 wer2

srreq1 screq srreq2
scconf

oecoer1 oer2

Figure 5: IP
L1 Event-secure interactions scheduler

component

Definition 10 (security assignment �SR

for IP
s

).

The security assignment �SR is built from the original secu-
rity assignment �. For variables XIP and ports P IP of the
IP

s

component that handles �
s

, we define

�SR(x) =

(
�(x) if x 2 X

p

and s ✓ �(x)

s otherwise

�SR(p) = s, forall p 2 P IP

Informally, the security assignment �SR maintains the
same security level for all variables having their level greater
than s in the original model and upgrades the others to s.
That is, all variables within the IP

s

component will have se-
curity levels at least s. This change is mandatory to ensure
consistent copy of data in o↵ers (resp. notifications) from
(resp. to) components to the IP.

Example 5. Figure 6 (a) presents a data transfer be-
tween Event-Creator and an Event-Receiver1 on get interac-
tion where the variable rinfo from component Event-Receiver1

is assigned to the variable cinfo in component Event-Creator.
Here we assume that variable rinfo is tagged with L

1

anno-
tation and variables cnotif is tagged with L

2

where L
1

✓ L
2

.
In the decentralized model presented in Figure 6 (b), the
IP

L2 component executes the interaction get. To this end,
variable cinfo is imported into a same security level vari-
ables cinfo0, while the variable rinfo is imported into a
higher security level variable rinfo0, through the correspond-
ing o↵er port, such that we preserve the security level con-
sistency between interaction (ports) and the transferred vari-
ables . Once the interaction takes place, cinfo0 is copied back
to cinfo on the notification transition. No copy is performed
back to the rinfo, hence, we manage variables of di↵erent
levels into the same IP scheduler while preserving there ini-
tially defined levels.

(a)

Event−Creator

cnotif=cnotif’

rinfo’=rinfocnotif=cnotif’

(b)

rinfo

rpush1

get

 cinfo:=rinfo

rpush1cget

rinfo’cnotif’

cnotif rinfo

cinfo

cget

 cnotif’=rinfo’

:rinfo:cinfo

Event−Creator Event−Receiver1

:cinfo :rinfo

:rinfo’:cinfo’

Event−Receiver1

L2 L1

L2

L2

L2

L2

L1

SRSR

oecL2 oer1L2

IPL2
= {get}

Figure 6: Secure data exchange between atomic
and IP components.

Lemma 3. IP components satisfies the security conditions
with security assignment �SR.

Figure 7 represents the distributed model of the system
shown in Figure 3 with two distinct security level interaction
management. Indeed, low-level security interactions request
and confirm are managed with a single IP

L1 , where high
level interaction push and get are managed with the IP

L2 .

Event_CreatorEvent_Receiver Event_Receiver

cr
eq

u
es

t

cc
on

fi
rm

rr
eq

u
es

t1
rc

on
fi

rm
1

rc
on

fi
rm

2

cp
u

sh

rp
u

sh
1

rg
et

1

rp
u

sh
2

rg
et

2

rr
eq

u
es

t1
rc

on
fi

rm
1

cr
eq

u
es

t

cc
on

fi
rm

rr
eq

u
es

t2

cp
u

sh

cg
et

rp
u

sh
2

rg
et

2

cg
et

rr
eq

u
es

t2

rr
eq

u
es

t2

rp
u

sh
1

rg
et

1

SR SR

o
e
c

o
e
r
1

o
e
r
2

o
e
c

o
e
c
L
1

o
e
c
L
2

SR

IPL = {request, confirm} IPH = {get, push}

o
e
r
1
L
1

o
e
r
1
L
2

o
e
r
2
L
1

o
e
r
2
L
2

o
e
r
1

o
e
r
2

Figure 7: Centralized interaction management

4.3 Cross-layer Interactions
Hereafter, we define the interactions in the S/R compo-

sition model Following Definition 6, we introduce S/R in-
teractions by specifying the sender and the associated re-
ceivers. Given a composite component C = �(B

1

, · · · , B
n

),
and partitions �

1s

, · · · , �
ms

of �
s

✓ �, for every security
levels s 2 S, the transformation produces a S/R composite
component CSR = �SR(BSR

1

,· · · , BSR

n

,

(IP
1s

, · · · , IP
ms

)
s2S

). We define the S/R interactions of �SR

as follows:

• For every atomic component BSR

i

participating in in-
teractions of security level s, for every IP components
IP

1s

, · · · , IP
ms

handling �
s

, include in �SR the o↵er
interaction o↵

s

= (BSR

i

.o
s

, IP
1s

.o
is

, · · · , IP
ms

.o
is

).

• For every port p in component BSR

i

and for every IP
js

component handling an interaction involving p, we in-
clude in �SR the response interaction res

p

=(IP
js

.p,
BSR

i

.p)

Definition 11 (security assignment �SR

for �SR

).

The security assignment �SR is build from the security as-
signment �. For interactions �SR between all atomic com-
ponents of the transformed model, we define �SR(a) = s
for any interaction a involving an IP

js

component handling
interactions with security level s.

Lemma 4. All the cross-layer interactions of CSR are se-
cure with �SR.

The following theorem states the correctness of our trans-
formation, that is, the constructed S/R model satisfies the
security conditions by construction.

Theorem 5 (Security-by-construction). If the com-
ponent C satisfies security conditions for the security as-
signment � then the transformed component CSR satisfies
security conditions for the security assignment �SR.

Proof. From lemma 2,3 and 4 we ensure the preserva-
tion of all security conditions at all S/R model layer and
transformation steps.

5. IMPLEMENTATION
In this section, we illustrate the complete design flow for

generating secure distributed code represented in Figure 8.
The white strong lined boxes represent modules that we
implemented while the shaded strong lined ones represent
modules that already exists and we modified to encompass
security. Based on BIP framework [14], we implement these
modules in Java language and we generate a C++ code. In
this architecture, the flow consists on configuring security at
two levels, first at the abstract model and second depending
on target platform. Hereafter, we discuss the di↵erent steps
and design choices.

5.1 Abstract Model Configuration
Additionally to the system functional model (.bip), the

system designer provide a configuration file (Annotations.xml)
that contains the DLM annotations from Section 3.2 where
we define the acts for relations and labels to di↵erent ports
and data in each component. Figure 9 presents fragments of
the configuration file for theWhens-App abstract model. We
extend the system model parser to extract labels from An-
notations.xml file. Then, we associate annotations to their
corresponding ports and data types stored in the secure com-
ponent model. Next, the secureBIP checker tool browses all
atomic components and interactions in the model to extract
events dependencies at each local state (incoming and outgo-
ing port labelled transitions) and data dependencies at dif-
ferent transition’s and interaction’s actions and checks their

2

3

4

5

6

 /

partition.txt

Interaction

OK/KO
Vertict

 2Dist

SecureBIP

Platform Independent

Implementation

OK

Processing

Parser

Interactions

Platform Dependent

Code generation

Secure comm

Constraints
Verification

component

SecureBIP checker

extraction

extraction
dependencies

Annotation.xml

Model

dependencies

Secure code
Secure sockets &

C/C++

SecureBIP

Crypto Lib

.bip file

crypto_cfg.xml Annotated S/R
 BIP

Partition
generation

Interferent
System
(Stop)

1

Figure 8: Tool-set Architecture Overview.

label consistency. In the case where tool verdict is positive,
the tool generates automatically an interaction partition file
that describes the set of interactions that each IPcomponent
would manage. This file is used as input by secureBIP 2Dist
to generate an annotated S/R model. The secureBIP 2Dist
generator is modified to encompass modifications in decen-
tralized model as well as rules for annotations propagation.

Figure 9: Configuration file for the abstract model.

5.2 Platform-Dependent Configuration
Here the system designer provides configuration file that

contains the cryptographic mechanisms to be used to en-
sure confidentiality for data and ports to secure interactions
between atomic S/R and IP components. To preserve confi-
dentiality we use encryption. We assume that the generated
code is running on trusted hosts where it is safe to generate
and store encryption keys. The Crypto Lib library contains
the di↵erent encryption protocols and functions that, follow-
ing the configuration file, the code generator selects messages
to secure at communications using secure TCP/IP sockets.

The configuration states the encryption mechanisms for

each defined security level, that is, for variables and ports
that need to be secured following the secure abstract anno-
tations. A data security is enforced using authentication,
encryption and signature mechanisms to encrypt and sign
the data at socket bu↵er before sending it. However we con-
sider that encryption does only provide a degree of privacy
with variables. Hence, we enforce the security of ports, if it
is configured so, by hiding the message identity at sending to
enforce privacy of message sender and receiver.This is done
by encapsulating the sent message such that no information
can be deduced by observing message transfer between com-
ponents. In this message source and receiver are encrypted
under a shared key between sender and receiver component.
The message index (common encrypted pass-world shared
between sender and receiver) will be used by the receiver to
retrieve the sent message. According to domain application,
there exist some privacy extensions allowing the identities of
the communicating parties to be hidden from third parties.

Following this defined configuration, we automatically gen-
erate stand-alone C++ processes for every S/R components
(atomic and IP) communicating with secure TCP/IP sock-
ets channels that can be deployed and run on a distributed
network. Each C++ process can be run on a host that en-
sures at least the upper bound security level of annotated
data and ports in it. Obviously, it is easier to find a set of
hosts that are trusted to run a process of specific security
level at most than it is to find a host that can run the whole
multi-level system.

5.3 Evaluation
Here we introduce configuration according to the prop-

agated annotation in the distributed model using the con-
figuration file where we specify authentication and encryp-
tion mechanisms. The executions is performed on an Intel
Code 2Duo 2GHz with 4GB RAM memory running Linux
Ubuntu. For generation of the certificates and encryption we
use OpenSSL library which contains tested C libraries and
here we use X.509 certificates for signature and an asym-
metric encryption algorithm (RSA) with 2048bit key size.

Components
Compilation Execution(s)

(s) �(BSR) Sec-�(BSR)
3 3.02 4.6 7.1
11 3.84 8.6 10.3
25 4.15 12.5 15.7
101 4.91 22.1 25.2

Table 1: Whens-App configuration and execution
time (in s)

As an Evaluation of our approach performance, Table 1
presents some experiments over compilation time that in-
clude security check and model transformation and the ex-
ecution time of the generated code for di↵erent component
number of Event-Receivers in the Whens-App system with
the use of security mechanisms (Sec-�(BSR)) and without
(�(BSR)). The number of decentralized multi-party inter-
actions for a system with 100 components is 50. the number
of binary interactions executed in the decentralized model
has reached 480 interaction for a system of 100 components
managed with two IP components. Here we can see, that
there is no significant overhead at compilation time with the
increase of system component. The use of cryptographic
mechanisms induces an overhead of 20%, however this per-

formance can be improved if we choose to use,for instance,
symmetric encryption instead of the asymmetric one cur-
rently implemented. Despite that our prototype implemen-
tation is based on the use of secure TCP/IP sockets, the
interaction protocol implementation can be flexible and en-
compass other communication types depending on applica-
tion domain, such as RMI.

6. RELATED-WORK
Previous works are mainly related to model-based security

and deals wit both event and data IFC and the multi-party
security.

Model-based security: Several works on model-based
security aim at simplifying security configuration and cod-
ing [7, 3]. In [3], authors, propose modeling security pol-
icy in UML and target automating security code genera-
tion for business applications like JEE and .net applica-
tions. Other works [7] use model-based approach to sim-
plify secure code deployment on heterogeneous platforms.
Compared to these, our work is not restricted to point-to-
point access control and deals with information flow security.
Recent works on information flow security in web services
rely on Petri-nets for modeling composed services [2]. Petri-
net graphs are generated from BPEL orchestration processes
and are, next, modified by the developer to represent shared
resources and to annotate interactions. Developer’s modifi-
cation is necessary here since Petri-nets capture event-based
interactions only. Our model allows representing both data
and events. Furthermore, in [2], proposed tools allowing
only non-interference checking and no security enforcement
is proposed.

Multi-party security: This domain deals with “data-
mining privacy preservation”, [12]. The goal is that a set of
parties with private inputs wishes to jointly compute some
function of their inputs. The parties learn the correct out-
put and nothing else. A typical application is the one that
need to publicize tables that sum up some statistics. This
task is extremely dangerous because census questionnaires
contain a lot of sensitive information, and it is crucial that
it not be possible to identify a single user in the publicized
tables. Compared to these works that generally deal with
low level cryptography protocols verification, we provide a
more abstract model that helps system designers to check
their system security more rapidly. Indeed, it is very im-
portant to check security configuration early in the life cycle
of system development. Before detailing the communica-
tion protocols and fine-grained system coding, the designer
checks security configurations starting from a high level de-
scription of component’s behavior and interactions.

7. CONCLUSION
In this paper, we present a practical approach to automat-

ically secure information flow in distributed systems. Start-
ing from an abstract component-based model with multi-
party interactions, we verify security policy preservation as
defined by the user, that is, verifying non-interference prop-
erty at both event and data levels. Then, we generate a dis-
tributed model where multiparty interactions are replaced
with asynchronous message passing. The intermediate dis-
tributed model is formally proved ”secure-by-construction”.
Here we provide a framework with a set of tools allowing
to build distributed systems and automatically generating

secure code that implements the desired security policy de-
fined at the centralized level. This work is now being ex-
tended to verify this approach on a parametric model with
dynamic labelling annotations. We are also trying to apply
our decentralization method to a relaxed version of non-
interference (e.g, intransitive or with declassification mech-
anisms), since for some systems, the transitive definition of
non-interference is relatively strict for practical use.

8. REFERENCES
[1] Accorsi, R., Lehmann, A.: Automatic information flow

analysis of business process models. In: Proceedings of
the 10th international conference on Business Process
Management, BPM’12 (2012)

[2] Accorsi, R., Wonnemann, C.: Static information flow
analysis of workflow models. In: Conference on
Business Process and Service Computing, volume 147
of Lecture Notes in Informatics (2010)

[3] Basin, D., Doser, J., Lodderstedt, T.: Model driven
security: from uml models to access control
infrastructures. ACM Transactions on Software
Engineering and Methodology p. 2006

[4] Bell, E.D., La Padula, J.L.: Secure computer system:
Unified exposition and multics interpretation (1976)

[5] Ben Said, N., Abdellatif, T., Bensalem, S., Bozga, M.:
Model-driven information flow security for
component-based systems. In: Proceedings of Etaps
workshop 2014, From Programs to Systems,The
Systems Perspective in Computing (2014)

[6] Borzoo, B., Marius, B., Mohamad, J., Jean, Q.,
Joseph, S.: A framework for automated distributed
implementation of component-based models.
Distributed Computing (2012)

[7] Chollet, S., Lalanda, P.: Security Specification at
Process Level. 2008 IEEE International Conference on
Services Computing (2008)

[8] Denning, D.E., Denning, P.J.: Certification of
programs for secure information flow. Commun. ACM
(1977)

[9] Focardi, R., Rossi, S., Sabelfeld, A.: Bridging
language-based and process calculi security. In: In
Proc. of Foundations of Software Science and
Computation Structures (FOSSACS’05), volume 3441
of LNCS, pp. 299–315. Springer-Verlag (2005)

[10] Frau, S., Gorrieri, R., Ferigato, C.: Formal aspects in
security and trust (2009)

[11] Goguen, J., Meseguer, J.: Security policies and
security models. In: Proceedings of the 1982 ieee
symposium on security and privacy, pp. 11–20. IEEE
Computer Society

[12] Lindell, Y., Pinkas, B.: Secure multiparty
computation for privacy-preserving data mining.
IACR Cryptology ePrint Archive (2008)

[13] Myers, A.C., Liskov, B.: Protecting privacy using the
decentralized label model. ACM Trans. Softw. Eng.
Methodol. (2000)

[14] Zdancewic, S., Zheng, L., Nystrom, N., Myers, A.C.:
Secure program partitioning. ACM Trans. Comput.
Syst. (2002)

Bulk-Synchronous Communication Mechanisms in Diderot

John Reppy
University of Chicago
jhr@cs.uchicago.edu

Lamont Samuels
University of Chicago

lamonts@cs.uchicago.edu

Abstract
Diderot is a parallel domain-specific language designed to
provide biomedical researchers with a high-level mathemat-
ical programming model where they can use familiar ten-
sor calculus notations directly in code without dealing with
underlying low-level implementation details. These oper-
ations are executed as parallel independent computations,
called strands, in a bulk synchronous parallel (BSP) fashion.
The original BSP model of Diderot limited strand creation
to initialization time and did not provide any mechanisms
for communication between strands. For algorithms, such as
particle systems, where strands are used to explore the image
space, it is useful to be able to create new strands dynami-
cally and share data between strands.

In this paper, we present an updated BSP model with
three new features: a spatial mechanism that retrieves nearby
strands based on their geometric position in space, a global
mechanism for global computations (i.e., parallel reduc-
tions) over sets of strands and a mechanism for dynamically
allocating new strands. We also illustrate through examples
how to express these features in the Diderot language. More,
generally, by providing a communication system with these
new mechanisms, we can effectively increase the class of
applications that Diderot can support.

Keywords Actor Model, Domain Specific Languages, Im-
age Analysis, Scientific Visualization, Parallelism,

1. Introduction
Biomedical researchers use imaging technologies, such as
computed tomography (CT) and magnetic resonance (MRI)
to study the structure and function of a wide variety of bio-
logical and physical objects. The increasing sophistication of
these new technologies provide researchers with the ability

to quickly and efficiently analyze and visualize their com-
plex data. But researchers using these technologies may not
have the programming background to create efficient paral-
lel programs to handle their data. We have created a language
called Diderot that provides tools and a system to simplify
image data processing.

Diderot is a parallel domain specific language (DSL) that
allows biomedical researchers to efficiently and effectively
implement image analysis and visualization algorithms.
Diderot supports a high-level mathematical programming
model that is based on continuous tensor fields. We use ten-
sors to refer to scalars, vectors, and matrices, which contain
the types of values produced by the medical imaging tech-
nologies stated above and values produced by taking spatial
derivatives of images. Algorithms written in Diderot can be
directly expressed in terms of tensors, tensor fields, and ten-
sor operations, using the same mathematical notation that
would be used in vector and tensor calculus. Diderot is tar-
geted towards image analysis and visualization algorithms
that use real image data, where the data is better processed
as parallel computations.

We model these independent computations as autonomous
lightweight threads called strands. Currently, Diderot only
supports applications that allow strands to act independently
of each other, such as direct volume rendering [7] or fiber
tractography [9]. Many of these applications only require
common tensor operations or types (i.e., reconstruction and
derivatives for direct volume rendering or tensor fields for
fiber tractography), which Diderot already provides. How-
ever, Diderot is missing features needed for other algorithms
of interest, such as particle systems,where strands are used
to explore image space and may need to create new strands
dynamically or share data between other strands.

In this paper, we present new communication mecha-
nisms for our parallelism model that include support for
inter-strand communication, global computations over sets
of strands, and dynamic allocation of strands. Inter-strand
communication is a spatial mechanism that retrieves the state
information of nearby strands based on their geometric posi-
tion in space. Global communication is a mechanism based
on sharing information on a larger scale within the program
using parallel reductions. Finally, new strands can be created

during an execution step and will begin running in the next
iteration.

The paper is organized as follows. In the next section, we
discuss our parallelism model and applications that benefit
from this new communication system. We then present the
communication system’s design details in Section 3 and de-
scribe important aspects of our implementation in Section 4.
A discussion of related work is presented in Section 5. We
briefly summarize our system and describe future plans for
it in Section 6.

2. Background
Diderot is based around two fundamental design aspects: a
high-level mathematical programming model, and an effi-
cient execution model. The mathematical model is based on
linear algebra and properties of tensor calculus. More back-
ground details about our mathematical model and its design
are covered in an earlier paper [5]. This paper focuses more
on the execution model of Diderot. This deterministic model
executes these independent strands in a bulk-synchronous
parallel (BSP) fashion [20] [21]. This section provides a
brief overview of our execution model and discusses poten-
tial new applications that benefit from these new features.

2.1 Program Structure
Before discussing our execution model, it would be bene-
ficial to provide a simple example that describes the struc-
ture of a Diderot program. A program is organized into three
sections: global definitions, which include program inputs;
strand definitions, which define the computational core of
the algorithm; and initialization, which defines the initial set
of strands. We present a program that uses Heron’s method
for computing square roots (shown in Figure 1) to illustrate
this structure.

Lines 1–3 of Figure 1 define the global variables of our
program. Line 3 is marked as an input variable, which
means it can be set outside the program (input variables
may also have a default value, as in the case of eps).
Lines 1–2 load the dynamic sequence of integers from the
file "numbers.nrrd", binds the sequence to the variable
args and retrieves the number of elements in args.

Similar to a kernel function in CUDA [18] or OpenCL [14],
a strand defintion in Diderot encapsulates the computational
core of the application. Each strand has parameter(s) (e.g.,
arg on Line 5), a state (Line 7) and an update method
(Lines 8–12). The strand state variables are initialized when
the strand is created. State variables can be declared as one of
our five concrete types: booleans, integers, strings, tensors,
and fixed-size sequences of values; some variables may be
annotated as output variables (Line 7), which define the
part of the strand state that is reported in the program’s out-
put. Heron’s method begins with choosing an arbitrary initial
value (the closer to the actual root of arg, the better). In this
case, we assign the initial value of root to be our real num-

1 int{} args = load("numbers.nrrd");

2 int nArgs = length(args);

3 input real eps = 0.00001;

4
5 strand SqRoot (real arg)

6 {

7 output real root = arg;

8 update {

9 root = (root + arg/root) / 2.0;

10 if (|rootˆ2 - arg| / arg < eps)

11 stabilize;

12 }

13 }

14
15 initially { SqRoot(args{i}) |

16 i in 0 .. nArgs-1 };

Figure 1: A complete Diderot program that uses Heron’s
method to compute the square root of integers loaded from a
file.

ber arg. Unlike globals, strand state variables are mutable.
In addition, strand methods may define local variables (the
scoping rules are essentially the same as C’s).

The update method of the SqRoot strand performs the
approximation step of Heron’s method (Line 9). The idea is
that if root is an overestimation to the square root of arg
then arg

root

will be an underestimate; therefore, the average
of these two numbers provides a better approximation of
the square root. In Line 10, we check to see if we achieved
our desired accuracy as defined by eps, in which case we
stabilize the strand (Line 11), which means the strand ceases
to be updated.

The last part of a Diderot program is the initialization sec-
tion, which is where the programmer specifies the initial set
of strands in the computation. Diderot uses a comprehen-
sion syntax, similar to those of Haskell or Python, to define
the initial set of strands. When the initial set of strands is
specified as a collection, it implies that the program’s output
will be a one-dimension array of values; one for each stable
strand. In this program, each square root strand will produce
the approximate square root of an integer.

2.2 Execution Model
Our BSP execution model is shown in Figure 2. In this
model, all active strands execute in parallel execution steps
called super-steps. There are two main phases to a super-
step: a strand update phase and a global computation phase.

execution
step

strands

update

idle

read

spawn

global computation

global computation

strand state

new

die

stabilize

Figure 2: Illustrates two iterations of our current bulk syn-
chronous model.

The strand update phase executes a strand’s update method,
which changes its state. During this phase, strands may read
the state of other strands but cannot modify it. Strands see
the states as they were at the beginning of a super-step. This
property means we must maintain two copies of the strand
state. One for strand reading purposes and one for updating a
strand state during the execution of an update method. Also,
strands can create new strands that will begin executing in
the next super-step. The idle periods represent the time from
when the strand finishes executing its update method to the
end of the strand update phase. Stable strands remain idle
for the entirety of its update phase. Dead strands are sim-
ilar to stable strands where they remain idle during their
update phase but also do not produce any output. Before
the next super-step, an optional global computation phase is
executed. Inside this phase, global variables can be updated
with new values. In particular, global variables can be up-
dated using common reduction operations. These updated
variables can be used in the next super-step, but note they
are immutable during the strand update phase. Finally, the
program executes until all of the strands are either stable or
dead.

2.3 Supporting Applications
Particle systems is a class of applications that greatly benefit
from this updated BSP model. One example is an algorithm
that distributes particles on implicit surfaces. Meyer uses a
class of energy functions to help distribute particles on im-
plicit surfaces within a locally adaptive framework [16]. The
idea of the algorithm is to minimize the potential energy as-
sociated with particle interactions, which will distribute the
particles on the implicit surface. Each particle creates a po-
tential field, which is a function of the distances between the
particle and its neighbors that lie within the potential field.
The energy at each particle is defined to be the sum of the
potentials of its interacting neighbors. The global energy of

the system is then the sum of all the individual particle ener-
gies. The derivative of the global energy function produces
a repulsive force that defines the necessary velocity direc-
tion. By moving each particle in the direction of the energy
gradient, a global minimum is found when the particles are
evenly spaced across the surface. The various steps within
this algorithm require communication in two distinct ways:
interactions between neighboring particles (i.e., computing
the energy at a particle is the sum of its neighbors’ poten-
tials) and interactions between all particles (i.e., computing
the global energy of the entire system). These distinctions
motivate us to design a communication system that provides
mechanisms for both local and global interactions. Strands
need a way for only interacting with a subset of strands or
with all the strands in the system.

Figure 3: Glyph packing on synthetic data [15]. The red grids
are specialized queries for retrieving neighboring glyphs.
The orange glyphs represent the neighbors of the blue glyph
performing the query.

Another design goal for inter-strand communication is to
provide different ways of collecting nearby neighbors. For
example, Kindlmann and Westin [15] uses a particle system
to locate tensors at discrete points according to tensor field
properties and visualize these points using tensor glyphs.
Particles are distributed throughout the field by a dense pack-
ing method. The packing is calculated using the particle sys-
tem where particles interactions are determined via a poten-
tial energy function derived from the tensor field. Since the
potential energy of a particle is affected by its surrounding
particles, neighboring particles can be chosen based on the
current distribution of the particles. Figure 3 illustrates an
example of using glyph packing on a synthetic dataset. We
use this figure to show two possible ways in which neigh-
bors are collected: hexagonal encapsulation and rectangu-
lar encapsulation. Both mechanisms only retrieve the parti-
cles defined within those geometric encapsulations and use
queries that represent the current distribution in their area. In
this example, using specialized queries can lead to a better
representation on the underlying continuous features of the
field. We need to provide various means of strand interac-

tion, where researchers have the option of choosing the best
query that suits their algorithm or their underlying data.

3. Communication design
A major design goal of Diderot is to provide a programming
notation that makes it easy for programmers to implement
new algorithms. With the addition of our communication
system, we want to continue that philosophy by designing
these new features to ease the burden of developing pro-
grams. This section provides an overview of the design of
the new communication system and examples of its syntax.

3.1 Spatial Communication
The idea behind spatial communication is shown in Figure 4.
A Strand Q needs information about its neighboring strands.
One way to retrieve Strand Q’s neighbors is by encapsulat-
ing it within a spherical shape (the green circle) given a ra-
dius r. Any strand contained within this circle is returned to
Strand Q as a collection of strands (i.e., Strands A, B, and
C). In Diderot, this process is done using predefined query
functions. The queries are based on the strand’s position in
world space. Currently we only support this spherical or cir-
cle (in the 2D case) type of query, but plan to support various
other type of queries, such as encapsulating the strand within
a box. Once the collection is returned by the query, Strand
Q can then retrieve state information from the collection of
neighbors.

r

A

B

C

D

Q r

Figure 4: An example of showing a spherical query (i.e.,
a circle in 2D). Strand Q (red) produces an encapsulating
circle (green) with a predefined radius. Any strands within
the encapsulating circle is returned to Strand Q. In this case,
the query would return Strands A, B, and C.

Query functions produce a sequence of strand states. Us-
ing the strand state, a strand can then gain access to its neigh-
bor’s state variables. As mentioned earlier, queries are based
on a strand’s position in world space; therefore, the strand
state needs to contain a state variable called pos. The po-
sition variable needs to be defined as a real pos, vec2
pos, or vec3 pos. The position of a strand is a dynamic

value that can be updated during a super-step. Thus, query
functions could return varying strand sequences in future
super-steps if strands are moving through out the world.

Processing the queried sequence of strands is performed
using a new Diderot mechanism called the foreach state-
ment. The foreach statement is very similar to for statements
used in many modern languages, such as Python and Java.
An iteration variable will be assigned to each strand in the
collection returned by the query function. During each itera-
tion of the loop, a strand can use this iterator variable to gain
access to its neighbor’s state. Inside foreach block, strands
can access the neighbor’s state by using the selection oper-
ator (i.e., the . symbol) followed by the name of the strand
state variable and then the name of the field (similar to ac-
cessing a field in a struct variable in the C language).

1 real{} posns = load("positions.nrrd");

2 real{} energy = load("energies.nrrd");

3
4 strand Particle (real e, real x,real y) {

5 vec2 pos = [x,y];

6 real energy = e;

7 output real avgEnergy = 0.0;

8 update {

9 int neighborCount = 0;

10 real total = 0.0;

11 foreach(Particle p in sphere(10.0)){

12 neighborCount += 1;

13 total += p.energy;

14 }

15 avgEnergy = total/count;

16 stabilize;

17 }

18 }

Figure 5: A snippet of code demonstrating the spatial com-
munication mechanism.

An example of using spatial communication is shown in
Figure 5. This code snippet calculates the average energy of
all the neighbors for each particle. The code loads positions
and energies from a file (Lines 1-2) and assigns (Lines 5-
6) each particle (i.e., a strand) a position and energy. It
declares accumulator variables (Line 9-10) to hold the total
energy and count of the neighbors. The foreach statement
(Line 11) declares variable p with its typing being the strand
name. The program uses a spherical query with a given
radius (e.g., the value of 10 in this example) to retrieve the
collection of neighbors. Each neighbor will then be assigned
to p for an iteration of the loop. The accumulator variable,
neighborCount, is incremented for each neighbor within the
collection (Line 12). We use the selection operator (Line 13)
to retrieve the energy state variable and added it to the total
energy. Finally, we use the accumulator variables (Line 15)
to calculate the final output, avgEnergy.

3.2 Global Communication
As mentioned earlier, strands may want to interact with a
subset of strands, where they may not be spatially close
to one another. This mechanism can be seen as allowing
strand state information to flow through a group of strands
to produce a result that gives insightful information about
the entire state of a group. Once the result is computed, a
strand can then use it as a way updating their state during
the update phase or updating a global property (i.e., a global
variable) of the system. We call this flow of information
global communication. This feature is performed by using
common reduction operations, such as product or sum.

Figure 6 shows the syntax of a global reduction in
Diderot. r represents the name of the reduction. Table 1 pro-
vides the names of the reductions and a detailed description
of their semantics. The expression e has strand scope. Only
strand state and global variables can be used in e along with
other basic expression operations (e.g., arithmetic or rela-
tional operators). The variable x is assigned to each strand
state within the set t. This variable can then be used within
the expression e to gain access to state variables. The set
t can contain either all active strands, all stable strands, or
both active and stable strands for an iteration. N represents
the name of the strand definition in the program. Syntac-
tically, if a strand P was defined as the strand definition
name then a program can retrieve the sets as follows: P.active
(all active Ps), P.stable (all stable Ps), or P.all (all active and
stable Ps).

t ::= N.all strand sets
| N.active
| N.stable

e ::= ... previously defined expressions
| r{e | x in t} reduction expression

Figure 6: Syntax of a global reduction

The reduction operations reside in a new definition block
called global. Global reductions can only be assigned to
local and global variables in this block. Reductions are not
permitted to be used inside the strand definition. Before
the addition of the global block, global variables were im-
mutable but now they can be modified within this block.

A trivial program that finds the maximum energy of all
active and stable strands is shown in Figure 7. Similar to
the spatial code, this code loads energies from a file (Line
1) and assigns each strand an energy value (Line 6). The
program also defines a global variable maxEnergy (Line 3)
that holds the maximum energy of all the strands. Inside the
global block (Lines 16-18), the max reduction is used to find
the maximum of the energy state variable. The reduction
scans through each P.energy value from all active and stable

Table 1: The meanings of reduction operations

Reduction Semantics Identity
all For each strand, S, in the set t com-

pute the value e and return TRUE
if all the e values in t evaluate to
TRUE, otherwise FALSE.

true

max For each strand, S, in the set t com-
pute the value e and return the max-
imum e value from the set s.

�1

min For each strand, S, in the set t com-
pute the value e and return the min-
imum e value from the set t.

+1

exists For each strand, S, in the set t com-
pute the value e and return TRUE if
any one of the e values in t evaluate
to TRUE, otherwise FALSE.

false

product For each strand, S, in the set t com-
pute the value e and return the prod-
uct of all the e values in t.

1

sum For each strand, S, in the set t com-
pute the value e and return the sum
of all the e values in t.

0

mean For each strand, S, in the set t com-
pute the value e and return the mean
of all the e values in t.

0

variance For each strand, S, in the set t com-
pute the value e and return the vari-
ance of the e values in t.

0

strands and assigns maxEnergy the highest value. Inside the
update method (Lines 7-9), the strand with the maximum
energy prints it out and all strands stabilize. An important
aspect to note about this particular code is the need for the
iter global variable. Remember, the first evaluation of the
global computation phase is only after the first execution
of the strand update phase. Thus, maxEnergy will not have
the actual maximum energy until the second iteration. This
caveat is why the strands stabilize and the maximum energy
is printed when iter reaches two.

3.3 Dynamic Strand Allocation
Diderot does allow the number of strands to vary dynami-
cally, via its die statement, but there is no way to increase
the number of active strands in a program. New strands can
be allocated during the strand update phase by using the new
statement within the update method. Using the new state-
ment:

new P (arguments);

where P is the name of the strand definition, a new strand
is created and initialized from the given arguments. Figure 8
shows a snippet of code that uses the new statement. If a

1 int{} energies = load("energies.nrrd");

2 int nEnergies= length(energies);

3 real maxEnergy = -1;

4 int iter = 1;

5 strand Particle (real initEnergy) {

6 real energy = initEnergy;

7 update {

8 if(iter == 2 && maxEnergy == energy)

9 print(maxEnergy);

10 if(iter == 2)

11 stabilize;

12 }

13 }

14
15 global {

16 iter += 1;

17 maxEnergy = max{P.energy |

18 P in Particle.all};

19 }

20 initially [Particle(energies(vi)) |

21 vi in 0..(nEnergies-1)];

Figure 7: Retrieves the maximum energy of all active and
stable strands in the program.

strand is wandering alone in the world then it may want to
create more strands in its neighborhood. In this case, new
strands are created by using the strand’s position plus some
desired distance from the strand.

1 real d = 5.0;

// desired distance of a new particle.

2 ...

3 strand Particle (real x, real y) {

4 vec2 pos = [x,y];

5 update {

6 int count = 0;

7 foreach(Particle p in sphere(10.0)){

8 count = count + 1;

9 ...

10 }

11 if(count < 1) {

12 new Particle(pos[0] + d, pos[1] + d);

13 }

14 ...

15 }

16 }

Figure 8: A snippet of code showing how new strands are
created when there are no surrounding neighbors.

4. Implementation
The addition of strand communication to the Diderot com-
piler produced minimal changes for its front end and inter-

mediate representations. But we added a significant amount
of code to our runtime system. In particular, implement-
ing the spatial scheme for spatial communication and de-
termining an efficient way of executing global reductions
was required. In this section, we give a brief overview of the
Diderot compiler and runtime system and discuss the imple-
mentations details of the communication system.

4.1 Compiler Overview
The Diderot compiler is a multi-pass compiler that handles
parsing, type checking, multiple optimization passes and
code generation [5]. A large portion of the compiler deals
with translating from the high-level mathematical surface
language to efficient target code. This process occurs over
a series of three intermediate representations (IRs), ranging
from a high-level IR that supports the abstractions of fields
and derivatives to a low-level language that decomposes
these abstractions to vectorized C code. Also at each IR
level, we perform a series of traditional optimizations, such
as unused-variable elimination and redundant-computation
elimination using value numbering [4]. The code the com-
piler produces depends on the target specified. We have sep-
arate backends for various targets: sequential C code with
vector extensions [10], parallel C code, OpenCL [14]. Be-
cause these targets are all block-structured languages, the
code generation phase converts the lowest IR into a block-
structured AST. The target-specific backends translate this
representation into the appropriate representation and aug-
ment the code with type definitions and runtime support. The
generated code is then passed to the host system’s compiler.

4.2 Runtime Targets
The runtime system implements the Diderot execution model
on the specified target and provides additional supporting
functions. For a given program, the runtime system com-
bines target-specific library code and specialized code pro-
duced by the compiler. We current support three versions of
the runtime system:

4.2.1 Sequential C
The runtime implements this target as a loop nest, with the
outer loop iterating once per super-step and the inner loop
iterating once per strand. This execution is done on a single-
processor and vectorized operations.

4.2.2 Parallel C
The parallel version of the runtime is implemented using
the Pthreads API. The system creates a collection of worker
threads (the default is one per hardware core/processor) and
manages a work-list of strands. To keep synchronization
overhead low, the strands in the work-list are organized into
blocks of strands (currently 4096 strands per block). During
a super-step, each worker grabs and updates strands until
the work-list is empty. Barrier synchronization is used to
coordinate the threads at the end of a super step. Note,

however, that the compiler will omit barrier synchronization
when it is not required (e.g., when the program does not use
strand communication), which results in better performance.

4.2.3 GPUs
Lastly, the GPU runtime is implemented using the OpenCL
API. In OpenCL, work items (i.e., threads) are separated
into workgroups and execution is done by warps (i.e., 32
or 64 threads running a single instruction). Similar to the
parallel C runtime, strands are organized into blocks. Each
strand block contains a warp’s worth of strands for execu-
tion. Instead of the runtime using the GPU scheduler, the
system implements the idea of persistent thread to manage
workers [12]. We use multiple workers per compute unit to
hide memory latency. Currently, the communication system
is implemented only for the sequential and parallel C targets.
We plan to add communication support for GPUs in the fu-
ture.

4.3 Spatial Execution
When choosing a spatial scheme, it is important to con-
sider how it affects a program’s performance. For instance,
if a Strand Q queried for its neighbors using a spherical
query then a naive implementation would sequentially per-
form pairwise tests with the rest of the strand population to
determine if a strand lies within the sphere’s radius. For n
strands, this requires: O(n2) pairwise tests [8]. A Diderot
program can contain thousands of active strands at any given
super step. This scheme can become too expensive even with
a moderate number of strands due to the quadratic complex-
ity. We use a tree-based spatial partitioning scheme, specif-
ically, k-d trees [1][11]. A k-d tree allows one to divide a
space along one dimension at a time. We use the traditional
approach of splitting along x, y, and z in a cyclic fashion.
With this spatial scheme, nearest neighbor searches can be
done more efficiently and quickly because we are search-
ing smaller regions versus the entire system. This process
thereby reduces the number of comparisons needed.

As stated earlier, the position state variable of a strand is
used for constructing the spatial tree. We use a parallel ver-
sion of the medians of medians algorithm [3] to select the
splitting value. As the tree is built, we cycle through the axes
and use the median value as the splitting value for a partic-
ular axis. A strand’s position can potentially change during
the execution of the update method, or new strands can be
created during an update. Thus, the tree is rebuilt before the
beginning of the update method to take into account these
changes. To improve performance, this reconstruction pro-
cess is done in parallel.

4.4 Global Reductions
As stated previously, the global reductions reside in the new
global block. This block of code allows for the modification
of global variables and is executed at the end of the super-
step. The parallel C target uses one of its threads to execute

the block in a sequential fashion with the exception of re-
ductions. The process of executing reductions is described
below:

4.4.1 Reduction Phases
The reductions inside the global block are executed in paral-
lel phases. Each reduction is assigned and grouped into exe-
cution phases with other reductions. After parsing and type
checking, a typed AST is produced and converted into a sim-
plified representation, where temporaries are introduced for
intermediate values and operators are applied only to vari-
ables. It is during this stage of the compiler reductions are
assigned their phase group. The phase in which a reduction
is assigned is dependent on whether an another reduction is
used to calculate the final value for a global variable. Fig-
ure 9 shows an example on how reductions are grouped. Ini-
tially, each global variable assigned to a reduction will au-
tomatically begin in phase 0 and added to a hash-map that
contains all global reduction variables. If the right hand side
(rhs) expression contains other global reduction variables the
phase assigned to the variable will be: 1 + ✓, where ✓ is the
highest phase among the rhs global reduction variables. Spit-
ting reductions into phases is important for increasing per-
formance. Calculating a reduction in parallel occurs a large
amount of overhead for running and synchronizing threads.
Thus, reductions that can be executed in parallel with other
reductions reduces this overhead.

a

Variable Phase

0

b 1

c 0

d 2

e 0

a = mean(...);
b = sum(...) + a;
c = sum(...) * 10;
d = mean(...)/ b;
e = product(...) + 3.0;

Figure 9: Reduction variables are assigned into phase groups
for execution. A phase group for a variable is incremented
depending on whether other reduction variables reside in the
same expression. This process greatly reduces the amount
of overhead of performing a reduction versus individual
execution.

4.4.2 Reduction Lifting
Also during phase identification, we perform an operation
called reduction lifting. This process is shown in Figure 9.
Each reduction expression is replaced with a temporary vari-
able and lifted into a new block called the reduction block.
Lifting reductions simplifies the grouping of reductions into
their correct phase groups during code generation.

a = mean(...);
b = sum(...) + a;
c = sum(...) * 10;
d = mean(...)/ b;
e = product(...) + 3.0;

a = r1;
b = r2 + a;
c = r3 * 10;
d = r4 /b;
e = r5 + 3.0;

Reduction Block

Global Block

lift

transform

r1 = mean(...);
r3 = sum(...);
r5 = product(...);

r2 = sum(...);

r4 = mean(...);

phase 0

phase 1

phase 2

Figure 10: Reduction lifting makes it easier to group re-
ductions when generating target code. Each reduction is re-
placed with a new variable in the expression and is lifted into
a special code block for reductions.

4.4.3 Phase Execution
The code generation phase breaks the reductions into their
assigned phases. This phase also determines at what time to
execute a particular phase. The assignments inside the global
block are scanned for reduction variable usage. If a reduction
variable is used on the rhs then we look up its phase group
and insert a phase execution call before the assignment as
shown in Figure 9. The phase execution call is only needed
before the first occurrence of any reduction variable in that
particular phase.

a = r1;
b = r2 + a;
c = r3 * 10;
d = r4 /b;
e = r5 + 3.0;

phase(0);
a = r1;
c = r3 + 3.0;
e = r5 * 10;
phase(1);
b = r2 + a;
phase(2);
d = r4 /b;

Global Block

Figure 11: Phase execution calls are inserted before the exe-
cution of the assignment that uses the reduction.

4.5 Allocating Strands
Diderot maintains a contiguous chuck of memory that rep-
resents the strand states for a program. During world initial-
ization (i.e., before the first update method call), We allo-
cate this chunk of memory with enough space to allocate
the initial set of strands along with an additional amount
of strands that will remain uninitialized. Remember, worker
threads process blocks of strands during a super-step. If a

worker thread needs to allocate a new strand then it can re-
quest an uninitialized strand from that block memory, which
it then can initialize once received.

5. Related Work
The work presented in this paper is novel to the area of
visualization and image analysis languages. Currently, we
are unaware of any other languages that provide the spatial
query mechanism that is directly built into the language it-
self. Although, the concepts of spatial and global communi-
cation are studied in various other research fields.

The ideas behind spatial communication in Diderot was
influenced by previous works that use agent-based models
[13]. These models use simulations based on local interac-
tions of agents in an environment. These agents can rep-
resent variety of different objects such as: plants, animals,
or autonomous characters in games. With regards to spatial
communication, we explored models that are spatially ex-
plicit in their nature (i.e., agents are associated with a loca-
tion in geometric space).

Craig Reynolds’s boids simulation is an example of an
spatially explicit environment [19]. This algorithm sim-
ulates the flocking behavior of various species. Flocking
comes from the practice of birds flying or foraging together
in a group. A flock is similar to groups of other animals,
such as the swarming of insects. Reynolds developed a pro-
gram called Boids that simulates local agents (i.e., boids)
that move according to three simple rules: separation, align-
ment, and cohesion. The boids simulation influenced our
spatial communication design in regards to how it retrieved
its neighbors. When boids are searching for neighboring
boids, they are essentially performing a query similar to our
queries in Diderot. In particular, they are performing a circle
query that encapsulates the querying boid and any nearby
boids bounded within a circle. However, our query performs
much faster because we use tree-based scheme to retrieve
neighbors, while Reynold’s query runs in O(n2) because it
requires each boid to be pairwise tested with all other boids.

Agent interactions have also been modeled using inter-
process communication systems [17] and computer net-
works [22]. In these models, processes or nodes can send
and receive messages (i.e., data or complex data structures
that represent tasks) to other processes. Once agents are
mapped to processes, they then can use the messaging pro-
tocol defined by the system to query about nearby agents
or exchange state information with each other. However,
this process requires an application to explicitly adapt or
layer its spatial communication model to work within these
systems. In Diderot, there is only an implicit notion that
strands are defined within a geometric space and one uses
query functions to retrieve state information of neighboring
strands, which differs from the layering requirement needed
for these other communication systems.

The execution of global reductions in Diderot is simi-
lar to the MapReduce model developed by Dean and Ghe-
mawat [6]. MapReduce is a programming model used to pro-
cess parallelize problems that use large data sets, where data
mapped into smaller sub-problems and is collected together
to reduce to a final output. Many data parallel languages
have supported parallel map-reduce, such as the NESL lan-
guage [2], which has also influenced our design of global re-
ductions. The global block allows reductions to be mapped
to global variables. After each super-step, the global phase
(i.e., our “reduce” step) executes the global block, which
performs the actual computation for each reduction. Pro-
grammers do not need to worry about lifting the reductions
into their own phase because this process is handled by the
Diderot compiler.

6. Discussion and Future Work
The original design and implementation of Diderot was lim-
ited in that it only supported computations involving com-
pletely autonomous strands [5]. This limitation excluded al-
gorithms of interest, such as particle systems. These algo-
rithms require additional communication mechanism to be
supported by the language. With the addition of spatial com-
munication and global reductions we have given program-
mers the ability to implement and explore more applications
with the Diderot language. Although, there are few areas in
we plan to improve and work on in the future to provide a
better communication system.

Currently we only support a limited number of query
functions. We plan to provide additional query functions
such as ellipsoidal and hexagonal, to bring more diversity to
the options researchers can use within their algorithms. We
also are exploring the ability to support abstraction spatial
relationships. For example, defining a query to retrieve the
26-neighbors in a 3D grid, or support mesh based methods,
where a strand corresponds to a triangle in a finite-element
mesh. Query functions are the basis behind spatial commu-
nication in Diderot, so allowing for various query options
gives a larger range in the types of algorithms we can sup-
port.

The new BSP communication mechanism poses a diffi-
cult implementation challenge for our GPU target. GPUs are
not as flexible in terms of allocating memory dynamically,
which can only be done on the host side device. This restric-
tion means that we have to produce a scheme for managing
memory efficiently. This scheme needs to determine the ap-
propriate times to dynamically allocate more memory, which
can incur a large overhead cost if done naively. With having
various components of a Diderot program being allocated on
the GPU (i.e., strand state information, spatial tree informa-
tion, GPU scheduler information, and potential image data),
we can potentially run out of memory on the device. If this
happens then we may need to come up with a scheme that of-
floads certain components to the CPU and load only the data

that is need for a given iteration. These complications need
to be considered when implementing strand communication
on the GPU.

Acknowledgments
Portions of this research were supported by the National
Science Foundation under award CCF-1446412. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or
implied, of these organizations or the U.S. Government.

This research was also previously presented at the Com-
pilers for Parallel Computing Workshop in January 2015 at
Imperial College, London, UK. The workshop did not in-
clude a published proceedings but rather it was a workshop
for international researchers coming together to present their
research ideas.

References
[1] J. L. Bentley. Multidimensional binary search trees used for

associative searching. Commun. ACM, 18(9):509–517, Sept.
1975. ISSN 0001-0782. . URL http://doi.acm.org/

10.1145/361002.361007.

[2] G. E. Blelloch. NESL: A nested data-parallel language.
Technical report, Carnegie Mellon University, Pittsburgh, PA,
USA, 1992.

[3] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan.
Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–
461, Aug. 1973. ISSN 0022-0000. . URL http://dx.

doi.org/10.1016/S0022-0000(73)80033-9.

[4] P. Briggs, K. D. Cooper, , and L. T. Simpson. Value num-
bering. Software – Practice and Experience, 27(6):701–724,
June 1997.

[5] C. Chiw, G. Kindlmann, J. Reppy, L. Samuels, and N. Seltzer.
Diderot: A parallel DSL for image analysis and visualization.
In Proceedings of the 2012 SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’12),
pages 111–120, New York, NY, June 2012. ACM.

[6] J. Dean and S. Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51
(1):107–113, Jan. 2008.

[7] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume render-
ing. In Proceedings of the 15th annual conference on Com-
puter graphics and interactive techniques, SIGGRAPH ’88,
pages 65–74, New York, NY, USA, 1988. ACM. ISBN 0-
89791-275-6. . URL http://doi.acm.org/10.1145/

54852.378484.

[8] C. Ericson. Real-Time Collision Detection (The Morgan
Kaufmann Series in Interactive 3-D Technology) (The Mor-
gan Kaufmann Series in Interactive 3D Technology). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.
ISBN 1558607323.

[9] A. Filler. The history, development and impact of com-
puted imaging in neurological diagnosis and neurosurgery:

CT, MRI, and DTI. Nature Precedings, 2009. URL http:

//dx.doi.org/10.1038/npre.2009.3267.5.
[10] Using vector instructions through built-in functions. Free

Software Foundation. URL http://gcc.gnu.org/

onlinedocs/gcc/Vector-Extensions.html.
[11] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algo-

rithm for finding best matches in logarithmic expected time.
ACM Trans. Math. Softw., 3(3):209–226, Sept. 1977. ISSN
0098-3500. . URL http://doi.acm.org/10.1145/

355744.355745.
[12] K. Gupta, J. A. Stuart, and J. D. Owens. A study of persistent

threads style GPU programming for GPGPU workloads. In
Inovative Parallel Computing (InPar ’12), May 2012.

[13] N. R. Jennings. Agent-based computing: Promise and perils.
In Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, IJCAI ’99, pages 1429–1436, San
Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc. ISBN 1-55860-613-0. URL http://dl.acm.org/

citation.cfm?id=646307.687432.
[14] The OpenCL Specification (Version 1.1). Khronos OpenCL

Working Group, 2010. Available from http://www.

khronos.org/opencl.
[15] G. Kindlmann and C.-F. Westin. Diffusion tensor visualiza-

tion with glyph packing. IEEE Transactions on Visualization
and Computer Graphics, 12(5):1329–1336, Sept. 2006. ISSN
1077-2626. . URL http://dx.doi.org/10.1109/

TVCG.2006.134.
[16] M. D. Meyer. Robust particle systems for curvature depen-

dent sampling of implicit surfaces. In In SMI 05: Proceed-
ings of the International Conference on Shape Modeling and
Applications 2005 (SMI 05, pages 124–133. IEEE Computer
Society, 2005.

[17] MPS. The message passing interface (MPI) standard. http:
//www.mcs.anl.gov/research/projects/mpi/.
Accessed: 20/03/2013.

[18] NVIDIA CUDA C Programming Guide (Version
4.0). NVIDIA, May 2011. Available from http:

//developer.nvidia.com/category/zone/

cuda-zone.
[19] C. W. Reynolds. Flocks, herds and schools: A distributed

behavioral model. SIGGRAPH Comput. Graph., 21(4):25–34,
Aug. 1987. ISSN 0097-8930. . URL http://doi.acm.

org/10.1145/37402.37406.
[20] D. Skillicorn, J. M. Hill, and W. McColl. Questions and

answers about BSP. Scientific Programming, 6(3):249–274,
1997.

[21] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, Aug. 1990.

[22] D. C. Walden. A system for interprocess communication in
a resource sharing computer network. Commun. ACM, 15
(4):221–230, Apr. 1972. ISSN 0001-0782. . URL http:

//doi.acm.org/10.1145/361284.361288.

A Performance and Scalability Analysis of Actor Message

Passing and Migration in SALSA Lite

Travis Desell

University of North Dakota

3950 Campus Road Stop 9015

Grand Forks, ND 58203, USA

tdesell@cs.und.edu

Carlos A. Varela

Rensselaer Polytechnic Institute

110 8th Street

Troy, NY 12180, USA

cvarela@cs.rpi.edu

ABSTRACT
This paper presents a newly developed implementation of
remote message passing, remote actor creation and actor
migration in SALSA Lite. The new runtime and protocols
are implemented using SALSA Lite’s lightweight actors and
asynchronous message passing, and provide significant per-
formance improvements over SALSA version 1.1.5. Actors
in SALSA Lite can now be local, the default lightweight ac-
tor implementation; remote, actors which can be referenced
remotely and send remote messages, but cannot migrate; or
mobile, actors that can be remotely referenced, send remote
messages and migrate to di↵erent locations. Remote mes-
sage passing in SALSA Lite is twice as fast, actor migration
is over 17 times as fast, and remote actor creation is two or-
ders of magnitude faster. Two new benchmarks for remote
message passing and migration show this implementation
has strong scalability in terms of concurrent actor message
passing and migration. The costs of using remote and mo-
bile actors are also investigated. For local message passing,
remote actors resulted in no overhead, and mobile actors re-
sulted in 30% overhead. Local creation of remote and mobile
actors was more expensive with 54% overhead for remote ac-
tors and 438% for mobile actors. In distributed scenarios,
creating mobile actors remotely was only 6% slower than cre-
ating remote actors remotely, and passing messages between
mobile actors on di↵erent theaters was only 5.55% slower
than passing messages between remote actors. These results
highlight the benefits of our approach in implementing the
distributed runtime over a core set of e�cient lightweight
actors, as well as provide insights into the costs of imple-
menting remote message passing and actor mobility.

Keywords
Actor model, Lightweight Actors, Distributed Actor Bench-
marks, Distributed Computing, Actor Migration

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

AGERE! 2015 Pittsburgh, Pennsylvania, USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

As programming environments continue to increase in par-
allelism in terms of numbers of processors and cores, the
need for e�cient and e↵ective concurrent and distributed
programming languages becomes ever more important. In
many ways, the common method of using object, threads
and communication over synchronous sockets is not well
suited to these environments, as evidenced by the large body
of work on detecting, preventing and avoiding deadlocks and
other race conditions [23, 28, 18, 49, 27, 31, 16, 1, 26, 17].
Many of these issues arise due to the fact that objects do
not encapsulate their state, so member fields must be pro-
tected with mutexes or other blocking synchronization con-
structs to prevent concurrent access. This blocking behav-
ior, coupled with the blocking behavior of using sockets syn-
chronously makes it quite easy for deadlocks and other race
conditions to occur.

As threads move from object to object, without any pro-
grammatic way of knowing where they came from, in many
ways they present a harmful situation similar to the much
maligned GOTO statement [15, 42]. As Dijkstra eloquently
stated, “The unbridled use of the go to statement has an
immediate consequence that it becomes terribly hard to find
a meaningful set of coordinates in which to describe the pro-
cess progress.” In many ways, the unbridled use of threads
presents a similar situation where it becomes terribly hard
to find a meaningful set of coordinates in which to describe
a threads progress.

The Actor model, formalized over 40 years ago [22, 21]
and later extended to open distributed systems [2], provides
a strong alternative model without these pitfalls. Actors are
independent, concurrent entities that communicate by ex-
changing messages. Each actor encapsulates a state with a
logical thread of control which manipulates it. Communica-
tion between actors is purely asynchronous. The actor model
assumes guaranteed message delivery and fair scheduling of
computation. Actors only process information in reaction to
messages. While processing a message, an actor can carry
out any of three basic operations: altering its state, cre-
ating new actors, or sending messages to other actors (see
Figure 1). Actors are therefore inherently independent, con-
current and autonomous which enables e�ciency in parallel
execution [32] and facilitates mobility [3, 44]. In the actor
model, a thread of control only operates on a single actor,
and activity passes through the system via asynchronous
messages, which have sources and targets that enable an eas-
ier understanding of program flow. This model, if strictly
adhered to, actually makes it challenging to program a sys-
tem which deadlocks and completely prevents concurrent

Figure 1: Actors are reactive entities. In response to
a message, an actor can (1) change its internal state,
(2) create new actors, and/or (3) send messages to
other actors (image from [43]).

memory access issues.
Many of the early implementations of actor languages in-

volved heavyweight actors, such as Erlang [7], Scala [19]
and SALSA [44, 4], where each actor had an actual thread
of control. This type of actor has a fair bit of overhead over
objects, and also has low limits on how many actors can ex-
ist imposed by the operating system and hardware on how
many threads are allowed. Because of this, languages like
SALSA, Scala, and Kilim [38] allow the use of both objects
and actors, which can unfortunately lead to potential vio-
lations of the actor model [14] and the use of a mixture of
concurrency models [40].

In part due to these issues, and in part due to a desire
to seek higher levels of performance in actor languages, sys-
tems using lightweight actors have been developed and are
of high interest. In Java based actor libraries and languages,
Kilim utilizes lightweight threads [38] and Scala also allows
actors to run using a thread pool [19] or as lightweight ac-
tors using the Akka framework [5, 9]. Charm++ [29] pro-
vides a lightweight actor inspired library based on C++ for
use in cluster computing environments, and more recently
libcppa [12], has evolved into the C++ Actor Framework
(CAF) which utilizes lightweight actors and also enables
GPGPU computing [10, 11].

SALSA Lite follows in this path by rebuilding SALSA
from the ground up using lightweight actors with a strong
emphasis on performance. Previous work has evaluated the
performance of SALSA Lite in non-distributed concurrent
settings [14]. This work presents how these lightweight ac-
tors have been used to develop an e�cient distributed com-
puting runtime that enables both remote and mobile actors.
Few actor languages and libraries support transparent dis-

tribution of actors, and even fewer support mobility. To
the authors’ knowledge, only the ActorFoundry [8] (based
on Kilim), ActorNet [34, 33] (an actor platform for wire-
less sensor networks), JavAct [6], Actor Architecture [25],
SALSA and now SALSA Lite provide transparent actor mo-
bility [30].

2. APPROACH
The design philosophy of SALSA Lite is in essence to prac-

tice what we preach in regards to the benefits of the Actor
model, i.e., the language should be built using the Actor
model as opposed to objects and threads. Further, to bor-
row from Unix, the common case should be executed fast.
As such, SALSA Lite has been rebuilt from the ground up to
provide a core of lightweight actors which can send messages
and be created extremely quickly. Using this simple e�cient
core, language semantics and runtime services are then built
using these actors as opposed to objects and threads. Other
results have shown the e�ciency of SALSA Lite actors in
concurrent non-distributed settings [14, 11], providing justi-
fication for using them as a foundation for the language.

This lightweight actor implementation has been built in
a novel way based on hashing to eliminate any synchroniza-
tion bottlenecks [14]. For example, if actors or messages
need a unique identifier, a common way to generate that is
to take the host, port and start time of the theater and ap-
pend a counter. However, that counter needs to be accessed
atomically which makes it a singular point of synchroniza-
tion. This can lead to applications which appear concurrent,
but actually are operating sequentially based on those syn-
chronization bottlenecks. SALSA Lite avoids this by using
the hashcode of the actor requesting a service and selecting
one of N copies of a service by the hashcode modulo the
number of services. Collisions are not an issue as mutliple
actors are expected to use the limited number of N services.
The number of the various services can be specified at run-
time, allowing SALSA Lite applications to easily scale to the
number of cores available.

Instead of developing a runtime and services for remote
and mobile actors using objects and threads, as done in the
previous implementation of SALSA, the lightweight core of
actors has been used to develop a distributed computing
environment which utilizes the Actor model to eliminate
deadlocks and achieve high levels of concurrency and per-
formance. Lastly, as SALSA Lite is being developed with
performance in mind, we have decided to allow program-
mers to specify if an actor will be local, remote or mobile,
as adding this functionality does come at a cost. This al-
lows programmers to use the type of actor with the best
performance for the task at hand.

3. IMPLEMENTATION
SALSA Lite’s runtime is based on the concept of stages

(see Figure 2), which essentially act as a unified mailbox
and thread of control for groups of actors assigned to them.
This allows local actors to be implemented as simple Java
objects with only a reference to the stage they are “per-
forming” on. When a message is sent to an actor, the mes-
sage is placed in its stage’s mailbox using this reference and
the stage’s putMessageInMailbox method. While to the au-
thors’ knowledge, SALSA Lite is the only actor langauge
to utilize this type of runtime, however others such as E’s

Figure 2: The SALSA Lite runtime environment.
Heavyweight actors called stages are used to process
messages on multiple lightweight actors, simulating
their concurrent execution. A stage will repeatedly
get the first message from its mailbox and process
that message on the message’s target actor. Every
actor is assigned to a stage. A Message sent to an
actor is placed at the end of its assigned stage’s mail-
box (image from [14]).

vats [36, 35] and SEDA [48, 37] use a similar approach for
high e�ciency. With this design in mind, remote and mobile
actors were implemented in a way to not impact or degrade
the performance of these local actors.

3.1 Theaters
Distributed computing in SALSA is done using the con-

cept of theaters. Each theater serves as a separate process in
which multiple actors perform on a set of stages. The num-
ber of stages in a theater can be dynamically specified at
runtime, and actors can either be automatically assigned to
stages, have new stages generated for them, or be assigned
to particular stages programatically (see [14] for further de-
tails). Theaters listen on a particular port for incoming con-
nections to other theaters which can be distributed over local
area networks or the Internet.

Each theater has a TheaterActor repeatedly listening for
incoming socket connections. When one occurs, it spawns
a IncomingTheaterConnection actor who handles receiv-
ing messages and migrating actors from that theater. Mes-
sages and migrating actors are sent via a theater’s Trans-
portService which has a set of static methods which put
messages in the appropriate OutgoingTheaterConnection
mailboxes and create new OutgoingTheaterConnection ac-
tors when necessary. The TheaterActor, IncomingTheater-
Connection and OutgoingTheaterConnection actors are all
heavyweight, each running on their own stage as to not block
the execution of other actors when they are blocked listening
for connections or waiting to receive data over a socket.

The IncomingTheaterConnection actors put messages in
the appropriate stage’s mailbox as they are received. Mak-
ing sure references to actors are correctly kept as messages
are serialized and de-serialized is described in Section 3.2.1.

1 : //Create a remote actor at the local theater
2 : MyRemoteActor a = new MyRemoteActor ()
3 : called ("a") ;

4 : //Create a remote actor at a remote theater
5 : MyRemoteActor b = new MyRemoteActor ()
6 : called ("b") at (host , port) ;

7 : //Create a name server
8 : NameServer ns = new NameServer ()
9 : called ("my_nameserver") ;

10 : //Create a mobile actor at the local theater
11 : MyMobileActor c = new MyMobileActor ()
12 : called ("c") using (ns) ;

13 : //Create a mobile actor at a remote theater
14 : MyMobileActor c = new MyMobileActor ()
15 : called ("c") using (ns)
16 : at (host , port) ;

Figure 3: SALSA Lite has simplified syntax for cre-
ating remote and mobile actors. Unique names are
specified with the called keyword, the host and port
of the theater the actor is created on are specified
with the at keyword, and the name server actor a
mobile actor is registered at is specified with the
using keyword.

The OutgoingTheaterConnection actors simply send mes-
sages and actors across a socket to the IncomingTheater-
Connection actor they are paired with. As described in Sec-
tion 3.3.1, implementing these services as actors also allows
for the easy implementation of a protocol to update remote
references to mobile actors as they migrate around a set of
theaters.

3.2 Remote Actors
As remote actors do not migrate, it is always the case that

a reference to a remote actor refers to the actual actor when
it is present at the same theater, or that it is a reference to a
remote actor on another theater. In the first case, implemen-
tation of remote actors is identical to that of a local actor,
with the exception that the remote actor needs a unique
name so that it can be referred to and looked up by other
actors. Figure 3 presents the syntax for creating the various
types of actors in SALSA Lite and Figure 4 presents the
syntax for generating references to actors using their name
and location. The remote actor also needs to be added to a
RemoteActorRegistry which is a HashMap of names to the
actual remote actor lightweight actor object, so incoming
messages can be directed towards it accordingly. This adds
some overhead to the creation of a remote actor, while send-
ing messages to it locally can be performed the same as with
local actors as the other actors simply have a reference to
the actual remote actor.

In the second case, where it is a reference to a remote actor
on another theater, when a message is invoked on that refer-
ence (implemented as a local actor), it instead uses SALSA
Lite’s transport service to put it in the mailbox of the ap-
propriate OutgoingTheaterConnection actor, which sends
it over a socket to the appropriate theater. When the mes-

1 : //Reference a remote actor at the local theater
2 : MyRemoteActor a = reference
3 : MyRemoteActor called ("a") ;

4 : //Reference a remote actor at a remote theater
5 : MyRemoteActor b = reference
6 : MyRemoteActor called ("b")
7 : at (host , port) ;

8 : //Get a reference to a remote name server
9 : NameServer ns = reference NameServer

10 : called ("my_nameserver")
11 : at (host , port) ;

12 : //Reference a mobile actor registered at
13 : //that name server
14 : token MyMobileActor c = reference
15 : MyMobileActor called ("c")
16 : using (ns) ;

Figure 4: SALSA Lite has also simplified syntax for
referencing remote and mobile actors. Instead of the
new keyword, the reference keyword is used. The ac-
tor’s names are specified with the called keyword,
the host and port of the theater the actor is cre-
ated on are specified with the at keyword, and the
name server actor a mobile actor is registered at is
specified with the using keyword.

sage is received by the target theater’s IncomingTheater-
Connection, the actual remote actor is looked up in the
RemoteActorRegistry and the message is sent to it.

3.2.1 Actor Reference Propagation

Some challenges arise in that a message sent to a remote
actor on another theater can contain references to other local
or remote actors. If these messages were blindly serialized
while being sent to the other theater, this would result in
unintended copies of these actors. To overcome this, SALSA
Lite uses Java’s readResolve() and writeReplace() meth-
ods instead of default object serialization. When a local
or mobile actor is serialized, its writeReplace() method is
called, which creates a serialized reference only containing
the hashcode, host and port in the case of a local actor, or
the unique name, host and port in the case of a remote ac-
tor. For local actors, a reference to the local actor is also
placed in a LocalActorRegistry so it can be looked up if
messages are sent to it from another theater. This also can
drastically reduce the size of the messages being sent as only
the minimum amount of data required to lookup the ac-
tor or generate a reference is sent. It should be noted that
the implementation of local actors has remained completely
unchanged, apart from now providing readResolve() and
writeReplace() methods for serialization when references
to them propagate to remote theaters.

When the serialized reference is received by a theater, the
readResolve() method is called on the serialized reference.
This performs a lookup in either the LocalActorRegistry or
RemoteActorRegistry. If the actor is present, the readRe-
solve() method returns the actual reference to that actor,
otherwise it returns a remote reference object which sends
messages to the OutgoingTheaterConnection actor instead
of actually processing them. This prevents copies of actors

from occurring, and also ensures that there is only one re-
mote reference to an actor at any one theater (which will
aid in implementing distributed garbage collection). These
registries have been implemented using the hashing strat-
egy described in Section 2, so multiple copies can be made
which are selected by the actor’s hashcode, preventing the
registries from acting as a singular bottleneck.

3.3 Mobile Actors
Unlike local and remote actors, there are significant chal-

lenges in implementing mobile actors as a single object (ei-
ther as a remote reference or the actual actor), as migration
would then involve having to update the references to it held
by all other actors every time it migrates. Keeping track
of these reverse references can lead to significant memory
and performance overhead. Similar to how actors are imple-
mented in SALSA, in SALSA Lite, mobile actors are divided
into reference and state objects. When a mobile actor is
created, its state is placed in a MobileActorStateRegistry,
which is the only object with a reference to the actor’s state.
The reference acts in the place of a lightweight actor on a
stage. When a message is invoked on the reference, it per-
forms a lookup in the MobileActorStateRegistry which in-
vokes the message on the state if the actor is present. When
the actor migrates, the state object is put in a message to
the OutgoingTheaterConnection it is being sent over, and
the state object is removed from the MobileActorRegistry
and is replaced with a reference to the OutgoingTheater-
Connection actor that sends messages to the theater the
actor migrated to. If the lookup returns the connection,
the message is placed in the OutgoingTheaterConnection’s
mailbox to be sent to that theater. In this way, the only time
the mobile actor’s state is serialized is when it migrates.

This also allows references to mobile actors to propagate
in a manner similar to local and remote actors. This prop-
agation is handled the same way by using readResolve(),
writeReplace(), a serialized reference and MobileActor-
ReferenceRegistries.

Note that every time a message is invoked on a mobile
actor, a lookup in a MobileActorStateRegistry needs to
be performed, which adds overhead to message passing.

3.3.1 Finding Mobile Actors

In addition to mobile actors requiring a unique name, host
and port in their reference and state, mobile actors also need
to be registered at a name server. The name server is used
as a lookup service for getting a reference to a mobile actor
(see Figure 4). When the mobile actor is created, it sends
a PUT message asynchronously to the name server it will be
registered at. When the actor migrates, it sends an asyn-
chronous UPDATE message to the name server, which updates
its location on the name server. When another actor wants
to get a reference to a mobile actor, it can contact the name
server with a GET message which will return a reference to
that actor. This is done transparently when the reference
keyword is used.

In contrast with SALSA, where name servers are run as
standalone daemons, in SALSA Lite, name servers are im-
plemented using remote actors and are first class entities
within the runtime (see Figure 3 and 4). This makes the use
of name servers much easier, as they can be easily created
within SALSA Lite programs, and also allows them to use
SALSA Lite’s remote message sending infrastructure.

Another major di↵erence is that in SALSA Lite, name
servers operate asynchronously. In SALSA, whenever an ac-
tor migrates, it synchronously performs an UPDATE on the
name server and only migrates after it completes, as name
servers are used synchronously within the protocol for look-
ing up actors if a message arrives at a theater and the actor
had migrated away in the meantime. In SALSA Lite, name
servers only asynchronously provide a reference to the ac-
tor and the run time updates itself as to where the actor is
located.

This is done with the following protocol: if a message re-
ceived by an IncomingTheaterConnection actor has mobile
actor as its target, and that mobile actor is not present at the
theater, it performs a lookup as to where the actor had mi-
grated using the MobileActorStateRegistry. It sends the
message on to the theater the actor had migrated to, but
also sends an updateActorLocation message to the theater
actor at the source of the message. It keeps a list of actors
it has sent updateActorLocation messages to and has not
yet heard an acknowledgement back from yet, to prevent
spamming the source theater with multiple updateActor-
Location messages. In this way, as an actor migrates and
messages are sent to it, the theaters update their Mobile-
ActorStateRegistry with references to where the mobile
actors have moved to.

All these messages are sent asynchronously using SALSA
Lite’s remote messaging, to prevent deadlocks and improve
performance. Also, this means that the name server re-
sponds with a reference to an incorrect theater, as an actor
had completed migration before the UPDATE message was
processed, that reference will be updated to the actor’s cur-
rent location using this protocol without requiring any fur-
ther calls to the name server.

4. RESULTS
For reproducibility, source code for SALSA Lite is freely

available on GitHub.1 The benchmarks used can be found
in the benchmarks directory of the repository. This section
presents a performance analysis of the newly developed re-
mote and mobile actors and compares them to local actors
in SALSA Lite as well as SALSA version 1.1.5.

4.1 Runtime Environment
All results were gathered using a small Beowulf HPC clus-

ter with 4 dual quad-core compute nodes (for a total of
32 processing cores). Each compute node has 64GBs of
1600MHz RAM, two mirrored RAID 146GB 15K RPM SAS
drives, two quad-core E5-2643 Intel processors which op-
erate at 3.3Ghz, and run the Red Hat Enterprise Linux
(RHEL) 6.2 operating system. All 32 nodes within the clus-
ter are linked by a private 56 gigabit (Gb) InfiniBand (IB)
FDR 1-to-1 network. Java version 1.6.0 26 was used, with
the Java(TM) SE Runtime Environment (build 1.6.0 26-
b03) and the Java HotSpot(TM) 64-Bit Server VM (build
20.1-b02, mixed mode). Runs were performed 10 times
each, each with freshly created theaters and name servers,
so startup times are included, and the various figures dis-
play the mean runtime as well as the standard deviation
of the di↵erent runs. Runs done with SALSA version 1.1.5
were done with garbage collection turned o↵ by using the
-Dnogc system property for a more accurate comparison as

1https://github.com/travisdesell/salsa lite

distributed garbage collection in SALSA Lite remains an
area of future work. This is in part due to challenges in
correctly and e�ciently implementing distributed garbage
collection that can also handle pathological cases such as
distributed circular references.

4.2 Local Message Passing Performance
Figure 5 shows the performance of local, remote and mo-

bile actors in SALSA Lite, with all actors running on a sin-
gle stage.2 The ThreadRing benchmark was identical for all
three, except that actors either were local, or extended the
RemoteActor or MobileActor behaviors. One stage was used
to avoid introducing e↵ects from thread scheduling which
could significantly impact performance. 31 actors were cre-
ated (as typical for the benchmark) and 500,000 to 1,000,000
messages were passed around the ring.

While this figure shows a fair amount of overhead for us-
ing remote and mobile actors, this is mostly due to increased
startup times. Remote actors require a theater to be cre-
ated, which opens a socket and listens for incoming commu-
nication from other theaters, mobile actors require this in
addition to a name server which they are registered with.
A linear regression was performed for each of these runs,
with r-values (correlation coe�cients) greater than 0.999 for
all three actor types. Figure 5 shows the slope and inter-
cept for these regressions, showing that remote actors have
a ⇠2.5x increase in startup costs and that mobile actors have
a ⇠3.26x increase over purely local actors. Apart from the
increased startup costs, the performance of actual message
sending is quite good, with local and remote actors having
practically identical message passing performance, and mo-
bile actors having ⇠30% overhead.

4.3 Local Actor Creation Performance
Figure 6 shows the performance of creating local, remote

and mobile actors using a simple actor creation micro bench-
mark. As in the previous benchmark, only one stage was
used to avoid introducing e↵ects from thread scheduling.
The benchmark created between 100,000 and 600,000 ac-
tors, with each actor responding to the master actor with
an acknowledgement message that it had been created. Af-
ter an acknowledgement had been received for each actor,
the benchmark would terminate. Here, in addition to the
startup costs seen in the ThreadRing benchmark, there is
significantly more overhead for creating remote and mobile
actors.

Linear regression on these runs produced an r-value above
0.999 for the local actors, and r-values above 0.977 for re-
mote and mobile actors. Creation of remote actors resulted
in ⇠54% overhead, while mobile actors had ⇠438% over-
head. This was expected however, as in SALSA Lite, local
actors are little more than objects with a reference to the
stage they are running on, while remote actors also need to

2Previous results have compared SALSA Lite to SALSA for
the ThreadRing benchmark, along with a set of other actor
based programming languages [14] (Kilim, Scala, and Er-
lang). SALSA Lite has been found to be three times faster
than Kilim and an order of magnitude faster than Erlang,
Scala and SALSA on this benchmark. This performance has
also been recently reproduced by Charousset et al. [11]. As
this paper focuses on the performance of remote and mobile
actors in SALSA Lite, we refer the reader to those works
for further performance comparisons between di↵erent ac-
tor languages.

Figure 5: This figure shows the performance of the
ThreadRing benchmark for local, remote and mobile
actors in SALSA Lite. This serves as a measure of
the basic amount of overhead in message passing and
theater startup costs for using remote and mobile
actors. In each benchmark, 31 actors were created
and 500,000 to 1,000,000 messages were sent around
the ring. The mean and standard deviation of 10
runs for each data point are shown.

have a name, host and port. In addition to that, mobile ac-
tors also require a reference to a name server, and also send
a PUT message to register at the name server when they
are created. Further, both also need to be stored in their
respective registries. As the actors created in this micro-
benchmark only have a reference to the master actor that
created them, these costs can represent significant overhead.

4.4 Remote Actor Creation Performance
Figure 7 shows the performance of creating both remote

and mobile actors at a remote theater. Additionally, the
cost of creating an actor locally and then migrating it to
the remote theater is presented. Only one stage was used,
however the theater actors are created on their own stages,
so some of the performance di↵erences could be attributed
to thread context switching.

This micro-benchmark is identical to the previous local
version except for the actors being created on the remote
theater. For the version with migration, the acknowledge-
ment message to the master was only sent after the migra-
tion had completed. For these tests, 1000 to 5000 actors
were created. Linear regression produced r-values greater
than 0.994 for the local actors, 0.979 for the remote actors,
and 0.983 for the mobile actors. Interestingly, creating the
mobile actors locally and migrating them performed better
than creating them remotely, however this makes some sense
in that creating the mobile actors remotely returns a token
(similar to a future) which must be received by a TokenDi-
rector actor created by the runtime, so it entails the cre-
ation of an extra actor and two extra messages (one from the
remote theater to the TokenDirector at local theater and
another from the TokenDirector to any actor which wants
to use the reference to the remotely created actor). Even so,

Figure 6: This figure shows the performance of a ac-
tor creation micro-benchmark in SALSA Lite. This
serves as another measure of theater startup costs,
as well as the overhead of creating remote and mo-
bile actors. 100,000 to 600,000 actors were created,
each sending an acknowledgement to a master ac-
tor. The mean and standard deviation of 10 runs
for each data point are shown.

remote creation of mobile actors was only ⇠6% slower than
remote creation of remote actors.

It is also worth mentioning that while local creation and
migration performed faster than remote creation of mobile
actors, in general this is probably not the case. For ex-
ample, if an actor generates any large amount of data in its
constructor, creating it locally and migrating it could be sig-
nificantly more expensive due to extra bandwidth required.
As such, it is good to be able to have the option to use either
method.

Results were also gathered using SALSA version 1.1.5
however these were not added to the figures as for above
100 actors deadlocks as well as issues with reaching a limit
on the number of threads available occurred. However, for
100 actors, remote creation took an average of 1.84 seconds
with a standard deviation of 0.033 over 10 runs, and local
creation and migration took on average 1.24 seconds with
a standard deviation of 0.0092 seconds. This is an order of
magnitude slower than the time taken for SALSA Lite to
create 1,000 actors; so the new implementation shows sig-
nificant performance gains over SALSA version 1.1.5.

4.5 Remote Message Passing Performance
Figure 8 presents results for a new benchmark called The-

aterRings which examines the performance of remote mes-
sage sending. This benchmark operates similarly to the
ThreadRing benchmark, except in this case a single actor
is created at each theater. Additionally, multiple rings of
actors are created which send messages concurrently. All
messages hop around the ring of actors in the same direc-
tion. For this benchmark, 1 to 320 rings were generated,
with each ring sending 1000 messages. Each ring had one
actor created on one of the four nodes in the Beowulf clus-
ter. Each theater had one stage for these actors, however

Figure 7: This figure shows the costs of creating re-
mote and mobile actors at a remote theater, along
with creating mobile actors locally and migrating
them to the remote theater. After each actor was
created remotely, or completed its migration, it sent
an acknowledgement message back to the master ac-
tor. The mean and standard deviation of 10 runs for
each data point are shown.

other stages were created for actors in the theater runtime.
Figure 8a shows results for 1 to 10 rings, and Figure 8b
shows results calculated with 10, 20, 40, 80, 160, and 320
rings. Results were gathered using remote and mobile actors
in SALSA Lite, as well as actors in SALSA version 1.1.5.

From 1 to 10 rings some rather interesting behavior oc-
curred. First, once SALSA reached 7 rings, the runtime
started varying dramatically and deadlocks started to occur,
as is shown by the large increase in the standard deviation
of the runtime. Additionally, for 1 and 2 rings, mobile ac-
tors exhibited some very poor performance, running almost
5 times slower than remote actors and SALSA. Also, for all
three, runtime generally decreased as more rings were added.
Performance was the fastest for SALSA and remote actors
at 6 rings, with an average runtime of 2.001 and 1.518 sec-
onds, respectively, and mobile actors were the fastest at 20
rings, with an average runtime of 1.971 seconds.

For SALSA, after 10 rings, deadlocks occurred even more
frequently, however the runtime stabilized for the runs which
completed (the times shown are the average runtime of runs
which completed). Presumably, from 7 to 9 rings, the is-
sue causing the deadlock could resolve itself resulting in the
larger span of run times, however with 10 or more rings
the issue was not resolvable. After 10 rings, the runtime
increased quite linearly, with the linear regression having r-
values of greater than 0.999, 0.998 and 0.999 for remote, mo-
bile and SALSA actors, respectively. Using the values from
the linear regression from 10 to 320 stages, mobile actors
were ⇠5.55% slower than remote actors (similar to results
from the remote actor creation micro-benchmark). Further,
both remote and mobile actors were around twice as fast as
SALSA (not counting SALSA deadlocks).

Given these results, it seems that the TheaterRings bench-
mark presents a pathological case for mobile actors when

there are 1 or 2 rings. These results are somewhat similar
to the case of the ThreadRing benchmark where each ac-
tor is given their own stage (i.e., their own thread), where
SALSA Lite performs similarly to SALSA, at about an or-
der of magnitude slower than having the ThreadRing actors
entirely on one stage. Because of this, the poor performance
seems to be due to the cost of context switching between
the stage of the IncomingTheaterConnection and the stage
of the TheaterRingWorker. When there is only one message
being passed around, the thread of each stage wakes up from
a notification when the message is placed in its mailbox, and
after processing the message the thread goes back to sleep
waiting for the next message as its mailbox is empty. This
behavior would explain how increasing the number of rings
improved performance, as this would further reduce context
switching time. After 10 or so rings, the latency and band-
width between theaters became the bottleneck, resulting in
the linear performance from there as more rings were added.

4.6 Actor Migration Performance
Figure 9 presents results for another new benchmark called

MigrationRings, which examines the performance of mi-
grating actors in a distributed system. The benchmark cre-
ates N actors, and each are given the same list of theaters
in the system. Each actor starts at the same origin theater,
and then migrates around the theaters in a ring until M
migrations have been performed. For this benchmark, 1 to
320 actors were created with results being measured for 10,
20, 40, 80, 160 and 320 actors. Each actor performed 1000
migrations. These actors migrated around four theaters,
one on each node in the Beowulf cluster. Each theater was
created with one stage for these actors, however additional
stages were created for the theater runtime actors. After
each actor completed the given number of migrations, an
acknowledgement is sent to the master actor, which termi-
nates when it receives an acknowledgement for each actor.
Results were gathered using both SALSA version 1.1.5 and
mobile actors in SALSA Lite.

Similar to the results for the TheaterRings benchmark,
mobile actors show weak performance with a single actor,
however with more than one ring performance is very good.
Additionally, these results also show a similar decrease in
runtime when more concurrency is added, presumably due
to less context switching. It should also be noted that un-
like the remote creation and TheaterRings benchmarks, no
deadlocks were detected in SALSA version 1.1.5 for these
runs. Using the linear regression from results with 10 to 320
actors, with r-values greater than 0.999 for mobile actors
and 0.984 for SALSA have mobile actors migrating 17.88
times faster than SALSA, which is a dramatic improvement
in performance.

There are many factors in regards to this large perfor-
mance improvement. First, SALSA actors are heavyweight,
each with their own thread, so migration involves starting up
and destroying threads as the actor migrates between the-
aters. Additionally, while the name server in SALSA Lite is
used asynchronously as a boot strapping method, in SALSA,
migration involves synchronously updating the actor’s entry
in the name server before performing migration. In many
ways, this makes the name server a synchronous bottleneck
to performance. While this can be somewhat alleviated by
having multiple name servers, it is still a significant perfor-
mance hit.

(a) 1 to 10 Rings (b) 10 to 320 Rings

Figure 8: This figure shows results from the TheaterRings benchmark. 1 to 320 rings of actors were created,
one actor per theater, and each ring sent 1000 messages around similar to the ThreadRing benchmark. Each
ring operated concurrently. Results were gathered using SALSA version 1.1.5 as well as remote and mobile
actors in SALSA Lite. The mean and standard deviation of 10 runs for each data point are shown.

(a) 1 to 10 Rings (b) 10 to 320 Rings

Figure 9: This figure shows results from the MigrationRings benchmark. 1 to 320 actors were created, and
each migrated 1000 times around four theaters. Results were gathered using SALSA version 1.1.5 and with
mobile actors in SALSA Lite. The mean and standard deviation of 10 runs for each data point are shown.

5. CONCLUSIONS AND FUTURE WORK
This paper presents a new distributed runtime to enable

remote and mobile actors in SALSA lite. This runtime is
built using SALSA Lite’s lightweight actors as a foundation
to enable high performance and scalability. Performance
improvements over SALSA version 1.1.5 are significant: re-
mote message passing in SALSA Lite is 1.94 times faster for
mobile actors, and 2.05 times faster for remote actors; mi-
gration of mobile actors in SALSA Lite is 17.88 times faster
than SALSA; and remote creation of mobile and remote ac-
tors in SALSA Lite is two orders of magnitude faster. Addi-
tionally, with two new benchmarks, SALSA Lite is shown to
have strong scalability in terms of concurrent actor execu-
tion. Further, in some of the more complicated benchmarks

with lots of actor concurrency, SALSA version 1.1.5 su↵ered
from deadlocks, while SALSA Lite did not, adding more jus-
tification for building the runtime using lightweight actors.

The performance overhead of using remote and mobile
actors was also compared to SALSA Lite’s local actor im-
plementation. For message passing within a theater, remote
actors resulted in 0% overhead, and mobile actors resulted in
30% overhead. Local creation of remote and mobile actors
was more expensive with 54% overhead for remote actors
and 438% for mobile actors. In distributed scenarios, creat-
ing mobile actors remotely was only 6% slower than creating
remote actors remotely, and passing messages between mo-
bile actors on di↵erent theaters was only 5.55% slower than
passing messages between remote actors. In general, this
overhead is found to be fairly low given the requirements of

remote and mobile actors.
This investigation opens up many avenues for future work

and analysis. In particular, some pathological cases for
message passing were found in SALSA Lite when the cost
of thread context switching becomes quite high. SALSA
Lite uses Java’s LinkedList class along Java’s synchronized
keyword to make access to it thread safe.3 These patholog-
ical cases could be potentially eliminated by using lock-free
data structures as used by CAF [10], or thread pools as in
Scala [20] and Akka [9, 5]. Another potential area for im-
proved performance would be the use of an asynchronous IO
framework such as Netty [41] instead of Java’s synchronous
sockets, which could allow the IncomingTheaterConnection
and OutgoingTheaterConnection actors to be lightweight
instead of heavyweight.

Additionally, for a more in depth investigation of SALSA
Lite’s performance and comparison to other Actor program-
ming languages, we intend to fully implement the Savina
benchmark suite [24] which can potentially uncover other
areas where performance can be improved and compare the
performance remote messaging and actor migration to other
modern implementations. Further, it would be beneficial
to extend this suite with more benchmarks such as the Mi-
grationRings benchmark discussed in this paper which can
more fully test and evaluate the performance of actor mi-
gration. The syntax for remote actor referencing described
in Section 3 can potentially be simplified even further us-
ing syntax described in [45]. Lastly, as touched on in Sec-
tion 3.2.1, using Java’s readResolve() and writeReplace()
methods for serialization lays groundwork for investigating
e�cient implementations of distributed actor garbage col-
lection [47, 13, 46, 39].

6. REFERENCES
[1] R. Agarwal, L. Wang, and S. D. Stoller. Detecting

potential deadlocks with static analysis and run-time
monitoring. In Hardware and Software, Verification
and Testing, pages 191–207. Springer, 2006.

[2] G. Agha. Actors: A Model of Concurrent Computation
in Distributed Systems. MIT Press, 1986.

[3] G. Agha and N. Jamali. Concurrent programming for
distributed artificial intelligence. In G. Weiss, editor,
Multiagent Systems: A Modern Approach to DAI.,
chapter 12. MIT Press, 1999.

[4] G. Agha and C. Varela. Worldwide computing
middleware. In M. Singh, editor, Practical Handbook
on Internet Computing, pages 38.1–21. CRC Press,
2004.

[5] J. Allen. E↵ective Akka. ” O’Reilly Media, Inc.”, 2013.
[6] S. R. J.-P. Arcangeli, F. Migeon, and S. Rougemaille.

Javact: a java middleware for mobile adaptive agents.
Lab. IRIT, University of Toulouse, February 5th, 2008.

[7] J. Armstrong. Programming Erlang: Software for a
Concurrent World. Pragmatic Bookshelf, 2007.

[8] M. Astley. The actor foundry: A java-based actor
programming environment. University of Illinois at
Urbana-Champaign: Open Systems Laboratory, 1998.

[9] J. Bonér, V. Klang, R. Kuhn, et al. Akka library.
http://akka.io.

3Java’s concurrent list implementations were experimented
with but resulted in poorer performance.

[10] D. Charousset, R. Hiesgen, and T. C. Schmidt.
Caf-the c++ actor framework for scalable and
resource-e�cient applications. In Proceedings of the
4th International Workshop on Programming based on
Actors Agents & Decentralized Control, pages 15–28.
ACM, 2014.

[11] D. Charousset, R. Hiesgen, and T. C. Schmidt.
Revisiting actor programming in c++. arXiv preprint
arXiv:1505.07368, 2015.

[12] D. Charousset, T. C. Schmidt, R. Hiesgen, and
M. Wählisch. Native actors: a scalable software
platform for distributed, heterogeneous environments.
In Proceedings of the 2013 workshop on Programming
based on actors, agents, and decentralized control,
pages 87–96. ACM, 2013.

[13] S. Clebsch and S. Drossopoulou. Fully concurrent
garbage collection of actors on many-core machines.
ACM SIGPLAN Notices, 48(10):553–570, 2013.

[14] T. Desell and C. A. Varela. Salsa lite: A hash-based
actor runtime for e�cient local concurrency. Springer
Lecture Notes in Computer Science: Concurrent
Objects and Beyond, 8665, 2013.

[15] E. W. Dijkstra. Letters to the editor: go to statement
considered harmful. Communications of the ACM,
11(3):147–148, 1968.

[16] D. Engler and K. Ashcraft. Racerx: e↵ective, static
detection of race conditions and deadlocks. In ACM
SIGOPS Operating Systems Review, volume 37, pages
237–252. ACM, 2003.

[17] C. Flanagan and S. N. Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs. ACM
SIGPLAN Notices, 39(1):256–267, 2004.

[18] A. Gosain and G. Sharma. A survey of dynamic
program analysis techniques and tools. In Proceedings
of the 3rd International Conference on Frontiers of
Intelligent Computing: Theory and Applications
(FICTA) 2014, pages 113–122. Springer, 2015.

[19] P. Haller and M. Odersky. Actors that unify threads
and events. In Proceedings of the 9th International
Conference on Coordination Models and Languages
(COORDINATION), pages 171–190, 2007.

[20] P. Haller and M. Odersky. Actors that unify threads
and events. In Coordination Models and Languages,
pages 171–190. Springer, 2007.

[21] C. Hewitt. Viewing control structures as patterns of
passing messages. Journal of Artificial Intelligence,
8-3:323–364, June 1977.

[22] C. Hewitt, P. Bishop, and R. Steiger. A universal
modular actor formalism for artificial intelligence. In
Proceedings of the 3rd international joint conference
on Artificial intelligence, pages 235–245. Morgan
Kaufmann Publishers Inc., 1973.

[23] S. Hong and M. Kim. A survey of race bug detection
techniques for multithreaded programmes. Software
Testing, Verification and Reliability, 25(3):191–217,
2015.

[24] S. Imam and V. Sarkar. Savina-an actor benchmark
suite. In 4th International Workshop on Programming
based on Actors, Agents, and Decentralized Control,
AGERE, 2014.

[25] M.-W. Jang. The actor architecture manual.
Department of Computer Science, University of

Illinois at Urbana-Champaign, 2004.
[26] P. Joshi, M. Naik, K. Sen, and D. Gay. An e↵ective

dynamic analysis for detecting generalized deadlocks.
In Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 327–336. ACM, 2010.

[27] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A
randomized dynamic program analysis technique for
detecting real deadlocks. ACM Sigplan Notices,
44(6):110–120, 2009.

[28] A. Jyoti and V. Arora. Debugging and visualization
techniques for multithreaded programs: A survey. In
Recent Advances and Innovations in Engineering
(ICRAIE), 2014, pages 1–6. IEEE, 2014.

[29] L. V. Kale and S. Krishnan. CHARM++: a portable
concurrent object oriented system based on C++,
volume 28. ACM, 1993.

[30] R. Karmani, A. Shali, and G. Agha. Actor frameworks
for the JVM platform: a comparative analysis. In
Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java,
pages 11–20. ACM, 2009.

[31] N. Kaveh and W. Emmerich. Deadlock detection in
distribution object systems. In ACM SIGSOFT
Software Engineering Notes, volume 26, pages 44–51.
ACM, 2001.

[32] W. Kim and G. Agha. E�cient Support of Location
Transparency in Concurrent Object-Oriented
Programming Languages. In Proceedings of
Supercomputing’95, pages 39–48, 1995.

[33] Y. Kwon, K. Mechitov, and G. Agha. Design and
implementation of a mobile actor platform for wireless
sensor networks. In Concurrent Objects and Beyond,
pages 276–316. Springer, 2014.

[34] Y. Kwon, S. Sundresh, K. Mechitov, and G. Agha.
Actornet: An actor platform for wireless sensor
networks. In Proceedings of the fifth international joint
conference on Autonomous agents and multiagent
systems, pages 1297–1300. ACM, 2006.

[35] M. Miller, E. Tribble, and J. Shapiro. Concurrency
among strangers. Trustworthy Global Computing,
pages 195–229, 2005.

[36] M. S. Miller and J. S. Shapiro. Robust composition:
Towards a unified approach to access control and
concurrency control. PhD thesis, Johns Hopkins
University, 2006.

[37] T. Salmito, A. L. de Moura, and N. Rodriguez. A
flexible approach to staged events. In Parallel
Processing (ICPP), 2013 42nd International

Conference on, pages 661–670. IEEE, 2013.
[38] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed

actors for Java. In J. Vitek, editor, ECOOP, volume
5142 of Lecture Notes in Computer Science, pages
104–128. Springer, 2008.

[39] C.-H. Tang, T.-Y. Song, M.-F. Tsai, and W.-J. Wang.
Collecting mobile-agent garbage using actor-based
weighted reference counting. Advanced Science Letters,
9(1):157–161, 2012.

[40] S. Tasharofi, P. Dinges, and R. E. Johnson. Why do
scala developers mix the actor model with other
concurrency models? In ECOOP
2013–Object-Oriented Programming, pages 302–326.
Springer, 2013.

[41] The Netty Project. Netty. [Accessed Online 2015]
http://netty.io.

[42] R. Van Renesse. Goal-oriented programming, or
composition using events, or threads considered
harmful. In Proceedings of the 8th ACM SIGOPS
European workshop on Support for composing
distributed applications, pages 82–87. ACM, 1998.

[43] C. Varela. Worldwide Computing with Universal
Actors: Linguistic Abstractions for Naming,
Migration, and Coordination. PhD thesis, U. of Illinois
at Urbana-Champaign, 2001.
http://osl.cs.uiuc.edu/Theses/varela-phd.pdf.

[44] C. Varela and G. Agha. Programming dynamically
reconfigurable open systems with SALSA. SIGPLAN
Not., 36(12):20–34, 2001.

[45] C. A. Varela. Programming Distributed Computing
Systems: A Foundational Approach. The MIT Press,
2013.

[46] W.-J. Wang. Conservative snapshot-based actor
garbage collection for distributed mobile actor
systems. Telecommunication Systems, 52(2):647–660,
2013.

[47] W.-J. Wang and C. A. Varela. Distributed garbage
collection for mobile actor systems: The pseudo root
approach. In Advances in Grid and Pervasive
Computing, pages 360–372. Springer, 2006.

[48] M. Welsh, D. Culler, and E. Brewer. Seda: an
architecture for well-conditioned, scalable internet
services. ACM SIGOPS Operating Systems Review,
35(5):230–243, 2001.

[49] A. Williams, W. Thies, and M. D. Ernst. Static
deadlock detection for java libraries. In ECOOP
2005-Object-Oriented Programming, pages 602–629.

Springer, 2005.

Optimizing Communicating Event-Loop Languages
with Truffle

[Work In Progress Paper]

Stefan Marr
⇤

Johannes Kepler University Linz, Austria
stefan.marr@jku.at

Hanspeter Mössenböck
Johannes Kepler University Linz, Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
Communicating Event-Loop Languages similar to E and Am-
bientTalk are recently gaining more traction as a subset of
actor languages. With the rise of JavaScript, E’s notion
of vats and non-blocking communication based on promises
entered the mainstream. For implementations, the combi-
nation of dynamic typing, asynchronous message sending,
and promise resolution pose new optimization challenges.

This paper discusses these challenges and presents initial
experiments for a Newspeak implementation based on the
Tru✏e framework. Our implementation is on average 1.65x
slower than Java on a set of 14 benchmarks. Initial op-
timizations improve the performance of asynchronous mes-
sages and reduce the cost of encapsulation on microbench-
marks by about 2x. Parallel actor benchmarks further show
that the system scales based on the workload characteristics.
Thus, we conclude that Tru✏e is a promising platform also
for communicating event-loop languages.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Concurrent
programming structures; D.3.4 [Processors]: Optimization

Keywords
Actors, Event-Loops, Concurrency, Optimization, Tru✏e

1. INTRODUCTION
Communicating event-loop languages such as E [14] and Am-
bientTalk [16] are appealing for application development be-
cause they are free from low-level data races and deadlocks,
and their concurrency model is comparably simple. Com-
municating event loops (CEL) are isolated from each other
so that any form of communication needs to be done ex-
plicitly via message passing instead of implicitly via shared
state. This prevents low-level data races and thereby raises

⇤Stefan Marr’s research is funded by Oracle Labs.

Submitted as Work-In-Progress Paper to the AGERE’15 Workshop co-
located with SPLASH’15, Pittsburgh, PA, USA.

the abstraction level of programs. In E, these CELs are
called vats and contain heaps of objects. In this paper, we
simply call them actors. As a consequence of the deadlock-
free design, synchronization is modeled with asynchronous
messages and promises. Consequently, data and synchro-
nization dependencies become explicit to the programmers,
which can avoid hidden race conditions and deadlocks.

Recently, the CEL model got adopted by languages used
predominantly in shared memory settings. JavaScript [5]
add a variation of this model with Web Workers1 and its
support for promises. With this extension, many languages
targeting JavaScript VMs as execution platforms also adopt
the model, e. g., Dart,2 ClojureScript,3 Scala.js,4 and Type-
Script.5 This trend brings the CEL model from a distributed
setting into the realm of shared memory multicore systems
ranging from mobile devices to server applications. Hence,
an e�cient utilization of multicore processors becomes more
relevant than distributed messaging performance. For lan-
guage implementers, this brings new optimization challenges
since JavaScript—as language and platform—is dynamically
typed. To our knowledge, existing research on the per-
formance of communicating event-loop languages either re-
stricted itself to simple interpreters as was the case for E and
AmbientTalk, or used static type systems, e. g., JCoBox [15]
used one to optimize message sends. Similarly, languages
or frameworks that follow more closely the Hewitt [6] and
Agha [1] style of actors focused on type systems to improve
performance, e. g., SALSA [4] or Pony.6

This work is an initial exploration of the optimization chal-
lenges for dynamically-typed communicating event-loop lan-
guages for shared-memory multicore systems. We present
SOMNS, an implementation of Newspeak7 [2] based on the
Tru✏e framework, which executes on top of a JVM. Beside
a brief sketch of Newspeak’s concurrency model, we discuss
the optimization challenges for asynchronous execution, en-
suring isolation between actors, and promise resolution. We
evaluate initial strategies to optimize asynchronous message
sends and argument handling to ensure isolation.

1Web Workers, W3C, May 2012 www.w3.org/TR/workers/
2Dart, Google dartlang.org
3ClojureScript, github.com/clojure/clojurescript/
4Scala.js, Sébastien Doeraene scala-js.org
5TypeScript, Microsoft typescriptlang.org
6Pony, ponylang.org
7Newspeak Programming Language Specification, Gilad
Bracha, ver. 0.095 http://bracha.org/newspeak-spec.pdf

1

www.w3.org/TR/workers/
dartlang.org
github.com/clojure/clojurescript/
scala-js.org
typescriptlang.org
ponylang.org
http://bracha.org/newspeak-spec.pdf

2. NEWSPEAK: A DYNAMIC CONCURRENT
EVENT-LOOP LANGUAGE

For our exploration we chose Newspeak, a dynamically typed
class-based language with actors based on E’s communicat-
ing event-loop model. For concurrency research, it has the
major advantage that it does not have a notion of global or
static state. Instead, state has to be passed explicitly follow-
ing the object capability model [3]. The resulting language is
simple and self-consistent, which avoids many special cases
while retaining the convenience of classes. Nonetheless, it is
similar to widely used object-oriented languages, and thus,
represents a wide range of languages used on the Web. Fur-
thermore, Newspeak also has JavaScript and Dart backends
to run in browsers and on servers. Our implementation,
SOMNS

8 is designed for research on shared-memory concur-
rency with good performance. For instance, in addition to
the CEL model, SOMNS implements Newspeak’s Value ob-
jects, which are deeply immutable and thus can only refer
to deeply immutable objects themselves. Hence, it is safe
to share such values between actors and to allow them to
access value objects synchronously.

A Self-Optimizing Truffle Interpreter. To achieve perfor-
mance within small factors of highly optimizing VMs, we
built on Tru✏e [12, 18]. This means, SOMNS is an abstract-
syntax-tree (AST) interpreter running on top of a Java Vir-
tual Machine (JVM) with the Graal just-in-time compiler [17].
Tru✏e and Graal together enables meta-compilation based
on self-optimizing ASTs that rewrite themselves at run time
to optimize for the characteristics of the executed program
and its data. Once a SOMNS method has been executed
often enough, Graal generates native code for it by taking
the AST and applying partial evaluation, aggressive inlining,
as well as classic compiler optimizations. The end result is
the compilation of a SOMNS method to native code. With
this meta-compilation approach, the compiler is indepen-
dent from the implemented language, and has been used for
example for JavaScript, Python, R, and Ruby. The SOMNS

interpreter uses self-optimization to determine types of op-
erations, to optimize the object layout based on types, for
polymorphic inline caches [9] to cache method lookups, and
other performance relevant issues of dynamic languages. De-
tails are discussed in previous work on SOM [12, 13].

3. OPTIMIZATION CHALLENGES
The first major hurdle for performance is SOMNS’ dynami-
cally typed nature, which it shares with JavaScript, Python,
Smalltalk, and others. However, the ideas of speculative op-
timizations and adaptive compilation [8] have been success-
fully applied to eliminate the cost of dynamic typing and
late binding. At times, the results even outperform stati-
cally compiled code, because speculative optimizations can
make optimistic assumptions leading to faster native code.

For this work however, the main focus is on optimization
challenges for event loop languages. Thus, we investigate
the performance challenges revolving around asynchronous
message sends, ensuring isolation between actors, and the
e�cient handling of promise resolution.

8SOMNS is a derivate of SOM (Simple Object Machine), a
family of interpreter implementations: som-st.github.io

Asynchronous Execution. Newspeak has four ways to ini-
tiate an asynchronous execution. We distinguish between
sending of asynchronous messages to (i) far references, (ii)
near references, and (iii) promises. Furthermore, we also
consider the execution of the (iv) success or failure handlers,
i. e., callbacks, registered on promises.

For the sending of asynchronous messages, one challenge
is to determine the method to be executed on the receiver
side e�ciently. In a distributed setting, we assume that the
lookup is done every time a received message is processed.
Even if one would try to use something like a polymorphic
inline cache [9] in an event loop, we assume the event loop to
result in megamorphic behavior, because all messages and
receiver types are funneled through a single point. Espe-
cially for dynamic languages with complex lookup seman-
tics, the repeated lookups represent a significant cost com-
pared to the cost of method invocation in the sequential
case. Another issue for reaching peak performance is that
information about the calling context is typically lost. For
optimizing dynamic languages, this is however highly rel-
evant to enable optimistic type specializations. Imagine a
simple method adding numbers, depending on the caller a
method might be used exclusively for adding integers, or in
another setting exclusively for adding doubles. When an op-
timizer is able to take such calling-context information into
account, it might be able to produce two separate compila-
tions of the method for the di↵erent callers, which then can
be specialized to either integers or doubles avoiding unnec-
essary run time checks and value conversions. For handlers
registered on promises, lookup is no issue because the handle
directly corresponds to the code to be executed. The calling
context however might also be an issue if the same handler
is used in multiple distinct situations.

Ensuring Isolation Between Actors. The second optimiza-
tion challenge is to minimize the overhead of guaranteeing
isolation between actors. Many pragmatic systems forgo iso-
lation because of performance concerns. Examples include
many actor libraries for the JVM [11] including Akka and
Jetlang, as well as JCSP9 and Go,10 which implement com-
municating sequential processes [7]. SOMNS provides this
guarantee because we see it as an essential properties that
make CELs useful from an engineering perspective.

To guarantee isolation, SOMNS needs to ensure that the
di↵erent types of objects are handled correctly when being
passed back and forth between actors. Specifically, mutable
objects need to be wrapped in far references so that other
actors have no synchronous access. Far references on the
other hand need to be checked whether they reference an
object that is local to the receiving actor to unwrap them
and guarantee that objects owned by an actor are always
directly accessible. When promises are passed between ac-
tors, SOMNS needs to create a new promise chained to the
original one. This is necessary to ensure that asynchronous
sends to promises that resolve to value objects are executed
on the lexically correct actor. Since value objects do not

9Communicating Sequential Processes for Java (JCSP), Pe-
ter Welch and Neil Brown, access date: 2015-07-05 www.cs.k
ent.ac.uk/projects/ofa/jcsp/

10The Go Programming Language, golang.org

2

som-st.github.io
www.cs.kent.ac.uk/projects/ofa/jcsp/
www.cs.kent.ac.uk/projects/ofa/jcsp/
golang.org

have owners, we bind promises to actors and resolve the new
promise with the original one when passing them between
actors. Similar to asynchronous sends, handlers registered
on promises need to be scheduled on the correct actor, i. e.,
the one that registered them. Thus, promises need to be
handled di↵erently from other objects passed between ac-
tors. For value objects, it needs to be determined e�ciently
whether they are deeply immutable, so that they can be
passed safely as direct references.

For message sending, distinguishing between all these dif-
ferent cases has a negative impact on performance. Thus,
finding ways to minimize the number of checks that need
to be performed would reduce the cost of guaranteeing iso-
lation. One conceptual benefit of Newspeak, and with it
SOMNS, is that the message send semantics do not require
copying of objects graphs, which is required, for instance,
for message sending between JavaScript Web Workers.

Efficient Promise Resolution. The optimization of promise
resolution and scheduling of their messages and handlers
is hard because promises can form tree-shaped dependen-
cies, and in this dependency tree, promises from di↵erent
actors can be involved. Ideally, resolving a promise would
only require to schedule a single action on the event loop
of the actor owning the promise. In this case, guarantee-
ing isolation and scheduling the corresponding action on the
event loop could be done in code that is straightforwardly
compiled to e�cient native code. However, when a promise
pA is resolved with a promise pB , pA’s resolution handlers
are not scheduled immediately, instead, they will only be
triggered once pB has been resolved. Similarly, sending an
asynchronous message to a promise means that the mes-
sage is sent to the value to which the promise is eventually
resolved. In the general case, this means, the resolution pro-
cess has to traverse a tree structure of dependent promises
and schedule all the handlers and messages registered on
these promises on their corresponding event loops. Since the
dependent promises can originate from di↵erent actors, we
also need to check at each point whether the resolved value
is properly wrapped to guarantee isolation. Another pitfall
with promise resolution is that a naive implementation could
easily cause a stack overflow in the implementation, which
would cause a crash when resolving long dependency chains
of promises.

4. FIRST OPTIMIZATIONS
The previous section outlined some of the challenges for opti-
mizing SOMNS. This section introduces initial optimizations
that address them.

Send-site Lookup Caching. To avoid the repeated lookup
overhead for asynchronous messages, we rely on SOMNS ex-
ecuting on a shared memory system. This allows us to in-
troduce polymorphic inline caches (PIC) for the send-site
of asynchronous messages. Specifically, we use Tru✏e’s no-
tion of a RootNode, which essentially correspond to func-
tions. At each send site of an asynchronous message, a root
node is constructed that contains a normal SOMNS syn-
chronous message send operation, which already utilizes a
PIC. This root node is eventually used when processing the

asynchronous message in the event loop. This approach has
two major benefits. On the one hand, we achieve specializa-
tion based on the send site. Ideally, the send is monomor-
phic, as most methods call are, so that is requires only a sim-
ple identity check of the receiver’s class before executing the
cached method. Since we reuse the normal synchronous send
operation at the receiver site, Tru✏e also does method split-
ting and thus, enable the use of profile information based on
the specific send site. On the other hand, creating the root
node allows us to put these performance critical operations
within the scope of Tru✏e’s meta-compilation. This means,
when the event loop takes a message for execution, it will
eventually call directly into compiled code from the event
loop and does not perform any generic operations that can-
not be optimized. By constructing the root node that is
send-site specific, but executes and performs the caching
only in the target event loop, this optimization is applicably
to all types of sends in SOMNS. Thus, asynchronous sends
to far references, to direct references, and to promises are
optimized in the same way.

Compared to normal synchronous method invocation, asyn-
chronous messages have the cost of the message queuing and
cannot be inlined into the caller, since this would violate the
semantics. Beside that however, we enable the other clas-
sic compiler optimizations, which can eliminate the cost of
SOMNS’ dynamicity.

Guaranteeing Isolation. As discussed before, guarantee-
ing isolation requires to check at run time whether objects
need to be wrapped in far references or have to be near ref-
erences, make sure that promises are treated correctly to
ensure their desired behavior, or to check whether an object
is a deeply immutable value object.

To e�ciently check deep immutability of values, we rely on
Newspeak’s semantics. All objects of classes that include the
Value mixin are supposed to refer only to deeply immutable
objects themselves. Since object constructors can however
execute arbitrary code, we chose to check at the end of a
constructor whether all fields of a value object contain only
value objects themselves. For these checks, we assume that
objects are usually going to be initialized with the same
types of objects for each field. Thus, we enable specialization
of the value check for each field separately, which in the ideal
case means that per field a simple type check or read of a flag
is su�cient to determine whether the constructed object is
a legal value object. Like all of the optimizations discussed
here, this optimization relies on a lexical stability of program
behavior, which for a majority of programs is given or can
be reached by method splitting based on the usage context.
With the correctness check on construction, value objects
can be recognized based on a flag that is set in these objects
without having to traverse the object graph.

To ensure isolation, we optimize asynchronous sends to far
references, handler registration and asynchronous sends to
promises that are already resolved, as well as explicit promise
resolution. For all these cases there is a concrete lexical ele-
ment in the program, and consequently the AST can contain
a node that can specialize itself based on the observed values.
For the asynchronous sends, this means for each argument

3

1.0

1.5

2.0

2.5

B
o
u
n
c
e

B
u
b
b
l
e
S
o
r
t

D
e
l
t
a
B
l
u
e

F
a
n
n
k
u
c
h

J
s
o
n

M
a
n
d
e
l
b
r
o
t

N
B
o
d
y

P
a
g
e
R
a
n
k

P
e
r
m
u
t
e

Q
u
e
e
n
s

Q
u
i
c
k
S
o
r
t

R
i
c
h
a
r
d
s

S
i
e
v
e

S
t
o
r
a
g
e

R
u
n
t
i
m
e
n
o
r
m
a
l
i
z
e
d

t
o
J
a
v
a

Figure 1: Peak performance comparison between
SOMNS and Java on classic sequential benchmarks.
The dotted line is the Java performance based on
the Graal compiler. The dashed line is the geomet-
ric mean over all SOMNS benchmarks.

to the message send, a wrapper node is inserted into the
AST that can specialize itself to one of the various cases
that need to be handled. The assumption is that checking a
guard such as the type of an object and whether sender and
receiver actor are di↵erent is a faster operation than having
to process all di↵erent cases repeatedly.

For the case that a handler is registered on an already re-
solved promise, or an asynchronous message send is per-
formed, the same optimization applies and the operations
are specialized directly in the AST corresponding to the in-
teraction with the promise. However, for unresolved promises,
this only applies to the arguments of the asynchronous mes-
sage send. For the value to which the promise is resolved, we
cannot use the same specialization. Since promises are nor-
mal objects, they can also be resolved explicitly by calling
the resolve() method on the corresponding resolver object.
For this specific case, the specialization is again applicable
since it can be done as part of the AST element that does
the call to the resolve() method. For the resolution of the
promise that is the result of an asynchronous message send,
this optimization applies as well. As discussed before, for
each asynchronous send, we construct a root node that con-
tains the actual synchronous send, i. e., method invocation
done on the receiver side. We use this root node also to
perform the promise resolution with the return value of the
method invocation. Here, the send-site based specialization
again provides the necessary context for the specialization.

5. PRELIMINARY RESULTS
For each benchmark, we measured 100 consecutive iterations
within the same VM after 150 warmup iterations. The re-
sults represent SOMNS peak performance. The benchmarks
are executed on a system with two quad-core Intel Xeons
E5520 processors at 2.26GHz with 8GB of memory and
runs Ubuntu Linux with kernel 3.13, and Java 1.8.0 60.

To give an intuition of SOMNS’ performance, we compare
it with Java. Since Tru✏e relies on the Graal compiler, we
chose to also use Graal for the Java benchmarks to avoid
cross comparison between compilers. On this benchmark
set, Graal is about 10.9% slower than HotSpot’s C2 com-
piler, which we consider more than acceptable. The results
in fig. 1 show that SOMNS is 1.65x (min. �3%, max. 2.6x)
slower than Java on our set of benchmarks.

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

o↵ the chart

49.9x

1.00

1.25

1.50

1.75

2.00

lookup in cls lookup in

5th supercls

with 10

arguments

with

int or double

S
p
e
e
d
u
p
c
o
m
p
a
r
e
d
t
o

u
n
o
p
t
i
m
i
z
e
d
v
e
r
s
i
o
n

Figure 2: Speedup of asynchronous send operation
compared to unoptimized SOMNS. Microbench-
marks focus on lookup caching, ensuring of isolation,
and preservation of calling context.

ProducerConsumerBoundedBu↵er RadixSort

1

2

3

4

5

6

7

8

1 2 4 6 8 1 2 4 6 8

S
p
e
e
d
u
p
o
v
e
r

S
i
n
g
l
e
C
o
r
e

Figure 3: Results for two Savina benchmarks [10] to
demonstrate scalability on multiple cores.

The microbenchmarks compare SOMNS with and without
the discussed optimizations. As depicted in fig. 2, the caching
of lookups and the optimizations to reduce the run-time
checks for the argument handling give a speedup of 1.5x
to 2x on these microbenchmarks. The preservation of the
calling context to enable optimizations can give even more
speedup of 49.9x, which unfortunately does not fit onto the
chart. As an initial verification that the parallel execu-
tion leads to speedup, we chose two of the Savina bench-
marks [10] that have potential for parallelism. Figure 3 in-
dicates that an increased number of actors indeed increases
performance.

6. CONCLUSION
This first exploration investigates optimization challenges
for communicating event-loop languages. With SOMNS, a
Newspeak implementation based on Tru✏e, we show that
they can be implemented e�ciently with Tru✏e. SOMNS

is only 1.65x slower than Java. Furthermore, we show that
send-site caching reduces the lookup overhead, cost of en-
suring isolation, and enables the use of the calling context
for optimization. On microbenchmarks, we see speedups
of 1.5x to 2x, while the use of the calling context for op-
timization can give a speedup of 49.9x. Finally, we also
show that SOMNS can realize parallel speedup on two bench-
marks. While these are only preliminary results, some of
the ideas are applicable to other types of languages. Since
asynchronous message reception rarely leads to monomor-
phic behavior, send-site-based optimizations could also be
beneficial for statically typed languages.

Nonetheless, much work remains to be done. For instance,
we do not yet have a solution of handling complex promise
dependencies e�ciently and we did not yet verify the ben-
efit of these optimizations on larger actor programs. We
however hope, SOMNS is an interesting platform for future
research not only of optimization techniques but also for safe
concurrent programming models beyond classic actors.

4

References
[1] G. Agha. ACTORS: A Model of Concurrent Compu-

tation in Distributed Systems. MIT Press, Cambridge,
MA, USA, 1986. ISBN 0-262-01092-5.

[2] G. Bracha, P. von der Ahé, V. Bykov, Y. Kashai,
W. Maddox, and E. Miranda. Modules as Objects in
Newspeak. In ECOOP 2010 – Object-Oriented Pro-
gramming, volume 6183 of Lecture Notes in Computer
Science, pages 405–428. Springer, 2010. ISBN 978-3-
642-14106-5. doi: 10.1007/978-3-642-14107-2 20.

[3] J. B. Dennis and E. C. Van Horn. Programming Se-
mantics for Multiprogrammed Computations. Com-
mun. ACM, 9(3):143–155, Mar. 1966. ISSN 0001-0782.
doi: 10.1145/365230.365252.

[4] T. Desell and C. A. Varela. SALSA Lite: A Hash-
Based Actor Runtime for E�cient Local Concurrency.
In G. Agha, A. Igarashi, N. Kobayashi, H. Masuhara,
S. Matsuoka, E. Shibayama, and K. Taura, editors,
Concurrent Objects and Beyond, volume 8665 of LNCS,
pages 144–166. Springer Berlin Heidelberg, 2014. ISBN
978-3-662-44470-2. doi: 10.1007/978-3-662-44471-9 7.

[5] Ecma International. ECMAScript 2015 Language Spec-
ification. Geneva, 6th edition, June 2015.

[6] C. Hewitt, P. Bishop, and R. Steiger. A Universal Mod-
ular ACTOR Formalism for Artificial Intelligence. In
IJCAI’73: Proceedings of the 3rd International Joint
Conference on Artificial Intelligence, pages 235–245,
San Francisco, CA, USA, 1973. Morgan Kaufmann
Publishers Inc.

[7] C. A. R. Hoare. Communicating sequential processes.
Commun. ACM, 21(8):666–677, 1978. ISSN 0001-0782.
doi: 10.1145/359576.359585.

[8] U. Hölzle, C. Chambers, and D. Ungar. Debug-
ging Optimized Code with Dynamic Deoptimization.
In Proceedings of the ACM SIGPLAN 1992 confer-
ence on Programming language design and implemen-
tation, PLDI ’92, pages 32–43, New York, NY, USA,
1992. ACM. ISBN 0-89791-475-9. doi: 10.1145/
143095.143114.

[9] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
Dynamically-Typed Object-Oriented Languages With
Polymorphic Inline Caches. In ECOOP ’91: European
Conference on Object-Oriented Programming, volume
512 of LNCS, pages 21–38. Springer, 1991. ISBN 3-
540-54262-0. doi: 10.1007/BFb0057013.

[10] S. M. Imam and V. Sarkar. Savina - An Actor Bench-
mark Suite: Enabling Empirical Evaluation of Ac-
tor Libraries. In Proceedings of the 4th International
Workshop on Programming Based on Actors Agents
& Decentralized Control, AGERE! ’14, pages 67–80.
ACM, 2014. ISBN 978-1-4503-2189-1. doi: 10.1145/
2687357.2687368.

[11] R. K. Karmani, A. Shali, and G. Agha. Actor Frame-
works for the JVM Platform: A Comparative Anal-
ysis. In PPPJ ’09: Proceedings of the 7th Interna-
tional Conference on Principles and Practice of Pro-
gramming in Java, pages 11–20, New York, NY, USA,

2009. ACM. ISBN 978-1-60558-598-7. doi: 10.1145/
1596655.1596658.

[12] S. Marr and S. Ducasse. Tracing vs. partial eval-
uation: Comparing meta-compilation approaches for
self-optimizing interpreters. In Proceedings of the
2015 ACM International Conference on Object Ori-
ented Programming Systems Languages & Appli-
cations, OOPSLA ’15. ACM, 2015. ISBN 978-1-4503-
2585-1. doi: 10.1145/2660193.2660194.

[13] S. Marr, T. Pape, and W. De Meuter. Are We There
Yet? Simple Language Implementation Techniques for
the 21st Century. IEEE Software, 31(5):60–67, Septem-
ber 2014. ISSN 0740-7459. doi: 10.1109/MS.2014.98.

[14] M. S. Miller, E. D. Tribble, and J. Shapiro. Concur-
rency Among Strangers: Programming in E as Plan Co-
ordination. In Symposium on Trustworthy Global Com-
puting, volume 3705 of LNCS, pages 195–229. Springer,
April 2005. doi: 10.1007/11580850 12.

[15] J. Schäfer and A. Poetzsch-He↵ter. JCoBox: Gen-
eralizing Active Objects to Concurrent Components.
In ECOOP 2010 – Object-Oriented Programming, vol-
ume 6183 of LNCS, pages 275–299, Berlin, 2010.
Springer. ISBN 978-3-642-14106-5. doi: 10.1007/
978-3-642-14107-2 13.

[16] T. Van Cutsem, E. Gonzalez Boix, C. Scholliers,
A. Lombide Carreton, D. Harnie, K. Pinte, and
W. De Meuter. AmbientTalk: programming responsive
mobile peer-to-peer applications with actors. Computer
Languages, Systems & Structures, 40(3–4):112–136,
2014. ISSN 1477-8424. doi: 10.1016/j.cl.2014.05.002.

[17] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler,
G. Duboscq, C. Humer, G. Richards, D. Simon, and
M. Wolczko. One VM to Rule Them All. In Pro-
ceedings of the 2013 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward!’13, pages 187–204.
ACM, 2013. ISBN 978-1-4503-2472-4. doi: 10.1145/
2509578.2509581.

[18] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Si-
mon, and C. Wimmer. Self-optimizing ast interpreters.
In Proceedings of the 8th Dynamic Languages Sympo-
sium, DLS’12, pages 73–82, October 2012. ISBN 978-
1-4503-1564-7. doi: 10.1145/2384577.2384587.

5

Connect.js

A cross mobile platform actor library for multi-networked mobile applications

Elisa Gonzalez Boix Christophe Scholliers Nicolas Larrea Wolfgang De Meuter
Vrije Universiteit Brussel

{egonzale,cfscholl,nlarrea,wdmeuter}@vub.ac.be

Abstract

Developing mobile applications which communicate over
multiple networking technology is a difficult task. First, de-
velopers usually have to maintain a different version of the
application for each mobile platform they target. Recent
trends in mobile cross-platform solutions may alleviate this
issue. However, developers still need to program a variation
of the application for each different network interface. In ad-
dition, the APIs for communicating over ad-hoc network-
ing technologies (eg. wifi direct), are very different from the
cloud APIs. Finally, developers need to write highly asyn-
chronous code for communication. This is often written with
callbacks which invert the control flow of the application
leading to code which is hard to debug and maintain. This
paper introduces Connect.js, a JavaScript library for writing
multi-networked cross-platform mobile applications. Appli-
cations consists of distributed objects which communicate
with one another by means of asynchronous messages via
a special kind of reference which is transparent for the un-
derlying network technology used. Connect.js also provides
dedicated language constructs for structuring asynchronous
code by means of future combinators.

1. Introduction

Today we are witnessing a convergence in mobile technol-
ogy and cloud computing trends. One the one hand, mo-
bile devices have become ubiquitous. Many of them have
more computing power than high end (fixed) computers de-
veloped 15 years ago. Moreover, they are equipped with
multiple wireless network capabilities such as cellular net-
work (3G/4G), wifi, bluetooth, wifi-direct, and NFC. As to
be expected with any new technology, multiple mobile plat-

[Copyright notice will appear here once ’preprint’ option is removed.]

forms are currently available (being the most relevant ones
Android, iOS, and Windows Mobile). Important for the pro-
grammer is that each of these platforms have a radically dif-
ferent programming environment (e.g., Java in Android, Ob-
jective C in iOS, etc).

On the other hand, with the advanced on mobile broad-
band internet access, the web has evolved from data pre-
sentation layer to a data sharing and computation platform,
to wit the cloud. Implementing mobile applications employ-
ing web-based technologies (like HTML and JavaScript) has
the potential benefit of running in multiple mobile environ-
ments. However, mobile web-based applications usually per-
form worse, and do not provide a consistent look and feel
than their native counterparts.

In order to minimize the software development costs, mo-
bile cross-platform tools allow to develop one application
for multiple mobile platforms [4]. Specially relevant are in-
terpreted tools, like Appcelerator Titanium1 or Xamarin2,
where developers write applications in a specific language
(e.g., JavaScript or C++) and the tool builds a native appli-
cation for the different targeted mobile platforms. They pro-
vide a number of built-in APIs for constructing native GUI
and accessing the underlying hardware without requiring de-
tailed knowledge of the targeted platform. The resulting rich
mobile applications (RMAs) contribute to the intersection of
mobile and cloud computing [1].

In this paper, we focus on a new breed of rich mobile
applications which make use of both P2P communication
and centralised wireless network access to coordinate and
share data. Such multi-networked RMAs enable communi-
cation over both infrastructure-less networks of mobile de-
vices, and the cloud. Developing such multi-networked ap-
plications burdens developers with the following tasks:

• Programmers need to implement a variation of the ap-
plication for each network interface, and write complex
failure handling code to support for reliable communica-
tion over multiple networking interfaces. Moreover, the
API’s for communicating over mobile ad hoc networking

1 http://www.appcelerator.com
2 http://xamarin.com

1 2015/9/15

technologies like wifi-direct or bluetooth, are very differ-
ent from the cloud API’s. While the cloud typically re-
quires a client-server communication model, the lack of
infrastructure in ad hoc networking technologies requires
a peer-to-peer communication model, in which services
can be directly discovered in proximate devices.

• Programmers need to write highly asynchronous code for
the network communication. This is often written with
callbacks. However, these callbacks invert the control
flow of the application leading to code which is hard to
debug and maintain.

To overcome these issues we propose Connect.js, a mo-
bile cross-platform development library for multi-networked
mobile applications. In order to be able to communicate over
multiple networking technologies, Connect.js introduces a
novel kind of remote object reference which abstract over
the kind of network interface being used, called network
transparent references (NTR). As a result, applications can
seamlessly communicate over the cloud or using an infras-
tructureless mobile network depending on the underlying
available networking technology. NTRs offer reliable com-
munication and as such, programmers do not need to man-
ually verify the delivery of each message sent over multi-
ple network interfaces. In order to mitigate the negative ef-
fects of callbacks, Connect.js provides dedicated language
constructs for structuring asynchronous code by means of
future combinators. Future combinators treat futurized mes-
sages as monads and provide a number of operators to com-
bine futurized message passing while avoiding deep nesting
associated with callbacks. We believe that the combination
of NTRs and future combinators eases programming multi-
networked rich mobile applications.

2. Connect.js

Connect.js is a mobile cross-platform library integrated in
Appcelerator Titanium which allows programmers to write
their distributed mobile applications in JavaScript and de-
ploy it on several mobile platforms, namely iOS and An-
droid. Figure 1 shows the general architecture of Connect.js.
Programmers write mobile applications in JavaScript im-
porting the Connect.js library in their Titanium project for
distributed programming. The abstractions provided by the
Connect.js API are based on the ambient-oriented program-
ming model from AmbientTalk[2] which treats network par-
titions as a normal mode of operation. As in AmbientTalk,
every device hosts at least one actor which encapsulates
one or more objects. Objects can communicate with ob-
jects in another actor system by means of sending asyn-
chronous messages via a special remote reference called a
far-reference. To this end, Connect.js incorporates a built-in
service discovery mechanism which allows to discover ser-
vices in devices accessible under the same ad hoc network
or via the cloud, independently of the mobile platform of

the device (explained in the next section). From an imple-
mentation point of view, Connect.js contains two different
native modules (also called plugins) for service discovery on
an ad hoc network based on zero-configuration networking
technologies specific to the mobile platform. The iOS plugin
uses Bonjour 3, and the Android plugin employs NDS 4 We
then rely on the JavaScript - Java/ObjectiveC bridge from
Titanium to transform the JavaScript code into native appli-
cations in the targeted mobile platform.

Figure 1. Architectural Overview of Connect.js.

2.1 Network Transparent References (NTRs)

Connect.js considers actors as the unit of distribution, and as
such two objects are said to be remote when they are owned
by different actors. The only type of communication allowed
on remote object references is asynchronous message pass-
ing. Any messages sent via a remote reference to an object
are enqueued in the message queue of the owner of the ob-
ject and processed by the owner itself.

In Connect.js actors communicate with one another over
wireless links or mobile broadband access. As such, remote
references in Connect.js abstract the underlying network-
ing technology being used for communication. Such network

transparent references (NTRs) are resilient to network fluc-
tuations by default. When a network technology (e.g. wifi)
is not available, the NTR attempts to transmit messages sent
to it using another networking technology, i.e. 3G. If all
networking interfaces are down, the remote reference starts
buffering all messages sent to it. When the network partition
is restored at a later point in time, the far reference flushes

3 https://developer.apple.com/bonjour/
4 http://developer.android.com/reference/android/net/nsd/NsdManager.html

2 2015/9/15

all accumulated messages to the remote object in the same
order as they were originally sent. As such, temporary net-
work failures or fluctuations on the availability of the differ-
ent network interfaces does not have an immediate impact
on the applications’ control flow.

To illustrate NTRs and the different distributed program-
ming constructs in Connect.jsconsider the following code
snippet from a chat application:

1 var buddyList = {};

2 var Ambient = require("js/connectjs/ConnectJS");

3 function initializeMessenger(name) {

4 //....

5 Ambient.wheneverDiscovered("MESSENGER",

6 function(ntr){

7 var msg = Ambient.createMessage(getName,[]);

8 var future = ntr.asyncSend(msg,"twoway");

9 future.whenBecomes(function(reply) {

10 buddyList[reply] = ntr;

11 // send a salute message

12 });

13 });

14 }

Listing 1: Example use of asynchronous message passing
over NTRs

The wheneverDiscovered function takes as arguments
a string representing the service type and a function serving
as callback. Whenever an actor is encountered in the ad hoc
network that exports a matching object, the callback function
is executed. The ntr parameter of the function is bound to
a network transparent reference to the exported messenger
object of another device.

In order to define objects exporting service to the net-
work, the exportAs function is employed. Code snippet be-
low shows how to create an object which implements a ser-
vice corresponding to the chat application using the string
MESSENGER as service type.

1 var remoteObj = Ambient.createObject({

2 "getName": function () { return myName; },

3 "talkTo": function (msg) { displayMessage(msg);}

4 });

5 Ambient.exportAs(remoteObj, "MESSENGER");

With the code provided two phones can already commu-
nicate with each other when they are within direct commu-
nication range. However, when the phones are not in direct
communication range, Connect.js allows the phones to com-
municate with each other through a centralised node server.
To this end, the programmer needs to configure a node server
so that service objects are allowed to be exported as well via
in an intermediary server in the cloud. The code to configure
the node server is shown below.

1 var Ambient=require("js/connectjs/ConnectJS"),

2 express = require("express"),

3 nodeServer = require("http").Server(express());

4 nodeServer.listen(3000);

5 Ambient.initServer(nodeServer);

2.2 Future as a Monad

.
The use of asynchronous communication has proven to be

beneficial to build distributed mobile applications because
it mitigates the negative effects of frequent network fail-
ures. However, asynchronous primitives suffers from similar
problems as traditional callbacks. In this section we give an
overview of how defining futures in terms of a monad allows
programmers to better structure their asynchronous code. We
also present a number of combinators which turn out to be
useful but do not follow the monadic structure.

2.2.1 The Future Monad

The basic constructs of futures can be formulated as a
monad [3]. Listing 2 shows the unit and bind type signa-
ture of the monad typeclass in Haskell. A monad has two
operations, bind (>>=) and unit. Bind takes a monad of x
and a function which takes a value of type x and returns a
monad m y. Unit lifts a regular value of type x into a monad
of x.

1 class Monad m where

2 (>>=) :: m x -> (x -> m y) -> m y

3 unit :: x -> m x

Listing 2: Monad typeclass in Haskell

While we can not reap the advantages of the Haskell type
system to enforce monadic behaviour we can still implement
the basic bind an unit operators over futures in Javascript.
Pseudo code 5 for the bind operator as defined in the future
prototype in Connect.js is defined in listing 3. When bind

is applied on a future F, a new future R is created (line 2).
This new future is also the result of applying bind (line 9).
Bind registers an anonymous function on the future F. This
anonymous function resolves the future R with the result
of applying the function f to the value where the future F

resolves to (line 4-8).
More easily the return operator lifts a normal value into a

future value. Return simply creates a new future and imme-
diately resolves the future with the given value.

2.3 Future Combinators

The basic monadic operators together with the lift construct
provide a very useful set of abstractions for composing asyn-
chronous computations. However, in our context program-
mers often need some more high-level abstractions. Our li-

5 For clarity we omitted the code for future pipelining here.

3 2015/9/15

1 // bind :: (x-> future[y]) -> future[y]

2 function bind(f) {

3 var R = new Future();

4 self.register(function(v) {

5 f(v).register(function(res){

6 R.resolve(res);

7 });

8 });

9 return R;

10 }

Listing 3: Monad bind in the Future Prototype of Connect.js

brary therefore defines a set of operators implemented on top
of these basic monadic combinators. An overview of these
operators is shown in tabel 1. Note that the in the type sig-
nature f [a] should be read as: A future which will resolve
to an array of a’s.

Conditionals
if f a -> (a -> Bool) -> f a

or f a -> f b -> (f a | f b)

Simple synchronisation
first f a -> f b -> (f a | f b)

last f a -> f b -> (f a | f b)

Group synchronisation
many f[a]->(a->Bool)->f[a]

some f[a]->(a->Bool)->f[a]

all f[a]->(a->Bool)->f[a]

Array operators
filter f[a]->(a->Bool)->f[a]

map f[a]->(a->b)->f[b]

Table 1. Overview of the basic future combinators.

2.3.1 Future Combinator: Chat example

In this section we give a small example to showcase how the
asynchronous nature of the communication can be hidden by
the use of our future combinators. Consider the implementa-
tion of sending a friendly message to your two best buddies.
We first define a (synchronous) function which checks that
the user is either Christophe or Elisa (lines 1-4). Next we de-
fine a function which sends out a friendly message to each
user in a given array of users (lines 5-7). Finally we first get
the list of all our friends from the server (line 8), we filter
this list (line 10), we transform the list of users to a list of
user objects (line 11), and send a message to each of them
with the function sendFriendlyMsgs (line 12).

3. Validation

In order to compare our approach to existing approaches we
have implemented two example applications: a chat applica-
tion and a distributed unit test suite. For both applications we
have compared the percentage of lines which are attributed

1 var filterBuddy = function(user) {

2 return "Christophe" == user.firstname

3 || "Elisa" == user.firstname;

4 };

5 var sendFriendlyMsgs = function(users) {

6 users.map(sendFriendlyMsg)

7 };

8 var msg = Ambient.createMessage("getFriendList");

9 server.asyncSend(msg, "twoway")

10 .filter(filterBuddy)

11 .reduce(makeBudObj,{})

12 .whenBecomes(sendFriendlyMsgs);

Listing 4: Example use of future combinators

to the application logic compared to the lines of code for
communication. The chat application has been implemented
twice in Connect.js, once with network aware references and
once without. For the unit testing framework we also imple-
mented the tests twice, once with normal futures and once
with future combinators. The results for both the chat appli-
cation and the unit testing framework are shown in figure 2.
As shown in the figure in both cases there is a clear shift
from the percentage of lines spent for the application logic
compared to the lines of code attributed to the communica-
tion logic. While not shown in the figure the absolute lines
of code for each application also reduced.

Figure 2. Comparison in usage distribution

4. Conclusion

In this paper we reported on initial work on Connect.js :
a cross mobile-platform actor library for multi-networked
RIA applications. With Connect.js the programmer does
no longer need to write complex network code in order to
exploit the use of both P2P communication and commu-
nication over a centralised wireless network. To this end,
Connect.js provides the programmers with a new kind of
distributed object reference called network transparant ref-
erences. When one network interface fails these reference
automatically and transparently tries to send the message
over another network interface. Finally, in order to min-
imise the negative effects of writing asynchronous code Con-
nect.js provides a set of future combinators. Initial valida-
tion of our artefact on two small applications shows promis-
ing results.

4 2015/9/15

References

[1] S. Abolfazli, Z. Sanaei, A. Gani, F. Xia, and L. T. Yang. Re-
view: Rich mobile applications: Genesis, taxonomy, and open
issues. J. Netw. Comput. Appl., 40:345–362, April 2014. ISSN
1084-8045. .

[2] T. V. Cutsem, E. G. Boix, C. Scholliers, A. L. Carreton,
D. Harnie, K. Pinte, and W. D. Meuter. Ambienttalk: program-
ming responsive mobile peer-to-peer applications with actors.
Computer Languages, Systems & Structures, 40(34):112 – 136,
2014. ISSN 1477-8424. .

[3] E. Moggi. Computational lambda-calculus and monads. In
Proceedings of the Fourth Annual Symposium on Logic in Com-

puter Science, pages 14–23, Piscataway, NJ, USA, 1989. IEEE
Press. ISBN 0-8186-1954-6.

[4] S. Xanthopoulos and S. Xinogalos. A comparative analysis
of cross-platform development approaches for mobile applica-
tions. In Proceedings of the 6th Balkan Conference in Infor-

matics, BCI ’13, pages 213–220, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1851-8.

5 2015/9/15

Extended Abstract: Towards Verified Privacy Policy Compliance
of an Actor-based Electronic Medical Record Systems

Tom MacGahan Claiborne Johnson Armando L. Rodriguez Mark Appleby Jianwei Niu Jeffery von Ronne

Department of Computer Science
The University of Texas at San Antonio

vonronne@acm.org

1. Introduction
Many organizations use information systems to store, pro-
cess, and communicate personal information about the indi-
viduals with which the organization interacts. These organi-
zations needs to ensure that these information systems do not
disclose information when not allowed by applicable privacy
policies. One important instance of this are the electronic
medical records systems utilized by health care providers. In
the United States, these organizations are required to com-
ply with the Privacy Rule of the Health Insurance Portability
and Accountability Act and their own privacy policies. (In
the rest of these papers, we will refer to these simply as ”the
privacy policy”.) Verifying, whether a complex software sys-
tem can cause an organization to violate the privacy policy,
however, is not an easy task.

We have been developing a framework for building actor-
based privacy policy compliant software systems. In this
framework, the software system is decomposed into collec-
tions of actors instantiated from class and component def-
initions written in the domain-specific History Aware Pro-
gramming Language (HAPL). Along the lines previously
outlined in [2]. Each actor class definition and each com-
ponent definition is also associated with formal specification
written of relevant parts of its behavior. Actor code is veri-
fied against individual actor class specifications, and individ-
ual class specifications are shown to entail the specifications
of larger component entities. The specification for the entire
system is shown to entail the privacy policy. In this way, the
system implementation is shown to implement the privacy
policy.

We are currently in the process of creating the frame-
work’s build tools and runtime systems. We are also apply-
ing the framework to build a prototype electronic medical
record system.

2. Framework Design and Implementation
Our framework can be viewed as facilitating two processes:
creating a information system, and verifying its compliance
with the privacy policy. The two are not unrelated, however,

since the tools and techniques used to build the system are
constrained so that the system can be more easily verified.

2.1 Language, Build Tools, and Runtime Support
In our framework, an information system is written in the
History Aware Programming Language (HAPL), which pro-
vides facilities for defining actor classes and component def-

initions. In HAPL, an actor class is a static template from
which actors can be instantiated at runtime. A component
definition is a static description of a configuration of ac-
tors that can be instantiated at runtime. Component defini-
tions can be defined in terms of actors instantiated from ac-
tor classes or subcomponents instantiated from other compo-
nent definitions. A component definition is used to describe
the system as whole.

A HAPL compiler translates actor classes and compo-
nent definitions into Scala code using the Akka actor library.
HAPL actor class code can make use a novel ”dynamic his-
tory query” to make the execution of certain code dependent,
at runtime, on the truth of first-order LTL formulas involv-
ing the messages in which the actor participates. This is sup-
ported through a runtime mechanism that dynamically tracks
information necessary to answer potential queries. Special
UI actor classes in the HAPL code generate Lift frame-
work code to create actors that can communicate with a user
through a web browser.

2.2 Verification Tools and Techniques
Our verification techniques aim to verify complete informa-
tion systems against a formalization of the privacy policy in
a first-order temporal logic.

Furthermore, our framework is built around a set of
assume-guarantee specifications written in a first-order tem-
poral logic. These specifications are associated with each
actor class and each component definition. Specifications
associated with component definitions describe not only the
behavior of the actors in the initial configuration of compo-
nents instantiated out of a definition but also describes the
externally visible behavior of any new actors that are created
as the component evolves from those in the initial configu-

Figure 1. Component Structure of Prototype Medical Record System

ration. The specification associated with the ”outer-most”
whole-system component is taken as system specification.

Individual actor classes are verified against their speci-
fications using an abstract interpretation that abstracts pro-
gram traces according to the specification subformulas that
are true when execution reaches a particular program point.

A variety of formal methods can be used to show that the
refinement of a system specification into the specifications of
the component definitions that realize it, as well as the speci-
fication of the component definitions into the subcomponent
definition and actor class definitions. We are currently look-
ing into utilizing model checking and Coq theorem proving
for this purpose.

3. Prototype Medical System
In order to evaluate our framework, we have been using it
to develop a prototype electronic medical record system. It
consists of a patient and doctor user interface, an medical
record archive, a scheduling subsystem and a billing subsys-
tem. Patients are allowed to view their own record. Doctors
can view and edit records of any patient for whom they claim
to be giving care. The medical record archive is presumed to
be persistent and is acts as a database.

The hierarchical component structure of the prototype
medical system is shown if Figure 1. The ”Information
System” component is comprises of the ”EMR System”,
”Scheduling”, and ”Billing” subcomponents. Our frame-
work associates each of these components has an associ-
ated assume-guarantee specification. It is then necessary to
show that the supercomponents specification is entailed by
the specifications of the subcomponents and actors that com-
prise the supercomponent.

4. Future Work and Outlook
Although our policy language is well developed [1], many
aspects of our framework are still incomplete. We are in the
process of completing our runtime system implementation,
our verification tools, and verifying our medical system pro-
totype.

We are also still investigating the best method for verify-
ing that the subcomponent assume/guarantee specifications
compose to entail the supercomponent assume/guarantee
specification; we are currently looking at using model check-
ing tools or the Coq assisted theorem prover.

Our experience so far, however, leads us to believe in
the appropriateness of our framework for building privacy-
protecting actor-based information systems.

Acknowledgments
This work is dedicated to the memory of William Wins-
borough. The authors also thank Omar Chowdhuri, Shamim
Ashik, and Sam Miller who have contributed to this project.
This work was supported by the National Science Founda-
tion under grant CNS-0964710.

References
[1] O. Chowdhury, A. Gampe, J. Niu, J. von Ronne, J. Bennatt,

A. Datta, L. Jia, and W. H. Winsborough. Privacy promises that
can be kept: A policy analysis method with application to the
hipaa privacy rule. In Proceedings of the 18th ACM Symposium

on Access Control Models and Technologies, SACMAT ’13,
pages 3–14, 2013.

[2] J. von Ronne. Leveraging actors for privacy compliance. In
Proceedings of the 2Nd Edition on Programming Systems, Lan-

guages and Applications Based on Actors, Agents, and Decen-

tralized Control Abstractions, AGERE! 2012, pages 133–136,
2012.

