
Surprisingly Effective: an Evaluation of Static Decision Rules for
Query Re-Optimization in DuckDB

Laurens Kuiper
Centrum Wiskunde & Informatica

Amsterdam, Netherlands
laurens.kuiper@cwi.nl

Arjen de Vries
Radboud University

Nijmegen, Netherlands
a.devries@cs.ru.nl

Z

Z

𝑇1 𝑇2

Z

𝑇3 𝑇4

(a) Initial

execute

Z

𝒎0 Z

𝑇3 𝑇4

(b) After material-
izing 𝑇1Z𝑇2

plan

Z

Z

𝑇3 𝒎0

𝑇4

(c) Re-optimized

Figure 1: Query plan re-optimization. 𝑻1 Z 𝑻2 is material-
ized into a temporary table 𝒎0. The optimizer can generate
a more efficient query plan using exact information about
the join.

Traditional query optimizers rely on cost models to assess plan
cost and pick an ‘optimal’ plan for execution. This architecture is
known to suffer from serious problems. These problems are not
identified by widely used benchmarks like TPC-H, due to its simple
data generation method. To address this, the Join Order Benchmark
(JOB) was introduced, consisting of analytical multi-join queries
over IMDB. JOB demonstrated evidence for the conventional wis-
dom that cost models perform poorly as the number of joined tables
increases, due to poor cardinality estimates.

Estimates are poor, especially for joined relations, because opti-
mizers use simplifying assumptions to estimate cardinality, which
rarely hold true in practice. Estimation errors propagate through
the query plan, increasing exponentially. As a result, poor join or-
ders are generated. Furthermore, optimizers that rely too heavily on
these estimates when deciding which join algorithm to use suffer
an even bigger performance loss.

Since its inception, JOB has re-incited the interest in query opti-
mization. Novel sampling techniques to improve cardinality estima-
tion have been proposed. Deep learning has been employed for the
same, and also for a full end-to-end cost model. These approaches
are effective at improving query plan quality, but have limitations.
Sampling causes overhead, and sampling many different joined
relations is not feasible, therefore exponential error propagation
is still a problem. Deep learning does not suffer as much from this
problem, because it can memorize many different joined relations.
However, deep learning does not generalize well to unseen data,
and can takes several hours to train, making it unsuitable in many
use cases.

The approaches discussed have in common that they stick to
the traditional plan-then-execute paradigm of query processing.

Another approach is to delay optimization decisions until runtime.
Re-optimization is such an approach, which interleaves the plan-
ning and execution phases, possibly multiple times. Re-optimization
is illustrated in Figure 1. Statistics are collected during execution
in order to detect whether the current plan is sub-optimal. Based
on these statistics, a re-optimization scheme can decide to halt ex-
ecution, and generate a new plan for the remainder of the query.
This ameliorates the problem of exponential error propagation, and
does not suffer from being unable to generalize to unseen data.

In this talk, we present experiments with our implementation of
re-optimization [1] in DuckDB. DuckDB is an embedded analytical
database system, newly developed at CWI. DuckDB was chosen for
our experiments because it is an open-source analytical DBMS with
full join order optimization. Our results show that a simple static
re-optimization scheme can reduce the runtime of the 20 longest
queries by up to 34%. For these queries, the benefit of an improved
query plan is worth the costs of intermediate result materialization
and additional planning time. By comparing plan cost, it is clear
that the reduction in runtime can be attributed to improved plan
quality.

For comparison, we re-implement a dynamic re-optimization
scheme in DuckDB, that was recently simulated in PostgreSQL
and evaluated on JOB. The dynamic scheme has a clear advantage
over our static schemes, because it is more effective at deciding
when re-optimization is worthwhile. It is especially more effective
at deciding not to re-optimize short running queries. However, we
argue that the simulation is unrealistic, because their scheme cannot
be implemented in a system with a Volcano-style execution model,
like those of PostgreSQL and DuckDB. The reason for this is that
it the scheme requires full materialization of intermediate results
when a cardinality threshold is reached, which is not possible when
data is streamed through operators.

We show that the shortcomings of our simple static re-optization
schemes regarding short running queries can be easily overcome
with a slightly more sophisticated scheme that takes the structure
of the query plan into account. With this scheme, runtime of the
longest 20 queries is reduced by almost 30%, while only slowing
down the runtime of the 20 shortest running queries by 8%. The
runtime of average queries in the benchmark remains virtually the
same with re-optimization.

REFERENCES
[1] Laurens Kuiper and Arjen de Vries. 2020. Exploring Query Re-Optimization in a

Modern Database System. Master Thesis (2020).


	References

