
Exploring	AOP	from	an	
OOP	Perspective
REM	W.	COLLIER,	SEÁN RUSSELL	AND	DAVID	LILLIS
SCHOOL	OF	COMPUTER 	SC IENCE, 	UNIVERSITY	COLLEGE	DUBLIN , 	IRELAND

Background
Masters	in	Advanced	Software	Engineering	offered	in	UCD	since	2005

A	module	entitled	Agent	Oriented	Software	Engineering	is	offered.

Students	are	typically	professionals	with	5+	years	of	software	engineering	experience.

Students	exposed	to	a	variation	of	AgentSpeak(L)

Promote	agent	abstraction	to	focus	on	coordinating	multiple	decentralisedproblem-solvers,	to	
provide	intelligent	decision-making	abilities.

Informal	feedback:

Would	you	consider	using	this	in	an	industrial	
setting?No!

Motivation
1. How	can	we	map	the	concepts	of	OOP to	the	concepts	of	AOP to	

make	it	easier	for	programmers	to	bridge	the	cognitive	gap	to	a	
new	paradigm?

2. How	can	we	use	these	insights	to	help	the	development	of	agent	
programming	languages so	that	they	are	attractive	to	OOP	
programmers?

AgentSpeak(L)
AgentSpeak(L)	can	be	prosaically	described	as	an	event-driven	language:
◦ Plan	Rules are	fired	based	on	both	a	triggering	event	and	some	context.	Managed	by	the	
manipulation	of	intentions.

◦ Program	state	is	modeled	as	a	set	of	beliefs,	(realised as	atomic	predicate	logic	formulae)	

◦ Events - either	external	(environment-based)	or	internal	 (goal-based)	- are	generated	and	added	to	
an	event	queue.	

◦ Events	are	removed	from	the	event	queue	and	matched	to	some	event	handler,	which	is	then	
fired.

◦ The	matching	process	checks	both	that	the	event	handler	applies	to	the	event	and	that	the	
handler	can	be	executed	based	on	the	context,	which	defines	valid	program	states	in	which	the	
handler	may	be	fired.

AgentSpeak(L)	and	OOP

OOP AOP Motivation	for	mapping

Fields Beliefs Object/Agent	 state.

Methods Plan	Rules Behaviour	definition.

Method Calls Goals Behaviour	calling.

Messages Events Behaviour	triggering.

Threads Intentions Behaviour execution.

Beliefs equivalent	to	Fields
In	OOP,	the	state of	an	object	is	defined	as	a	set	of	fields that	hold	
values.
In	AgentSpeak(L),	state	is	a	set	of	beliefs that	define	relations	on	
values.
Two	operations	commonly	associated	with	fields	are:
Assignment:	e.g.	value = 5; or	name = “Rem”;

Comparison:	e.g.	value == 3 or	name.equals(“Fred”)

Beliefs equivalent	to	Fields
AgentSpeak(L)	offers	equivalents	to	these	operations:
Assignment:	this	involves	first	dropping	the	existing	belief	and	then	adopting	a	
new	belief	with	the	new	value:	-value(0); +value(5) or	–
name(“Bob”); +name(“Rem”).

Comparison:	this	can	be	done	in	two	places	– the	plan	rule	context	or	via	a	
query	statement:	<tr> : name(“Fred”) <- … or	?name(“Fred”).

While	fields	can	be	mapped	onto	beliefs,	one	key	piece	of	
information	is	lost:	types.

Plan	Rules	equivalent	to	Methods
These	concepts	refer	to	the	definition	of	behaviours:
◦ In	OOP,	behaviour	is	defined	by	methods.
◦ In	AgentSpeak(L),	behaviour	is	defined	by	plan	rules.

Both	forms	are	essentially	labelled	blocks	of	procedural	code	that	
can	be	executed	on	demand.
◦ In	OOP,	a	method	is	executed	when	its	signature	is	matched	to	a	message	
received	by	the	object.

◦ In	AgentSpeak(L),	a	plan	rule	is	executed	whenever	an	event	matching	its	
triggering	event	is	processed	and	the	rule’s	context	is	satisfied.

Plan	Rules	equivalent	to	Methods
An	assumption:

If	algorithms	are	a	typical	way	for	defining	
behaviour	in	OOP	and	methods	are	the	
common	mechanism	for	implementing	
algorithms,	would	it	not	be	natural	for	
somebody	learning	AgentSpeak(L)	to	
attempt	to	implement	some	established	
algorithms	using	the	language?

For	example,	what	about	the	selection	sort	
algorithm?

Algorithm SelectionSort(A, n):
for j = 0 to n-1 do

minIndex = j
for k = j+1 to n-1 do
if (A[minIndex] < A[k]) then
minIndex = k

if (minIndex <> j) then
temp = A[j]
A[j] = A[j+1]
A[j+1] = temp

return A

!do_sort([7, 5, 12, 15, 3]);

+!do_sort(L) <-
_size(L, S);
!outerLoop(L, S, 0);
?sorted(L2);
_print(L2).

+!outerLoop(L, S, X) <-
+min_index(X);
!innerLoop(L, S, X);
?min_index(Z);
-min_index(Z);
!update(L, S, X, Z).

+!update(L, S, X, Z) : X < Z <-
_swap(L, X, Z, L2);
!outerLoop(L2, S, X+1).

+!update(L, S, X, Z) <-
!outerLoop(L, S, X+1).

+!outerLoop(L, S, X) <-
+sorted(L).

+!innerLoop(L, S, X) : X < S <-
_elementAt(L, X, T);
!compare(L, X, T);
!innerLoop(L, S, X+1).

+!innerLoop(L, S, X) <-
_skip().

+!compare(L,X,T):min_index(Y)<-
_elementAt(L, Y, S);
!compare(L, X, Y, S, T).

+!compare(L, X, Y, S, T) : S < T <-
-min_index(Y);
+min_index(X).

+!compare(L, X, Y, S, T) <-
_skip().

Increased	Complexity:
• This	can	result	in	loss	of	

readability.

Rule	Explosion:
• one	method	has	been	mapped	

to	10	rules.
• Separate	rules	for	true	and	

false	cases	in	conditionals	and	
loops.

Return	Values:
• sub-goal	calls	do	not	return	

values.
• Value	must	be	stored	as	a	

belief	(in	global	state)	and	
queried	afterwards.

Events equivalent	to	Messages
From	an	OOP	perspective,	an	object	receives	a	message,	and	then	invokes	a	
method	by	matching	the	message	to	a	method	signature;	searching	up	the	
inheritance	tree	as	necessary.
In	AgentSpeak(L)	it	is	the	event	that	is	matched	against	a	plan	rule.

Two	types	of	events	possible:
◦ Goal	events are	raised	whenever	a	goal	is	adopted	or	retracted,	which	can	
only	be	done	by	the	agent	itself.

◦ Belief	events are	raised	whenever	a	belief	is	adopted	or	retracted,	and	can	be	
done	by	the	agent	itself	but	also	in	response	to	external	factors	(e.g.	
environment,	communication	with	other	agents).

Intentions equivalent	to	Threads
At	a	high	level,	intentions	represent	the	agent’s	efforts	at	achieving	its	goals.
An	agent	creates	a	new	intention	 for	every	external	event	that	it	matches	to	a	plan	rule.

In	situations	where	an	agent	has	multiple	intentions,	intention	execution	is	interleaved.
On	each	iteration,	one	 intention	is	selected	and	executed.

Clearly	- intentions	operate	in	a	similar	way	to	threads.

But	does	AgentSpeak(L)	reflect	this?	NO!
No	return	values:	use	of	global	 state	to	store	returned	value

Solutions:
1. Introduce	support	for	mutual	exclusion
2. Allow	goals	to	return	values
3. Support	local	variables

Introduction	to	ASTRA
The	ASTRA	Language	is	an	attempt	to	address	some	shortcomings	of	classic	AgentSpeak(L).

Specifically,	ASTRA:
◦ supports	 typed	variables	(closely	tied	to	Java’s	type	system)
◦ includes	support	 for	local	variables	and	assignment
◦ provides	and	extended	suite	of	statement	types
◦ allows	return	values
◦ supports	multiple	critical	areas
◦ introduces	additional	event	types
◦ provides	a	cleaner	model	for	defining	 internal	actions
◦ engenders	multiple	 inheritance	based	reuse	through	 a	multi-agent	level	type	system
◦ adopts	Java	syntactic	sugar	to	promote	 familiarity

ASTRA	and	Extended	Plan	Syntax
Core	programming	constructs	in	ASTRA	include:
◦ if statement	the	most	basic	form	of	flow	control
◦ while loop	usual	method	of	 repetition	in	programming
◦ foreach loop	repeats	the	same	actions	for	every	matching	binding	 of	a	formula
◦ try	...	recoverallows	for	the	recovery	from	failed	actions
◦ Local	variable	declaration	declares	a	variable	for	use	within	a	plan	rule
◦ assignment	allows	the	value	of	a	local	variable	to	be	changed
◦ Query binds	 the	values	of	beliefs	to	variables
◦ wait pauses	execution	until	condition	 if	true
◦ when performs	block	of	code	when	condition	 is	true
◦ send	sends	message	to	another	agent
◦ synchronized	enables	mutual	exclusion	in	critical	sections

More	Information
Website:	http://astralanguage.com
◦Cookbook	(~50	example	programs)
◦User	Guide	(slowly	improving)
◦ API	Reference	Guide	(info	on	some	of	the	standard	modules	
provided)

Eclipse	Plugin:	http://astralanguage.com/update
Email	Contact:	rem.collier@ucd.ie

ASTRA	and	Extended	Plan	Syntax
rule +!sort(list L, list R) {

R = L;
int j = 0;
while (j < P.size(R)) {

int min = j;
int k = j+1;
while (k < P.size(R)) {

if (P.valueAsInt(R, min) > P.valueAsInt(R, k))
min = k;

k++;
}

if (min ~= j) {
R = P.swap(R, min, j);

}
j++;

}
}

ASTRA	and	Mutual	Exclusion
agent Racy {

module Console C;

initial ct(0);

initial !init(), !init();

rule +!init() {

query(ct(int X));

+ct(X+1);

-ct(X);

}

rule +ct(int X) {

C.println("X = " + X);

}

}

agent Racy {
module Console C;
initial ct(0);
initial !init(), !init();

rule +!init() {
synchronized (ct_tok) {

query(ct(int X));
+ct(X+1);
-ct(X);

}
}

rule +ct(int X) {
C.println("X = " + X);

}
}

ASTRA	and	Internal	Actions
ASTRA	links	the	agent	and	Java	layers	through	the	use	of	modules	(implemented	as	Java	classes).

Methods	in	the	module	can	be	annotated,	exposing	themselves	to	the	agent	layer	in	different	
ways:
◦ @ACTION:	these	methods	are	internal	actions.	They	return	a	Boolean	value	indicating	the	success	or	
failure	of	the	action.

◦ @TERM:	these	methods	 represent	basic	calculations	or	return	data	from	some	underlying	 model	in	a	
form	that	can	be	represented	as	a	term	in	the	language	(e.g.	an	int,	float,	string,	 list	or	object).

◦ @FORMULA:	these	methods	are	constructors	that	return	logical	formula	 instances	in	ASTRA	(ranging	
from	Boolean	values	to	logical	formulae	 that	can	be	matched	against	the	beliefs	of	the	agent).

◦ @SENSOR:	these	methods	generate	beliefs	that	are	added	to	the	agent’s	state.

ASTRA	and	Internal	Actions
package ex;

import astra.core.Module;

public class MyModule
extends Module {

@TERM
public int max(int a, int b){

return Math.max(a, b);
}

@ACTION
public boolean printN(int n){

System.out.println(n);
return true;

}
}

package ex;

agent Bigger {

module MyModule m;

initial num(45, 67);

initial !init();

rule +!init() {

query(num(int X, int Y));

int n = m.max(X,Y);

m.printN(n);

}

}

