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In the last decade, various distributed stream processing en-
gines (DSPEs) were developed in order to process data streams
in a flexible, scalable, fast and resilient manner. Coping with
the increasing high-throughput and low-latency requirements
of modern applications led to a careful investigation and re-
design of new tools for stream processing. The first generation
of tools, such as Apache Hadoop [15], Spark [16], Storm
[14] and Kafka [10], were designed to split an incoming data
stream into batches and to then synchronously execute their
analytical workflows over these data batches. To overcome the
limitations—primarily, the high latency—of this iterative form
of bulk-synchronous processing (BSP), asynchronous stream-
processing (ASP) engines such as Apache Flink [13] and
Samza [11] have also recently emerged.

To guarantee a high sustainable throughput (ST), systems
that rely on direct worker-worker-based communication proto-
cols [6], [9] were proposed in contrast to the prevalent driver-
worker architectures. One upper hand of these systems, com-
pared to all of the aforementioned ASP and BSP engines, is
the complete avoidance of hidden synchronization barriers and
the constant need of state exchange (and hence communication
overhead) between a dedicated driver and its worker nodes.
However, most of these efforts are still limited to scale-up
oriented architectures, and no serious advancement in terms of
the supported programming abstractions has been developed
in the last years for these engines. For example, in ST-oriented
systems such as FastFlow [1], GrPPi [3], Streambox [7]
and PiCo [8], only very basic parallel programming patterns
for stream data processing were proposed. However, these
patterns are general and not specifically tailored for modern
streaming analytics. All of these systems remain prototypes,
providing only basic support for defining more complex DAGs
of dataflow operators from the traditional streaming algebra.

In this talk, we will give an overview of our new DSPE
architecture, called “AIR”, which can readily be deployed for
ST-oriented applications in an efficient and scalable manner.
AIR is based on a novel communication protocol among the
worker nodes, which we refer to “Asynchronous Iterative
Routing”, to process one or more incoming data streams in

a parallel and asynchronous manner. AIR has been developed
from scratch in C++ and is purely based on the Message
Passing Interface (MPI) in order to facilitate a low-level and
highly efficient communication protocol among the worker
nodes.

Fig. 1. Comparison of the sustainable throughput (ST) of various SPEs and
DSPEs on a single-node setup (Intel Xeon Platinum 8260 CPU with 2.40GHz,
24 physical cores, 32 KB L1 cache and 1024K KB L2 cache), and on multi-
node setup (where each node is equipped with two 2.6 GHz Intel Xeon Gold
6132 CPUs, 28 cores per CPU and 128GB RAM), for the Yahoo! Streaming
Benchmark [2].

Our experiments based on various streaming benchmarks
confirm that AIR scales out much better than existing dis-
tributed SPEs to clusters consisting of up to 8 nodes and 224
cores. In the YSB setting (as shown in Fig 1), AIR performs
up to 15 times better than Spark and up to 5.8 times better
than Flink in terms of ST. On a single node, AIR exhibits an
improvement of a factor of 5–6 in performance over the Java-
based SPEs (Saber, Spark and Flink) which is typically due
to their less efficient Java (versus C++) implementations, the
increased overhead of various API layers, and less efficient
CPU utilization. However, the HPC-optimized C++-based
SPEs, such as PiCo and StreamBox, show a performance close
to the ST obtained using our AIR dataflows on a 1 node setup.

AIR fills an important gap among DSPEs on an HPC
infrastructure by providing the ability to process streams asyn-
chronously and by utilizing the underlying resources more ef-
ficiently via higher task-level parallelism and multi-threading.
We believe that, with the design of AIR, we found a good
compromise for a light-weight, reduced design of a DSPE
that exhibits good performance and scales well also to larger
cluster deployments. As for future research topics, we also



plan to investigate new mechanisms to include more explicit
forms of workload balancing and fault tolerance directly into
the driver-less architecture of AIR.

AIR is available as open-source release at our GitHub
repository [12]. More details about the architecture of AIR and
detailed experimental results (including a comparison with the
modern scale-up SPEs) can be found at [5]. Our initial efforts
that paved the way to developing this framework is detailed
in [4].
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