PROGRAMMING ABSTRACTIONS for AUGMENTED WORLDS

Angelo Croatti, Alessandro Ricci

DISI - University of Bologna - Italy

ABOUT AUGMENTED WORLDS

ABOUT AUGMENTED WORLDS

- Augmented/Mixed Reality
 - merging real and virtual worlds to produce new environments and visualizations where physical and digital objects coexist and interact in real-time
 - recent technology boost
 - Microsoft Hololens, Magic eap, Google Project Tango, Meta systems, ...

ABOUT AUGMENTED WORLDS

- Augmented/Mixed Reality
 - merging real and virtual worlds to produce new environments and visualizations where physical and digital objects coexist and interact in real-time
 - recent technology boost
 - Microsoft Hololens, Magic eap, Google Project Tango, Meta systems, ...

(Microsoft Hololens)

(Meta)

(Microsoft Hololens demo - Project X-ray, October 2015)

www.Bandicam.com

(Microsoft Hololens demo - Project X-ray, October 2015)

www.Bandicam.com

DIFFERENT FORMS OF AUGMENTATION

 Integrating further forms of augmentation besides AR/MAR

DIFFERENT FORMS OF AUGMENTATION

- Integrating further forms of augmentation besides AR/MAR
- pervasive/ubiguitous computing and IoT
 - augmentation of the environment

The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from

~Mark Weiser

DIFFERENT FORMS OF AUGMENTATION

- Integrating further forms of augmentation besides AR/MAR
- pervasive/ubiguitous computing and IoT
 - augmentation of the environment
- wearable/mobile computing
 - human augmentation

The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from

~Mark Weiser

⁽Thad Starner)

"COMPUTATION AS AUGMENTATION" PERSPECTIVE

Back to Engelbart's work (1962) - framework for human intellect augmentation

MAIN IDEA & OBJECTIVE

MAIN IDEA & OBJECTIVE

- Augmented worlds as interesting systems from a computational / programming / software engineering perspective
 - novel and interesting issues
 - blueprint for developing new kinds of software systems & applications • e.g. hands-free systems, collaborative environments

MAIN IDEA & OBJECTIVE

- Augmented worlds as interesting systems from a computational / programming / software engineering perspective
 - novel and interesting issues
 - blueprint for developing new kinds of software systems & applications • e.g. hands-free systems, collaborative environments
- Focus
 - looking for high-level computation and programming abstractions and frameworks for designing and programming augmented worlds
 - interesting context for applying concurrent objs, actors, agents...

RELATED WORKS

- Location-based applications and Context-Aware computing Online multi-user distributed collaborative environments
 - e.g. Croquet
- Spatial Computing

- physical space as first-order concept of the computational layer

- Augmented worlds shaped in terms of augmented entities
 - full-fledged computational objects
 - state+behaviour

AUGMENTED WORLD Augmented Entity PHYSICAL WORLD

- Augmented worlds shaped in terms of augmented entities
 - full-fledged computational objects
 - state+behaviour
- Spatial coupling
 - location & extension
 - explicit system of reference

AUGMENTED WORLD Augmented Entity PHYSICAL WORLD

Discovery and Observability

- lookup based and event-driven observation
- location/distance-based filters

User modelling and interaction

- user explicitly modelled inside the AW by proper augmented entities
 - making them observable
 - allowing them to perceive the other entities
- multi-user applications

Physical embedding & coupling

- coupling augmented entities to physical objects or phenomena
- state synchronisation

THE MIRROR WORLD MODEL

 Augmented worlds programmed as a multiagent system

agents -

- autonomous citizens of the augment world, observing and manipulating the augmented entities
- agents' environment
 - set of ~objects (called mirror artifacts) representing the augmented entities

MIRROR WORLD

PHYSICAL WORLD

, C . . PHYSICAL LOCATION & APPEARANCE

A FIRST PLATFORM FOR MIRROR WORLDS

A FIRST PLATFORM FOR MIRROR WORLDS

- Based on JaCaMo Framework for multiagent programming
 - Jason agent programming language + CArtAgO Java API for implementing the environment

A FIRST PLATFORM FOR MIRROR WORLDS

- Based on JaCaMo Framework for multiagent programming
 - Jason agent programming language + CArtAgO Java API for implementing the environment
- API for developing a MW as a "normal" agent-based systems
 - API for implementing augmented entities as mirror artifacts
 - API for allowing agents to discover/ manipulate augmented entities

EXAMPLE #1: "HELLO, MIRROR WORLD!"

EXAMPLE #2: GHOSTS AND TRACES

RESEARCH AGENDA

RESEARCH AGENDA

- Exploring augmented world programming and development
 - principles and techniques
 - modularity, compositionality, reusability & extensibility
 - supporting tools
 - debugging, profiling, simulating

RESEARCH AGENDA

- Exploring augmented world programming and development
 - principles and techniques
 - modularity, compositionality, reusability & extensibility
 - supporting tools
 - debugging, profiling, simulating
- Real-world case studies
 - collaborative hands-free systems for rescue

CHALLENGES

- Synchronization between the physical layer and the mirror layer
 - real-time, distribution

CHALLENGES

- - real-time, distribution
- Low-level/enabling-layer challenges
 - AR-related location, tracking, registration

CHALLENGES

Synchronization between the physical layer and the mirror layer