A Performance and Scalability Analysis of Actor
Message Passing and Migration in SALSA Lite

Travis Desell Carlos A. Varela
tdesell@cs.und.edu cvarela@cs.rpi.edu
Department of Computer Science Department of Computer Science

University of North Dakota Rennselaer Polytechnic Institute

®) Rensselaer

The 5th International Workshop on Programming based on Actors, Agents, and
October 26,2015 Decentralized Control (AGERE! 2015)

Pittsburgh, Pennslyvania, USA  Held in conjunction with the ACM SIGPLAN conference on Systems,
Programming, Languages and Applications: Software for Humanity (SPLASH)



Overview

|. SALSA Lite Implementation

Theaters

2. Remote Actors

3. Mobile Actors
2. Results
|. Thread Ring
2. Local Actor Creation
3. Fibonacci
4. Remote Actor Creation
5. Theater Rings
6. Migration Rings

3. Conclusions

4. Future Work



Actor | Actor 2 Actor 3

@ @ @
Stage References
- N

Stage |

SALSA Lite Implementation

Actor N Actor N + |

f p
Message | Message |
Message 2 Message 2
2 Message 3 Message 3
Message K Message )
. Thread Mailbox . Thread Mailbox

Stage M

SALSA Lite uses the concept of stages to host

lightweight actors. These have many similarities
to E's vats or SEDA.

Essentially, stages are heavyweight actors,
which have a mailbox and process messages
one after the other. Each actor is assigned to a
stage, and only that stage will invoke messages
on that actor.

The default number of stages can be specified
dynamically at runtime, and new stages can be
created as needed by actors. Actors can either
be assigned to a random stage (by default) or
select the stage they are created on.



Assigning Actors to Stages

1: //create on a default stage
2: MyActor a = new MyActor () ;

3: //create b on a’s stage
4: MyActor b = new MyActor() on (a);

5: //create c on stage 3
6: MyActor ¢ = new MyActor() on (3);

7: //create d on its own new stage
MyActor d = new MyActor ()
9: on (StageService.getNewStage());

Qo

The code above shows the different ways an actor can be created on different stages.
The initial number of stages in a SALSA application can be specified at runtime by using the:
-Dnstages=<number of stages>

system property.



Eliminating Bottlenecks via Hashing

SALSA Lite uses a series of services which potentially could act as singular bottlenecks as they
perform actions (e.g., generating a unique ID for a message) which must be done sequentially and in
a thread safe manner.

SALSA Lite overcomes this by allowing multiple similar services to run which are accessed by
actors/stages by hashing the actor's stage ID. This minimizes blocking on other stages to access
these services. The number of service copies can be specified dynamically at runtime.



Implementation: Theaters

Theater |

Outgoing Incoming
Theater Theater
Connection Connection
Actor Actor

Theater 2

Theater 3

The runtime environments in which
distributed SALSA Lite applications run on are
called Theaters. Theaters listen on a particular
port for incoming connections to other
theaters which can be distributed over local
area networks or the Internet.

Theaters consist of two main types of actors:
|. OutgoingTheaterConnectionActors
2. IncomingTheaterConnectionActors

Both operate on their own stage to prevent

starving other actors during synchronous calls
or long data transfers.

Incoming TheaterConnectionActors are spawned by the theater when a connection is established
on it's listening port. They repeatedly receive messages (and actors in the case of migration) and
forward them on the the appropriate stage to be processed by their target.

Outgoing TheaterConnectionActors connect to outgoing theaters and then send messages to
remote actors over the connection to their corresponding IncomingTheaterConnectionActor.



Implementation: Remote Actors

When an actor holds a reference to a remote actor, that remote actor is either present locally or
at a remote theater.

In the case of locally present remote actors, the reference is a reference to the actual actor, and
messages are sent identically as if they were being sent to a local actor.

In the remote case, the reference is actually a stub actor which simply places any messages invoked
on it by a stage in the mailbox of the appropriate OutgoingTheaterConnectionActor's stage. In this
way, no changes were required to be made to the simple and efficient stage runtime of SALSA Lite.

Theater | Theater 2

4 ) 4 )
. (M essage to 8)4—
!
!

N Remot
Message to B emote
J

Actor B Stub Outeoi Message to B

utgoing
Theater
Connection

Actor

Incoming
Theater
Connection
Actor

Message sent
over socket to
remote theater

Remote
Actor B




Implementation: Reference Propagation |

When a remote actor is created it is placed in a RemoteActorRegistry, which is a HashMap of
remote actor names the respective reference to it's lightweight actor object. In the case of remote
actors on other theaters, the registry contains the stub actor instead.

Reference lookup is performed whenever a message or actor is received over the socket of an
Incoming TheaterConnectionActor. As opposed to using the standard Java serialization methods,
SALSA Lite instead uses the readResolve and writeReplace serialization methods to instead

simply write a minimal object containing the actor's hash code, host, port and name. These are then
used to look up the lightweight actor or stub actor in the registry.

If there is no entry in the registry either the remote actor is going to be created here but hasn't

yet, or the reference is an unknown stub which can be created from the hash code, host, port and
name of the remote actor.

Incoming
Theater
Connection
Actor

Outgoing
Theater
Connection
Actor

Actor D Stub

Actor D Stub

.................. Response
created/looked up | | ...esF Message to D
by readResolve |=* Incoming

Theater
Connection
Actor

Theater | Theater 2
Message to
B with Ref to
D
Outgoing
Theater

Actor B Stub }——p Connection
Actor

Remote
Actor B

Message sent over
socket to remote
theater




Implementation: Reference Propagation 2

Messages sent to remote theaters can also contain references to local actors. As such, another
LocalActorRegistry is used to handle the case when these references escape a theater. When a
local actor is serialized an entry is placed in the LocalActorRegistry, and stubs can be created/
looked up on other theaters by the local actor's hash code, host and port.

This adds no overhead to non-distributed message passing and actor creation as the
LocalActorRegistry already existed to prevent serialization of actors when objects sent as message
parameters contain references to actors and are copied to enforce state encapsulation.

For example, if an ArrayList of actors is passed as an argument to another local actor, the ArrayList
should be copied but the actors (and actor references within it) should not. This also uses the
readResolve and writeReplace serialization methods done locally over a fast deep copy stream.

Using this registry scheme is highly important as it prevents unwanted duplication of actors and
actor references.



Implementation: Remote Actor Creation |

The SALSA compiler replaces calls to create new remote actors with a static construct method,

which returns the actor if it is to be created locally, and forwarding stub otherwise.

This static method places two messages in the appropriate OutgoingTheaterConnectionActor's

mailbox. The first contains a stub for the remote actor to be created, and the second creates a

construct method which actually invokes the constructor on the new remote actor. As messages in
any actors mailbox are not reordered in SALSA Lite, and the OutgoingTheaterConnectionActor
sends these two messages, as well as any subsequent messages in order over the Java socket to the

remote IncomingTheaterConnectionActor.

Theater |

Actor B
Stub

Outgoing
Theater
Connection

Actor

Construct B
Message

Actor B

.- Remote Creatio
Stub

)

Theater 3

{ INCOMING %

Actor B

CREATED
Actor B




Implementation: Remote Actor Creation 2

It is possible, however, that the returned stub could be sent in a message to an actor at a different
theater, which then sends a message to the remote actor whose construct messages haven't yet
reached the theater where the actor is to be created.

In this case, when the actor is looked up in the RemoteActorRegistry it will not be found even
though the host and port specify that it should be at that theater. In this case, an ArrayList is placed
in that registry to hold any incoming messages to it. Which are resent after the actor is received

and constructed.

Theater 2
4 ™
Actor B
/ Stub
L N Theater 3
Theater | - N
Message to C with M "
Reference to B essages to
Actor B
Message List
Actor B CREATED
------------------- ConStrUCt B T Remote Creation sssssEEEEmEEEEEESE ..’5 INCOMING {. Actor B
Message Stub : Actor B :
u “ ...
\_




Implementation: Mobile Actors

Whereas local and remote actors can be taken care of with lightweight actor objects and message
forwarding stubs, mobile actors always require a stub actor which performs a lookup every time a
message is invoked on it to determine if the actor is at the current theater or if it has moved.

This is accomplished with both a MobileActorRegistry and MobileActorStateRegistry. The
MobileActorRegistry holds the stub actors which are resolved to when references to the mobile
actor are received over a socket. The MobileActorStateRegistry holds a reference to the object
representing the actor's state when it is present, and a reference to the appropriate

Outgoing TheaterConnectionActor when it is not.

When a message is invoked on a mobile actor's stub, it performs a lookup and invokes the message
on the actor if it is present, otherwise it places it in the appropriate OutgoingTheaterConnection's

mailbox.
MobileActorStateRegistry

4 )

Stub Performs
Registry Lookup

State Found Mobile

/ Actor State

Mobile
Actor Stub

( Message to \
Invoke )

OTCA Found

\

4 )

Outgoin
gomng Message sent over socket to remote theater

Theater
Connection
Actor

- J




Implementation: Migration

The locations of mobile actors are tracked using a name server, which is updated whenever a
mobile actor is created or migrates. Unlike SALSA 1.5 and earlier, name servers are first class
actors in SALSA Lite which are communicated with asynchronously.

When a mobile actor migrates, it sends an UPDATE message to it's corresponding name server.
After this the actor's state is placed as a message to the target theater's
OutgoingTheaterConnectionActor, and the MobileActorStateRegistry is updated to that theater's
OutgoingTheaterConnectionActor. When the actor's is received by the
IncomingTheaterConnectionActor, it is placed in that theater's MobileActorStateRegistry.

If a message received by an IncomingTheaterConnectionActor has mobile actor as its target, and
that mobile actor is not present at the theater, it performs a lookup as to where the actor had mi-
grated using the MobileActorStateRegistry. It sends the message on to the theater the actor had
migrated to, but also sends an updateActorLocation message to the theater actor at the source of the
message. It keeps a list of actors it has sent updateActorLocation messages to and has not yet heard
an acknowledgement back from yet, to prevent spamming the source theater with multiple
updateActorLocation messages. In this way, as an actor migrates and messages are sent to it, the
theaters update their MobileActorStateRegistry with references to where the mobile actors have
moved to.



DO

ot

© 00

10:
11:
12:

13:
14:
15:
16:

Creating and Referencing Distributed Actors

//Create a remote actor at the local theater
MyRemoteActor a = new MyRemoteActor ()
called ("a");

//Crreate a remote actor at a remote theater
MyRemoteActor b = new MyRemoteActor ()
called ("b") at (host, port);

//Create a name server
NameServer ns = new NameServer ()
called ("my_nameserver");

//Create a mobile actor at the local theater
MyMobileActor ¢ = new MyMobileActor ()
called ("c") using (ns);

//Create a mobile actor at a remote theater
MyMobileActor ¢ = new MyMobileActor ()
called ("c") using (ns)
at (host, port);

W N

N O Ol

10:
11:

12:

13:
14:

15:
16:

/ /Reference a remote actor at the local theater
MyRemoteActor a = reference

MyRemoteActor called ("a");

//Reference a remote actor at a remote theater
MyRemoteActor b = reference

MyRemoteActor called ("b")
at (host, port);

//Get a reference to a remote name server
NameServer ns = reference NameServer

called ("my_nameserver")
at (host, port);

/ /Reference a mobile actor registered at

/ /that name server
token MyMobileActor ¢ = reference

MyMobileActor called ("c")
using (ns);

Creating and referencing remote and mobile actors is very straightforward.

The called keyword specifies the name of the actor; the at keyword specifies the host and port, and

the using keyword specifies the name server tracking a mobile actor.

Actors are referenced in a similar manner, except the reference keyword is used instead of new.



Result Environments

Initial Results Environment;

Small Beowulf HPC Cluster

Red Hat Enterprise Linux 6.2

4 dual quad core 3.3Ghz E5-2643 Intel processors
56 gigabit Infiniband FDR |-1 network

64 GB 1600 MHz RAM per node

Java 1.6.0_26

Extended Results Environment:;

Mid 2010 Mac Pro

OSXYosemite 10.10.5

2 2.4 Ghz Quad Core Intel Xeon

64 GB 1066 Mhz DDR3 EEC RAM
Java 1.8.0_66, Scala 2.11.7,Akka 2.4.0



Thread Ring

11 ThreadRing (1 Stage), 1 and +¢ interval 35 ThreadRing (1 Stage), 1 and +¢ interval
— Local, y = 0.024x + 0.207 — Local, y = 0.019x + 0.178
1.0 = Remote, y = 0.023x + 0.550 . 5okl — Remote, y = 0.020x + 0.570
—— Mobile, y = 0.031x + 0.676 / ' —— Mobile, y = 0.024x + 0.618
0.9 —— Akka, y = 0.169x + 0.084
25H — Scala, y =0.347x + -0.164 |/~
/.
— 0.8} )
= 220} :
5} / 5}
g 07} 2
€ E ™
= 0.6} -
1.0

0.5

0.4} 4 0.5}

. L - ! 0.0 ! , |

500000 600000 700000 800000 900000 1000t 500000 600000 700000 800000 900000 1000000

Number of Hops Number of Hops
Linux cluster, Java |.6 OSX, Java 1.8

Scala and Akka from Savina benchmark suite. Scala and Akka do not include start up time and re-use
JVM. SALSA includes start up time and uses new |VMs per run.

Tests message passing overhead. Mobile actors are approximately 30% slower excluding startup
costs.

Negligable overhead (on message passing) for Remote Actors. Startup costs are higher.



Local Actor Creation / Fibonacci

2.5

Local Actor Creation (1 Stage), 1 and +¢ interval

— Local, y = 0.059x + 0.211
- Remote, y = 0.091x + 0.448
20l — Mobile, y = 0.318x + 0.302
215
=
o
g
g
0'5 /
0.0 : : :
100000 200000 300000 400000 500000

Number of Actors Created

Linux cluster, Java |.6

600000

0* Fibonacci, ¢ and +o interval

- Local
-  Remote
- Mobile
|.02 Akka
- Scala
10*
10°
0 ‘ 1
24 206 28 30 32 34 36
Fibonacci Number
OSX, Java 1.8

Scala and Akka from Savina benchmark suite. Scala and Akka do not include start up time and re-use
JVM. SALSA includes start up time and uses new |VMs per run.

Tests creation of a large number of actors. Note that Fibonacci has a log scale y-axis.

Remote and mobile actors show a fair amount of overhead (54% and 438%) over local actors when

being created locally.



Remote Actor Creation

3.2 Remote Actor Creation (1 Stage), 1 and +¢ interval

5.0 Remote Actor Creation (1 Stage), 1 and 4o interval

— Remote, y = 0.265x + 1.311
3.04| = Mobile, y = 0.281x + 1.705
—— Migrate, y = 0.261x + 1.545

—  Remote, y = 0.224x + 0.950
45} =— Mobile, y = 0.252x + 1.051
—— Migrate, y = 0.233x + 0.865
4.0} =— Akka, y = 0.565x + 1.592

28}

Time (seconds)
Time (seconds)

1000 1500 2000 2500 3000 3500 4000 4500 500 1000 2000

3000 4000 5000 6000
Number of Actors Created

Number of Actors Created

Linux cluster, Java |.6 OSX, Java 1.8

Akka does not include start up time, however it does not reuse a JVM. SALSA includes start up
time and uses new |VMs per run.

Tests creation of actors on other Theaters. Mobile actor creation is ~6% slower than remote actor
creation. Remote actors were created on a different node in the Linux cluster.

Migrating actors is faster (at least for this microbenchmark) than remote creation. Akka crashed
with > 6000 actors (with an error 'resend buffer capacity reached').



Theater Rings (1 - 10 rings)

14 Theater Rings (1 Stage per Theater), 4 and +¢ interval 28 Theater Rings (1 Stage per Theater), ¢ and +o interval
— Remote — Remote
5 — Mobile 2.6 —— Mobile [
—  SALSA —  Akka
2.4 :

10+
2.2

2.0

1.8

Time (seconds)
Time (seconds)

1.6

1.4
: — 7/\

1.2}

0 : 1.0 : : : :
1 2 3 B 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of Rings Created, 1000 Messages per Ring Number of Rings Created, 1000 Messages per Ring
Linux cluster, Java |.6 OSX, Java 1.8

Akka does not include start up time, however it does not reuse a JVM. SALSA includes start up
time and uses new |VMs per run.

Benchmark is similar to ThreadRing, except multiple rings are created. 4 Runtimes (each on a

different node in the Linux clsuter) + | Startup runtime were created, and there is an actor in each
of the 4 runtimes which host the rings.

The spike in poor performance for | and 2 rings found in the paper actually turned out to be a Java
issue, most likely due to poor thread scheduling/context switching time.



Theater Rings (10 - 320 rings)

Theater Rings (1 Stage per Theater), u and +o interval

14 Theater Rings (1 Stage per Theater), 4 and +o interval

20

— Remote, y = 0.018x + 1.636
—— Mobile, y = 0.019x + 1.694
- SALSA,y = 0.037x + 1.965

— Remote, y = 0.019x + 2.340
- Mobile, y = 0.021x + 2.522
—— Akka, y = 0.050x + 3.480

12

15
10}

10

Time (seconds)

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Number of Rings Created, 1000 Messages per Ring Number of Rings Created, 1000 Messages per Ring
Linux cluster, Java |.6 OSX, Java 1.8

Akka does not include start up time, however it does not reuse a JVM. SALSA includes start up
time and uses new |VMs per run.

When scaled up to 320 rings, the overhead of message passing becomes apparent, ~5%-10% for

mobile actors over remote actors. Remote actor communication in SALSA Lite in either case is
~2.5x faster than Akka.



Migration Rings

Migration Rings (1 Stage per Theater), x and +o interval

35 450 Migration Rings (1 Stage per Theater), u and +o interval
—— Mobile (SALSA Lite) — Mobile (SALSA Lite), y = 0.069x + 1.617
30 -~  SALSA 400 —— SALSA,y = 1.234x + 6.919
350+
25+
300
g 3
g 20 S 250
O O
Y] v
<L 2
200+
g 15 / g
= =
150}
10
100
5L
S0+
0 " N | 0 _— 1 1 1
1 2 3 B 5 6 7 8 9 10 0 50 100 150 200 250 300 350
Number of Rings Created, 1000 Messages per Ring Number of Rings Created, 1000 Messages per Ring
: Linux cl r, l.
Linux cluster, Java 1.6 ux cluster, Java 1.6

SALSA includes start up time and uses new JVMs per run.
N actors are created, each of which then migrates 1000 times in a ring.

There is an initial poor performance of SALSA Lite with | ring (due to the Java 1.6 issue), however
after that performance is significantly better, ~18x faster.



Conclusions

Many benefits to practicing what we preach about the actor
model.

Described protocols for remote actor creation, messaging
and actor mobility - built using actors.

SALSA Lite's implementation of remote actor creation,
messaging and mobility are very efficient, however mobility
does come at a non-insignificant cost.

To allow developers to implement the fastest applications, it
makes sense to provide RemoteActor and MobileActor
classes so only actors requiring that functionality pay the
price in performance.



Future Work

* Implementing full Savina Benchmark Suite.

* Developing new distributed actor benchmarks for migration, message
passing, remote creation, scalability, garbage collection, etc.

* Mobility between stages.

* Revisiting the Internet Operating System (IOS) - transparent load
balancing by actor profiling and migration.

* Examining and implementing efficient approaches to distributed

gar

* Ma

vage collection.

cing SALSA Lite to SALSA 2.0.

* A C/C++ implementation to take advantage of MPI| and accelerator
cards.



Thanks!

Questions!

http://people.cs.und.edu/~tdesell/salsa.php

https://github.com/travisdesell/salsa_lite

tdesell@cs.und.edu


http://people.cs.und.edu/~tdesell/salsa.php
https://github.com/travisdesell/salsa_lite
mailto:deselt@cs.rpi.edu

Example: Fibonacci

1 behavior Fibonacci {

2 int n;

3

4 Fibonacci(int n) {

5 self.n = n;

6 }

7

8 Fibonacci(String[] arguments) {
9 n = Integer.parselInt(arguments[0]);
10

11 self<-finish(self<-compute());
12 }

13

14 int compute() {

15 if (n == 0) pass 0;

16 else if (n <= 2) pass 1;

17 else pass new Fibonacci(n-1)<-compute() + new Fibonacci(n-2)<-compute();
18 }

19
20 ack finish(int value) {
21 System.out.println(value);
22 System.exit(0);
23 }

24 }



