
mlinspect: Lightweight Inspection of Data
Preprocessing in Native Machine Learning Pipelines

Stefan Grafberger
TU Munich

stefangrafberger@gmail.com

Sebastian Schelter
AIRLab, University of Amsterdam & Ahold Delhaize

s.schelter@uva.nl

Machine Learning (ML) is increasingly used to automate
decisions that impact people’s lives, in domains as varied
as credit and lending, medical diagnosis, and hiring. The
risks and opportunities arising from the wide-spread use of
predictive analytics are garnering much attention from policy
makers, scientists, and the media [1].

The correctness and reliability of ML models critically
depend on their training data. Pre-existing bias, such as under-
or over-representation of particular groups in the training
data [2], and technical bias, such as skew introduced during
data preparation [3], can heavily impact performance. For
example, preprocessing operations that involve filters or joins
can heavily change the distribution of different groups repre-
sented in the training data [4]. Recent ML fairness research,
which mostly focuses on using learning algorithms on static
datasets [5] is insufficient because it cannot address the root
cause of such technical bias originating from data preparation.

We need automated inspection of ML pipelines. Due to time
pressure in their day-to-day activities, most data scientists will
not spend the time and effort to manually instrument their
code or insert logging statements for tracing as required by
model management systems [6], [7]. We envision support for
data scientists in the form of automated inspections of their
pipelines, similar to the inspections used by modern IDEs to
highlight potentially problematic parts of a program, such as
the use of deprecated code or problematic library function
calls. We furthermore argue that, to be most beneficial, au-
tomated inspections need to work with code natively written
with popular ML library abstractions.

Lightweight pipeline inspection with mlinspect. In
this talk, we present mlinspect, a library that enables
lightweight lineage-based inspection of ML preprocessing
pipelines written in Python. The key idea is to extract logical
query plans, modeled as directed acyclic graphs (DAGs) of
preprocessing operators, from ML pipelines that use popular
libraries like pandas and scikit-learn, and that combine rela-
tional operations and estimator/transformer pipelines. These
plans are then used to automatically instrument the code and
trace the impact of operators on properties like the distribution
of sensitive groups in the data. In this way, mlinspect
empowers data scientists to automatically check their ML
pipeline code for data distribution issues and provides linting
for best-practices. It does not require any changes to the code.

Importantly, mlinspect implements a library-independent
interface to propagate annotations such as tuple lineage across
operators from different libraries, and introduces only constant
overhead per tuple flowing through the DAG. Thereby, mlin-
spect offers a general runtime for pipeline inspection, and
allows us to integrate many issue detection techniques that
previously required custom code, such as automated model
validation on data slices [8], the identification of distortions
with respect to protected group membership in the training
data [4], or automated sanity checking for ML datasets [9].
Current State & Future Work. A paper describing mlin-
spect was accepted at CIDR 2021. We provide a prototypical
implementation of our proposed approach at https://github.
com/stefan-grafberger/mlinspect. The instrumentation of com-
plex example pipelines using pandas and scikit-learn already
works, but we do not comprehensively cover all API functions
yet. We already offer implementations of representative in-
spections, including inspections for row-level lineage tracking,
sampling of intermediate outputs, and tests for changes in
the distribution of protected groups. In the future, we want
to implement backends for more libraries (e.g., Tensorflow
Transform) and extend our approach to distributed execution
for Spark MLlib. We are planning an open-source release.

REFERENCES

[1] J. Stoyanovich, B. Howe, and H. Jagadish, “Responsible data manage-
ment,” VLDB, vol. 13, no. 12, pp. 3474–3489, 2020.

[2] I. Chen, F. D. Johansson, and D. Sontag, “Why is my classifier discrim-
inatory?” NeurIPS, pp. 3539–3550, 2018.

[3] S. Schelter, Y. He, J. Khilnani, and J. Stoyanovich, “Fairprep: Promoting
data to a first-class citizen in studies on fairness-enhancing interventions,”
EDBT, 2019.

[4] K. Yang, B. Huang, J. Stoyanovich, and S. Schelter, “Fairness-aware
instrumentation of preprocessing pipelines for machine learning,” HILDA
workshop at SIGMOD, 2020.

[5] A. Chouldechova and A. Roth, “A snapshot of the frontiers of fairness
in machine learning,” Commun. ACM, vol. 63, no. 5, pp. 82–89, 2020.
[Online]. Available: https://doi.org/10.1145/3376898

[6] M. Vartak and S. Madden, “Modeldb: Opportunities and challenges in
managing machine learning models,” IEEE Data Eng., vol. 41, pp. 16–
25, 2018.

[7] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Konwinski,
S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe et al., “Accelerating the
machine learning lifecycle with mlflow.” IEEE Data Eng. Bull., vol. 41,
no. 4, pp. 39–45, 2018.

[8] N. Polyzotis, S. Whang, T. K. Kraska, and Y. Chung, “Slice finder:
Automated data slicing for model validation,” ICDE, 2019.

[9] N. Hynes, D. Sculley, and M. Terry, “The data linter: Lightweight,
automated sanity checking for ml data sets,” NIPS MLSys Workshop,
2017.

https://github.com/stefan-grafberger/mlinspect
https://github.com/stefan-grafberger/mlinspect
https://doi.org/10.1145/3376898

	References

