
Asynchronous Stream Data Processing using a
Light-Weight and High-Performance

Dataflow Engine
Vinu E. Venugopal

Faculty of Science, Technology and Medicine
University of Luxembourg

Belval, Luxembourg
vinu.venugopal@uni.lu

Martin Theobald
Faculty of Science, Technology and Medicine

University of Luxembourg
Belval, Luxembourg

martin.theobald@uni.lu

In the last decade, various distributed stream processing en-
gines (DSPEs) were developed in order to process data streams
in a flexible, scalable, fast and resilient manner. Coping with
the increasing high-throughput and low-latency requirements
of modern applications led to a careful investigation and re-
design of new tools for stream processing. The first generation
of tools, such as Apache Hadoop [15], Spark [16], Storm
[14] and Kafka [10], were designed to split an incoming data
stream into batches and to then synchronously execute their
analytical workflows over these data batches. To overcome the
limitations—primarily, the high latency—of this iterative form
of bulk-synchronous processing (BSP), asynchronous stream-
processing (ASP) engines such as Apache Flink [13] and
Samza [11] have also recently emerged.

To guarantee a high sustainable throughput (ST), systems
that rely on direct worker-worker-based communication proto-
cols [6], [9] were proposed in contrast to the prevalent driver-
worker architectures. One upper hand of these systems, com-
pared to all of the aforementioned ASP and BSP engines, is
the complete avoidance of hidden synchronization barriers and
the constant need of state exchange (and hence communication
overhead) between a dedicated driver and its worker nodes.
However, most of these efforts are still limited to scale-up
oriented architectures, and no serious advancement in terms of
the supported programming abstractions has been developed
in the last years for these engines. For example, in ST-oriented
systems such as FastFlow [1], GrPPi [3], Streambox [7]
and PiCo [8], only very basic parallel programming patterns
for stream data processing were proposed. However, these
patterns are general and not specifically tailored for modern
streaming analytics. All of these systems remain prototypes,
providing only basic support for defining more complex DAGs
of dataflow operators from the traditional streaming algebra.

In this talk, we will give an overview of our new DSPE
architecture, called “AIR”, which can readily be deployed for
ST-oriented applications in an efficient and scalable manner.
AIR is based on a novel communication protocol among the
worker nodes, which we refer to “Asynchronous Iterative
Routing”, to process one or more incoming data streams in

a parallel and asynchronous manner. AIR has been developed
from scratch in C++ and is purely based on the Message
Passing Interface (MPI) in order to facilitate a low-level and
highly efficient communication protocol among the worker
nodes.

Fig. 1. Comparison of the sustainable throughput (ST) of various SPEs and
DSPEs on a single-node setup (Intel Xeon Platinum 8260 CPU with 2.40GHz,
24 physical cores, 32 KB L1 cache and 1024K KB L2 cache), and on multi-
node setup (where each node is equipped with two 2.6 GHz Intel Xeon Gold
6132 CPUs, 28 cores per CPU and 128GB RAM), for the Yahoo! Streaming
Benchmark [2].

Our experiments based on various streaming benchmarks
confirm that AIR scales out much better than existing dis-
tributed SPEs to clusters consisting of up to 8 nodes and 224
cores. In the YSB setting (as shown in Fig 1), AIR performs
up to 15 times better than Spark and up to 5.8 times better
than Flink in terms of ST. On a single node, AIR exhibits an
improvement of a factor of 5–6 in performance over the Java-
based SPEs (Saber, Spark and Flink) which is typically due
to their less efficient Java (versus C++) implementations, the
increased overhead of various API layers, and less efficient
CPU utilization. However, the HPC-optimized C++-based
SPEs, such as PiCo and StreamBox, show a performance close
to the ST obtained using our AIR dataflows on a 1 node setup.

AIR fills an important gap among DSPEs on an HPC
infrastructure by providing the ability to process streams asyn-
chronously and by utilizing the underlying resources more ef-
ficiently via higher task-level parallelism and multi-threading.
We believe that, with the design of AIR, we found a good
compromise for a light-weight, reduced design of a DSPE
that exhibits good performance and scales well also to larger
cluster deployments. As for future research topics, we also



plan to investigate new mechanisms to include more explicit
forms of workload balancing and fault tolerance directly into
the driver-less architecture of AIR.

AIR is available as open-source release at our GitHub
repository [12]. More details about the architecture of AIR and
detailed experimental results (including a comparison with the
modern scale-up SPEs) can be found at [5]. Our initial efforts
that paved the way to developing this framework is detailed
in [4].

REFERENCES

[1] Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kilpatrick, and
Massimo Torquati. Targeting distributed systems in fastflow. In Euro-Par
2012: Parallel Processing Workshops, pages 47–56, 2012.

[2] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky.
Benchmarking streaming computation engines: Storm, flink and spark
streaming. In IPDPSW, pages 1789–1792, 2016.

[3] David del Rio Astorga, Manuel F. Dolz, Javier Fernández, and
José Daniel Garcı́a. A generic parallel pattern interface for stream and
data processing. Concurr. Comput. Pract. Exp., 29(24), 2017.

[4] Vinu E. Venugopal and Martin Theobald. Benchmarking synchronous
and asynchronous stream processing systems. In CoDS-COMAD 2020:
7th ACM IKDD CoDS and 25th COMAD, Hyderabad India, January
5-7, 2020, pages 322–323. ACM, 2020.

[5] Vinu E. Venugopal, Martin Theobald, Samira Chaychi, and Amal
Tawakuli. AIR: A light-weight yet high-performance dataflow engine
based on asynchronous iterative routing. In SBAC-PAD 2020, Portugal,
September 8-11, 2020, pages 51–58, 01 2020.

[6] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael
Isard. Differential dataflow. In CIDR, 2013.

[7] Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko,
Kathryn S. McKinley, and Felix Xiaozhu Lin. StreamBox: Modern
Stream Processing on a Multicore Machine. In USENIX, pages 617–
629, 2017.

[8] Claudia Misale, Maurizio Drocco, Guy Tremblay, Alberto R. Martinelli,
and Marco Aldinucci. Pico: High-performance data analytics pipelines
in modern C++. Future Generation Comp. Syst., 87:392–403, 2018.

[9] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martı́n Abadi. Naiad: A timely dataflow system. In SOSP,
pages 439–455, 2013.

[10] Neha Narkhede, Gwen Shapira, and Todd Palino. Kafka: The Definitive
Guide Real-Time Data and Stream Processing at Scale. O’Reilly Media,
Inc., 2017.

[11] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon
Bringhurst, Indranil Gupta, and Roy H. Campbell. Samza: Stateful
scalable stream processing at linkedin. PVLDB, 10(12):1634–1645,
2017.

[12] AIR team. Github link: https://github.com/bda-uni-lu/air, Last Accessed
29/08/2020.

[13] Flink team. Download link: https://flink.apache.org/, Last Accessed
21/08/2020.

[14] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,
Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy
Ryaboy. Storm@twitter. In SIGMOD, pages 147–156, 2014.

[15] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st
edition, 2009.

[16] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In NSDI, pages 2–2, 2012.


