
A Performance and Scalability Analysis of Actor
Message Passing and Migration in SALSA Lite

October 26, 2015
Pittsburgh, Pennslyvania, USA

The 5th International Workshop on Programming based on Actors, Agents, and
Decentralized Control (AGERE! 2015)
Held in conjunction with the ACM SIGPLAN conference on Systems,
Programming, Languages and Applications: Software for Humanity (SPLASH)

Travis Desell
tdesell@cs.und.edu

Department of Computer Science
University of North Dakota

Carlos A. Varela
cvarela@cs.rpi.edu

Department of Computer Science
Rennselaer Polytechnic Institute

1. SALSA Lite Implementation

1. Theaters

2. Remote Actors

3. Mobile Actors

2. Results

1. Thread Ring

2. Local Actor Creation

3. Fibonacci

4. Remote Actor Creation

5. Theater Rings

6. Migration Rings

3. Conclusions

4. Future Work

Overview

SALSA Lite Implementation

SALSA Lite uses the concept of stages to host
lightweight actors. These have many similarities
to E's vats or SEDA.

Essentially, stages are heavyweight actors,
which have a mailbox and process messages
one after the other. Each actor is assigned to a
stage, and only that stage will invoke messages
on that actor.

The default number of stages can be specified
dynamically at runtime, and new stages can be
created as needed by actors. Actors can either
be assigned to a random stage (by default) or
select the stage they are created on.

The code above shows the different ways an actor can be created on different stages.

The initial number of stages in a SALSA application can be specified at runtime by using the:

 -Dnstages=<number of stages>

system property.

Assigning Actors to Stages

they require each actor to also have some data structure to store their own
individual mailbox, increasing memory requirements.

Examining methods for automatically quarantining actors with unbounded
message processing behavior to their own stages, or other methods for e�ciently
ensuring fairness at the runtime level remains an area of future research.

3.1 Actor Creation

1 : //create on a default stage

2 : MyActor a = new MyActor () ;

3 : //create b on a’s stage

4 : MyActor b = new MyActor () on (a) ;

5 : //create c on stage 3

6 : MyActor c = new MyActor () on (3) ;

7 : //create d on its own new stage

8 : MyActor d = new MyActor ()
9 : on (S tageSe rv i c e . getNewStage ()) ;

Fig. 3. SALSA Lite has first class support for which stage (or thread) an actor runs on.
An actor can either use SALSA’s default scheduling, run on the same stage as another
actor, its own new stage, or a stage specified by an identifier.

Figure 3 gives an example of creating actors at di↵erent stages. The initial
number of stages used can be specified at runtime, and these stages are identified
0 through N � 1 where N is the number of stages. First class stage support can
be used to create an actor at the same stage as another actor, a stage specified
by its identifier, or its own new stage.

If an actor is created without specifying a target stage, the SALSA runtime
uses a hash function to determine which stage it runs on. Currently, this is done
using the actor’s hash value (which is inherited from Java’s default object hash
value). This hash value was chosen over other strategies (such as generating a
random number) for e�ciency, as the hash values serve as random numbers and
are already calculated by the Java runtime as part of object creation so there is
no need to do additional calculation.

The stage the actor is placed on is the actor’s hash value modulo the number
of stages specified at runtime. This makes for an e�cient way to distribute actors
over stages in a generally balanced and random way. Hashing actors to stages
is particularly interesting as a research question, as it provides transparent par-
allelism of SALSA Lite programs, allowing the number of stages to be specified
at runtime, independent of the application’s code. Further, it makes it possi-

SALSA Lite uses a series of services which potentially could act as singular bottlenecks as they
perform actions (e.g., generating a unique ID for a message) which must be done sequentially and in
a thread safe manner.

SALSA Lite overcomes this by allowing multiple similar services to run which are accessed by
actors/stages by hashing the actor's stage ID. This minimizes blocking on other stages to access
these services. The number of service copies can be specified dynamically at runtime.

Eliminating Bottlenecks via Hashing

Implementation: Theaters

IncomingTheaterConnectionActors are spawned by the theater when a connection is established
on it's listening port. They repeatedly receive messages (and actors in the case of migration) and
forward them on the the appropriate stage to be processed by their target.

OutgoingTheaterConnectionActors connect to outgoing theaters and then send messages to
remote actors over the connection to their corresponding IncomingTheaterConnectionActor.

The runtime environments in which
distributed SALSA Lite applications run on are
called Theaters. Theaters listen on a particular
port for incoming connections to other
theaters which can be distributed over local
area networks or the Internet.

Theaters consist of two main types of actors:

1. OutgoingTheaterConnectionActors

2. IncomingTheaterConnectionActors

Both operate on their own stage to prevent
starving other actors during synchronous calls
or long data transfers.

When an actor holds a reference to a remote actor, that remote actor is either present locally or
at a remote theater.

In the case of locally present remote actors, the reference is a reference to the actual actor, and
messages are sent identically as if they were being sent to a local actor.

In the remote case, the reference is actually a stub actor which simply places any messages invoked
on it by a stage in the mailbox of the appropriate OutgoingTheaterConnectionActor's stage. In this
way, no changes were required to be made to the simple and efficient stage runtime of SALSA Lite.

Implementation: Remote Actors

Remote
Actor B

Remote
Actor B Stub Outgoing

Theater
Connection

Actor

Message to B

Theater 1

Incoming
Theater

Connection
Actor

Actor A

Message to B

Actor C

Theater 2

Message sent
over socket to
remote theater

Actor DMessage to B

Implementation: Reference Propagation 1
When a remote actor is created it is placed in a RemoteActorRegistry, which is a HashMap of
remote actor names the respective reference to it's lightweight actor object. In the case of remote
actors on other theaters, the registry contains the stub actor instead.

Reference lookup is performed whenever a message or actor is received over the socket of an
IncomingTheaterConnectionActor. As opposed to using the standard Java serialization methods,
SALSA Lite instead uses the readResolve and writeReplace serialization methods to instead
simply write a minimal object containing the actor's hash code, host, port and name. These are then
used to look up the lightweight actor or stub actor in the registry.

If there is no entry in the registry either the remote actor is going to be created here but hasn't
yet, or the reference is an unknown stub which can be created from the hash code, host, port and
name of the remote actor.

Remote
Actor BActor B Stub

Outgoing
Theater

Connection
Actor

Theater 1

Incoming
Theater

Connection
Actor

Actor A

Theater 2

Actor D Stub
created/looked up

by readResolve

Message sent over
socket to remote

theater

Actor D

Message to
B with Ref to

D

Outgoing
Theater

Connection
Actor

Incoming
Theater

Connection
Actor

Actor D Stub

Response
Message to D

Implementation: Reference Propagation 2

Messages sent to remote theaters can also contain references to local actors. As such, another
LocalActorRegistry is used to handle the case when these references escape a theater. When a
local actor is serialized an entry is placed in the LocalActorRegistry, and stubs can be created/
looked up on other theaters by the local actor's hash code, host and port.

This adds no overhead to non-distributed message passing and actor creation as the
LocalActorRegistry already existed to prevent serialization of actors when objects sent as message
parameters contain references to actors and are copied to enforce state encapsulation.

For example, if an ArrayList of actors is passed as an argument to another local actor, the ArrayList
should be copied but the actors (and actor references within it) should not. This also uses the
readResolve and writeReplace serialization methods done locally over a fast deep copy stream.

Using this registry scheme is highly important as it prevents unwanted duplication of actors and
actor references.

The SALSA compiler replaces calls to create new remote actors with a static construct method,
which returns the actor if it is to be created locally, and forwarding stub otherwise.

This static method places two messages in the appropriate OutgoingTheaterConnectionActor's
mailbox. The first contains a stub for the remote actor to be created, and the second creates a
construct method which actually invokes the constructor on the new remote actor. As messages in
any actors mailbox are not reordered in SALSA Lite, and the OutgoingTheaterConnectionActor
sends these two messages, as well as any subsequent messages in order over the Java socket to the
remote IncomingTheaterConnectionActor.

Implementation: Remote Actor Creation 1

INCOMING
Actor B

Actor A
Construct B

Message
CREATED
Actor B

Actor B
Remote Creation

Stub

Theater 3Theater 1

Actor B
Stub

Outgoing
Theater

Connection
Actor

It is possible, however, that the returned stub could be sent in a message to an actor at a different
theater, which then sends a message to the remote actor whose construct messages haven't yet
reached the theater where the actor is to be created.

In this case, when the actor is looked up in the RemoteActorRegistry it will not be found even
though the host and port specify that it should be at that theater. In this case, an ArrayList is placed
in that registry to hold any incoming messages to it. Which are resent after the actor is received
and constructed.

Implementation: Remote Actor Creation 2

INCOMING
Actor B

Theater 1

Actor A

Theater 3

Actor B
Message List

Theater 2

Construct B
Message

Actor C

Message to C with
Reference to B Messages to B

CREATED
Actor B

Actor B
Remote Creation

Stub

Actor B
Stub

Actor B
Stub

Implementation: Mobile Actors
Whereas local and remote actors can be taken care of with lightweight actor objects and message
forwarding stubs, mobile actors always require a stub actor which performs a lookup every time a
message is invoked on it to determine if the actor is at the current theater or if it has moved.

This is accomplished with both a MobileActorRegistry and MobileActorStateRegistry. The
MobileActorRegistry holds the stub actors which are resolved to when references to the mobile
actor are received over a socket. The MobileActorStateRegistry holds a reference to the object
representing the actor's state when it is present, and a reference to the appropriate
OutgoingTheaterConnectionActor when it is not.

When a message is invoked on a mobile actor's stub, it performs a lookup and invokes the message
on the actor if it is present, otherwise it places it in the appropriate OutgoingTheaterConnection's
mailbox.

Mobile
Actor State

Mobile
Actor Stub

Outgoing
Theater

Connection
Actor

Message sent over socket to remote theater

Message to
Invoke

MobileActorStateRegistry

State Found

OTCA Found

Stub Performs
Registry Lookup

Implementation: Migration

The locations of mobile actors are tracked using a name server, which is updated whenever a
mobile actor is created or migrates. Unlike SALSA 1.5 and earlier, name servers are first class
actors in SALSA Lite which are communicated with asynchronously.

When a mobile actor migrates, it sends an UPDATE message to it's corresponding name server.
After this the actor's state is placed as a message to the target theater's
OutgoingTheaterConnectionActor, and the MobileActorStateRegistry is updated to that theater's
OutgoingTheaterConnectionActor. When the actor's is received by the
IncomingTheaterConnectionActor, it is placed in that theater's MobileActorStateRegistry.

If a message received by an IncomingTheaterConnectionActor has mobile actor as its target, and
that mobile actor is not present at the theater, it performs a lookup as to where the actor had mi-
grated using the MobileActorStateRegistry. It sends the message on to the theater the actor had
migrated to, but also sends an updateActorLocation message to the theater actor at the source of the
message. It keeps a list of actors it has sent updateActorLocation messages to and has not yet heard
an acknowledgement back from yet, to prevent spamming the source theater with multiple
updateActorLocation messages. In this way, as an actor migrates and messages are sent to it, the
theaters update their MobileActorStateRegistry with references to where the mobile actors have
moved to.

Creating and referencing remote and mobile actors is very straightforward.

The called keyword specifies the name of the actor, the at keyword specifies the host and port, and
the using keyword specifies the name server tracking a mobile actor.

Actors are referenced in a similar manner, except the reference keyword is used instead of new.

Creating and Referencing Distributed Actors

1 : //Reference a remote actor at the local theater
2 : MyRemoteActor a = reference
3 : MyRemoteActor called ("a") ;

4 : //Reference a remote actor at a remote theater
5 : MyRemoteActor b = reference
6 : MyRemoteActor called ("b")
7 : at (host , port) ;

8 : //Get a reference to a remote name server
9 : NameServer ns = reference NameServer

10 : called ("my_nameserver")
11 : at (host , port) ;

12 : //Reference a mobile actor registered at
13 : //that name server
14 : token MyMobileActor c = reference
15 : MyMobileActor called ("c")
16 : using (ns) ;

Figure 4: SALSA Lite has also simplified syntax for
referencing remote and mobile actors. Instead of the
new keyword, the reference keyword is used. The ac-
tor’s names are specified with the called keyword,
the host and port of the theater the actor is cre-
ated on are specified with the at keyword, and the
name server actor a mobile actor is registered at is
specified with the using keyword.

sage is received by the target theater’s IncomingTheater-
Connection, the actual remote actor is looked up in the
RemoteActorRegistry and the message is sent to it.

3.2.1 Actor Reference Propagation

Some challenges arise in that a message sent to a remote
actor on another theater can contain references to other local
or remote actors. If these messages were blindly serialized
while being sent to the other theater, this would result in
unintended copies of these actors. To overcome this, SALSA
Lite uses Java’s readResolve() and writeReplace() meth-
ods instead of default object serialization. When a local
or mobile actor is serialized, its writeReplace() method is
called, which creates a serialized reference only containing
the hashcode, host and port in the case of a local actor, or
the unique name, host and port in the case of a remote ac-
tor. For local actors, a reference to the local actor is also
placed in a LocalActorRegistry so it can be looked up if
messages are sent to it from another theater. This also can
drastically reduce the size of the messages being sent as only
the minimum amount of data required to lookup the ac-
tor or generate a reference is sent. It should be noted that
the implementation of local actors has remained completely
unchanged, apart from now providing readResolve() and
writeReplace() methods for serialization when references
to them propagate to remote theaters.

When the serialized reference is received by a theater, the
readResolve() method is called on the serialized reference.
This performs a lookup in either the LocalActorRegistry or
RemoteActorRegistry. If the actor is present, the readRe-
solve() method returns the actual reference to that actor,
otherwise it returns a remote reference object which sends
messages to the OutgoingTheaterConnection actor instead
of actually processing them. This prevents copies of actors

from occurring, and also ensures that there is only one re-
mote reference to an actor at any one theater (which will
aid in implementing distributed garbage collection). These
registries have been implemented using the hashing strat-
egy described in Section 2, so multiple copies can be made
which are selected by the actor’s hashcode, preventing the
registries from acting as a singular bottleneck.

3.3 Mobile Actors
Unlike local and remote actors, there are significant chal-

lenges in implementing mobile actors as a single object (ei-
ther as a remote reference or the actual actor), as migration
would then involve having to update the references to it held
by all other actors every time it migrates. Keeping track
of these reverse references can lead to significant memory
and performance overhead. Similar to how actors are imple-
mented in SALSA, in SALSA Lite, mobile actors are divided
into reference and state objects. When a mobile actor is
created, its state is placed in a MobileActorStateRegistry,
which is the only object with a reference to the actor’s state.
The reference acts in the place of a lightweight actor on a
stage. When a message is invoked on the reference, it per-
forms a lookup in the MobileActorStateRegistry which in-
vokes the message on the state if the actor is present. When
the actor migrates, the state object is put in a message to
the OutgoingTheaterConnection it is being sent over, and
the state object is removed from the MobileActorRegistry
and is replaced with a reference to the OutgoingTheater-
Connection actor that sends messages to the theater the
actor migrated to. If the lookup returns the connection,
the message is placed in the OutgoingTheaterConnection’s
mailbox to be sent to that theater. In this way, the only time
the mobile actor’s state is serialized is when it migrates.
This also allows references to mobile actors to propagate

in a manner similar to local and remote actors. This prop-
agation is handled the same way by using readResolve(),
writeReplace(), a serialized reference and MobileActor-
ReferenceRegistries.
Note that every time a message is invoked on a mobile

actor, a lookup in a MobileActorStateRegistry needs to
be performed, which adds overhead to message passing.

3.3.1 Finding Mobile Actors

In addition to mobile actors requiring a unique name, host
and port in their reference and state, mobile actors also need
to be registered at a name server. The name server is used
as a lookup service for getting a reference to a mobile actor
(see Figure 4). When the mobile actor is created, it sends
a PUT message asynchronously to the name server it will be
registered at. When the actor migrates, it sends an asyn-
chronous UPDATE message to the name server, which updates
its location on the name server. When another actor wants
to get a reference to a mobile actor, it can contact the name
server with a GET message which will return a reference to
that actor. This is done transparently when the reference
keyword is used.
In contrast with SALSA, where name servers are run as

standalone daemons, in SALSA Lite, name servers are im-
plemented using remote actors and are first class entities
within the runtime (see Figure 3 and 4). This makes the use
of name servers much easier, as they can be easily created
within SALSA Lite programs, and also allows them to use
SALSA Lite’s remote message sending infrastructure.

Figure 2: The SALSA Lite runtime environment.
Heavyweight actors called stages are used to process
messages on multiple lightweight actors, simulating
their concurrent execution. A stage will repeatedly
get the first message from its mailbox and process
that message on the message’s target actor. Every
actor is assigned to a stage. A Message sent to an
actor is placed at the end of its assigned stage’s mail-
box (image from [14]).

vats [36, 35] and SEDA [48, 37] use a similar approach for
high e�ciency. With this design in mind, remote and mobile
actors were implemented in a way to not impact or degrade
the performance of these local actors.

3.1 Theaters
Distributed computing in SALSA is done using the con-

cept of theaters. Each theater serves as a separate process in
which multiple actors perform on a set of stages. The num-
ber of stages in a theater can be dynamically specified at
runtime, and actors can either be automatically assigned to
stages, have new stages generated for them, or be assigned
to particular stages programatically (see [14] for further de-
tails). Theaters listen on a particular port for incoming con-
nections to other theaters which can be distributed over local
area networks or the Internet.

Each theater has a TheaterActor repeatedly listening for
incoming socket connections. When one occurs, it spawns
a IncomingTheaterConnection actor who handles receiv-
ing messages and migrating actors from that theater. Mes-
sages and migrating actors are sent via a theater’s Trans-
portService which has a set of static methods which put
messages in the appropriate OutgoingTheaterConnection
mailboxes and create new OutgoingTheaterConnection ac-
tors when necessary. The TheaterActor, IncomingTheater-
Connection and OutgoingTheaterConnection actors are all
heavyweight, each running on their own stage as to not block
the execution of other actors when they are blocked listening
for connections or waiting to receive data over a socket.

The IncomingTheaterConnection actors put messages in
the appropriate stage’s mailbox as they are received. Mak-
ing sure references to actors are correctly kept as messages
are serialized and de-serialized is described in Section 3.2.1.

1 : //Create a remote actor at the local theater
2 : MyRemoteActor a = new MyRemoteActor ()
3 : called ("a") ;

4 : //Create a remote actor at a remote theater
5 : MyRemoteActor b = new MyRemoteActor ()
6 : called ("b") at (host , port) ;

7 : //Create a name server
8 : NameServer ns = new NameServer ()
9 : called ("my_nameserver") ;

10 : //Create a mobile actor at the local theater
11 : MyMobileActor c = new MyMobileActor ()
12 : called ("c") using (ns) ;

13 : //Create a mobile actor at a remote theater
14 : MyMobileActor c = new MyMobileActor ()
15 : called ("c") using (ns)
16 : at (host , port) ;

Figure 3: SALSA Lite has simplified syntax for cre-
ating remote and mobile actors. Unique names are
specified with the called keyword, the host and port
of the theater the actor is created on are specified
with the at keyword, and the name server actor a
mobile actor is registered at is specified with the
using keyword.

The OutgoingTheaterConnection actors simply send mes-
sages and actors across a socket to the IncomingTheater-
Connection actor they are paired with. As described in Sec-
tion 3.3.1, implementing these services as actors also allows
for the easy implementation of a protocol to update remote
references to mobile actors as they migrate around a set of
theaters.

3.2 Remote Actors
As remote actors do not migrate, it is always the case that

a reference to a remote actor refers to the actual actor when
it is present at the same theater, or that it is a reference to a
remote actor on another theater. In the first case, implemen-
tation of remote actors is identical to that of a local actor,
with the exception that the remote actor needs a unique
name so that it can be referred to and looked up by other
actors. Figure 3 presents the syntax for creating the various
types of actors in SALSA Lite and Figure 4 presents the
syntax for generating references to actors using their name
and location. The remote actor also needs to be added to a
RemoteActorRegistry which is a HashMap of names to the
actual remote actor lightweight actor object, so incoming
messages can be directed towards it accordingly. This adds
some overhead to the creation of a remote actor, while send-
ing messages to it locally can be performed the same as with
local actors as the other actors simply have a reference to
the actual remote actor.
In the second case, where it is a reference to a remote actor

on another theater, when a message is invoked on that refer-
ence (implemented as a local actor), it instead uses SALSA
Lite’s transport service to put it in the mailbox of the ap-
propriate OutgoingTheaterConnection actor, which sends
it over a socket to the appropriate theater. When the mes-

Initial Results Environment:
Small Beowulf HPC Cluster

Red Hat Enterprise Linux 6.2

4 dual quad core 3.3Ghz E5-2643 Intel processors

56 gigabit Infiniband FDR 1-1 network

64 GB 1600 MHz RAM per node

Java 1.6.0_26

Extended Results Environment:
Mid 2010 Mac Pro

OSX Yosemite 10.10.5

2 2.4 Ghz Quad Core Intel Xeon

64 GB 1066 Mhz DDR3 EEC RAM

Java 1.8.0_66, Scala 2.11.7, Akka 2.4.0

Result Environments

OSX, Java 1.8Linux cluster, Java 1.6

Scala and Akka from Savina benchmark suite. Scala and Akka do not include start up time and re-use
JVM. SALSA includes start up time and uses new JVMs per run.

Tests message passing overhead. Mobile actors are approximately 30% slower excluding startup
costs.

Negligable overhead (on message passing) for Remote Actors. Startup costs are higher.

Thread Ring

Local Actor Creation / Fibonacci

Scala and Akka from Savina benchmark suite. Scala and Akka do not include start up time and re-use
JVM. SALSA includes start up time and uses new JVMs per run.

Tests creation of a large number of actors. Note that Fibonacci has a log scale y-axis.

Remote and mobile actors show a fair amount of overhead (54% and 438%) over local actors when
being created locally.

OSX, Java 1.8Linux cluster, Java 1.6

Remote Actor Creation

Akka does not include start up time, however it does not reuse a JVM. SALSA includes start up
time and uses new JVMs per run.

Tests creation of actors on other Theaters. Mobile actor creation is ~6% slower than remote actor
creation. Remote actors were created on a different node in the Linux cluster.

Migrating actors is faster (at least for this microbenchmark) than remote creation. Akka crashed
with > 6000 actors (with an error 'resend buffer capacity reached').

OSX, Java 1.8Linux cluster, Java 1.6

OSX, Java 1.8Linux cluster, Java 1.6

Akka does not include start up time, however it does not reuse a JVM. SALSA includes start up
time and uses new JVMs per run.

Benchmark is similar to ThreadRing, except multiple rings are created. 4 Runtimes (each on a
different node in the Linux clsuter) + 1 Startup runtime were created, and there is an actor in each
of the 4 runtimes which host the rings.

The spike in poor performance for 1 and 2 rings found in the paper actually turned out to be a Java
issue, most likely due to poor thread scheduling/context switching time.

Theater Rings (1 - 10 rings)

OSX, Java 1.8Linux cluster, Java 1.6

Akka does not include start up time, however it does not reuse a JVM. SALSA includes start up
time and uses new JVMs per run.

When scaled up to 320 rings, the overhead of message passing becomes apparent, ~5%-10% for
mobile actors over remote actors. Remote actor communication in SALSA Lite in either case is
~2.5x faster than Akka.

Theater Rings (10 - 320 rings)

SALSA includes start up time and uses new JVMs per run.

N actors are created, each of which then migrates 1000 times in a ring.

There is an initial poor performance of SALSA Lite with 1 ring (due to the Java 1.6 issue), however
after that performance is significantly better, ~18x faster.

Linux cluster, Java 1.6 Linux cluster, Java 1.6

Migration Rings

Conclusions

Many benefits to practicing what we preach about the actor
model.

Described protocols for remote actor creation, messaging
and actor mobility - built using actors.

SALSA Lite's implementation of remote actor creation,
messaging and mobility are very efficient, however mobility
does come at a non-insignificant cost.

To allow developers to implement the fastest applications, it
makes sense to provide RemoteActor and MobileActor
classes so only actors requiring that functionality pay the
price in performance.

• Implementing full Savina Benchmark Suite.

• Developing new distributed actor benchmarks for migration, message
passing, remote creation, scalability, garbage collection, etc.

• Mobility between stages.

• Revisiting the Internet Operating System (IOS) - transparent load
balancing by actor profiling and migration.

• Examining and implementing efficient approaches to distributed
garbage collection.

• Making SALSA Lite to SALSA 2.0.

• A C/C++ implementation to take advantage of MPI and accelerator
cards.

Future Work

Thanks!

Questions?

http://people.cs.und.edu/~tdesell/salsa.php
https://github.com/travisdesell/salsa_lite

tdesell@cs.und.edu

http://people.cs.und.edu/~tdesell/salsa.php
https://github.com/travisdesell/salsa_lite
mailto:deselt@cs.rpi.edu

Example: Fibonacci

 1 behavior Fibonacci {
 2 int n;
 3
 4 Fibonacci(int n) {
 5 self.n = n;
 6 }
 7
 8 Fibonacci(String[] arguments) {
 9 n = Integer.parseInt(arguments[0]);
 10
 11 self<-finish(self<-compute());
 12 }
 13
 14 int compute() {
 15 if (n == 0) pass 0;
 16 else if (n <= 2) pass 1;
 17 else pass new Fibonacci(n-1)<-compute() + new Fibonacci(n-2)<-compute();
 18 }
 19
 20 ack finish(int value) {
 21 System.out.println(value);
 22 System.exit(0);
 23 }
 24 }

