
Software evolution through intentional classifications�

Mens Kim and Mens Tom

January 16, 2002

Abstract

Maintaining and evolving large software systems is hard. One of the main underlying causes is that
existing modularization mechanisms are inadequate to handle cross-cutting concerns. We propose inten-
sional software classifications as an intuitive, lightweight and non-intrusive means of modeling cross-
cutting concerns. They increase our ability to understand, modularize and browse the implementation by
grouping together source-code entities that address the same concern. In addition, the model supports
the declaration, verification and enforcement of relations among intentional classifications . As such,
software evolution is facilitated by providing the ability to detect invalidation of important intentional
relationships among concerns when the software is modified.

Problem statement

Developing large software systems is hard. It requires a whole range of labour-intensive activities such
as software understanding, browsing, implementing, restructuring, testing, debugging, evolving, and so
on. Once software systems reach a certain size, the modularization constructs provided by current pro-
gramming languages or environments fall short. They support a limited number of modularizations of the
software only. Unfortunately, as has been recognized by the aspect-oriented software development (AOSD)
community [Kic97], ‘system-wide’ concerns often do not fit nicely into the chosen modularizations. These
concerns are said to cut across the modularization. Choosing another modularization merely shifts the
problem, leading to another set of concerns that cut across the modularization. The problem is that there
exists a ‘dominant decomposition’ into which everything else needs to be fit. Perry et. al. call this problem
the tyranny of the dominant decomposition [TOHSMS99].

AOSD tries to cope with this problem by implementing a ‘base’ program (addressing the dominant
concern) and several aspect programs (each addressing a different cross-cutting concern) separately and
then ‘weaving’ them all together automatically into a single executable program. Unfortunately, AOSD
still suffers from some important and non-trivial problems. For example, it is difficult to debug software
written in an aspect-oriented style, because it is not trivial to trace back a bug in the executed code to the
corresponding aspect program(s). Another problem is that the ‘aspect weaver’ often depends on the actual
aspects being weaved.

Suggested solution

To solve the problem of the tyranny of the dominant decomposition, we propose a more pragmatic comple-
mentary approach. We do not add extra language constructs but provide a powerful and expressive software
modularization mechanism at a more abstract level in a way that is explicitly (and enforcably) linked to
the implementation. Instead of describing the dominant concern and the various other concerns in separate
aspect languages that are weaved afterwards (as with the AOSD approach), we stick to the idea of having
one single source-code repository. Nevertheless, we allow the software to be modularized into multiple

�Extended abstract presented at the meeting of the FWO research network on Formal Foundations of Software Evolution in
Brussels on January 18, 2002 (also see http://prog.vub.ac.be/poolresearch/FFSE/meetings/meeting2002-
01.html).

1



user-defined intentional classifications that may crosscut the actual implementation structure and that may
be overlapping. The idea is that each intentional classification corresponds to an important (functional or
non-functional) concern that may be spread throughout the entire implementation. Such a classification
is ‘intentional’ in the sense that it does not have to be explicit in the actual program structure: it can be
seen as a kind of ‘overlay’ on an existing source-code repository. It is a ‘classification’ in the sense that it
classifies the source-code entities into different conceptual modules [MM00].

In addition to defining intentional classifications , we also propose to express, verify and enforce the
important relationships among intentional classifications . As such, many assumptions that otherwise re-
main hidden in the software implementation are made available as explicit knowledge about the software
system.

Discussion

Using intentional classifications and their relationships to make software concerns explicit increases main-
tainability and evolvability of the software. First of all, it enhances software understanding because the
intentional classifications and their relationships provide important knowledge about where and how cer-
tain concerns are implemented and how they relate with other concerns. As such, they serve as a kind
of active and enforceable documentation at an abstract level that is not explicitly available in the imple-
mentation. Second, it is easier to manage the software because the important concerns are explicit in the
intentional classifications , even if they are not localized in the implementation. Finally, when the software
evolves, we can use the constraints imposed by the intentional classifications and their interrelationships to
verify that no ‘hidden assumptions’ have been broken.

The model of intentional classifications is a very simple and intuitive one since it is essentially based
on simple set theory only. Another important advantage of our intentional classification approach is that
it is non-intrusive. It can be added easily on top of an existing programming language or environment,
allowing the definition of intentional classifications on top of the modularization mechanisms supported by
the language.

Experiment

A full version of this paper reports on a concrete feasibility study of the practical use of intentional clas-
sifications . We applied the approach to several minor and major releases of SOUL, a medium-sized
object-oriented framework implemented in Smalltalk. We use a logic language at meta level to express a
variety of functional and non-functional concerns in SOUL as intentional classifications . Checking, ana-
lyzing and comparing these classifications on the different releases of the studied software system helped
us to manage and understand the evolutionary software development process. In many cases, invalidation
of relationships between intentional classifications allowed us to identify evolution conflicts.

Related and future work

Intentional classifications are a potential candidate to serve as an underlying formalism for an architectural
model that allows us to describe software architectures in such a way that we can still check conformance
of the source code to architectural constraints [MWD99, Men00b, Men00a].

The proposed approach is complementary to AOSD research. On the one hand, AOSD techniques can
be applied straightforwardly on top of intentional classifications , for example, to generate or weave code
for all artifacts that belong to a certain intentional classification [TDV00]. On the other hand, intentional
classifications could be a useful way of describing aspects that occur in a certain software system (for
example, as a first step in re-engineering a normal program to one written in AOSD style).

2



Summary

Intentional classifications are a simple, intuitive, lightweight and non-intrusive model that solve an impor-
tant problem that is also addressed by the AOSD community: the idea of crosscutting concerns. It increases
our ability to understand and browse the implementation by grouping together source-code entities that ad-
dress a similar concern and by allowing the definition, verification, and enforcement of relations among
these groups of source-code entities. By providing these extra modularization capabilities, the software be-
comes more maintainable. Finally, it provides support for software evolution by indicating which important
intentional relationships among concerns have been invalidated upon evolution of the software.

References

[Kic97] G. Kiczales. Aspect-oriented programming. In European Conference on Object-Oriented
Programming, ECOOP 1997. Springer, 1997. Invited presentation.

[Men00a] K. Mens. Automating Architectural Conformance Checking by means of Logic Meta Pro-
gramming. PhD thesis, Department of Computer Science, Vrije Universiteit Brussel, Bel-
gium, October 2000.

[Men00b] K. Mens. Multiple cross-cutting architectural views. Workshop paper vub-prog-tr-00-
15, Programming Technology Lab, Vrije Universiteit Brussel, Belgium, February 2000.
Second Workshop on Multi-Dimensional Separation of Concerns in Software Engineering
(ICSE 2000).

[MM00] K. Mens and T. Mens. Codifying high-level software abstractions as virtual classifica-
tions. Workshop position paper vub-prog-tr-00-14, Programming Technology Lab, Vrije
Universiteit Brussel, Belgium, March 2000. ECOOP 2000 Workshop on Objects and Clas-
sification: a Natural Convergence.

[MWD99] K. Mens, R. Wuyts, and T. D’Hondt. Declaratively codifying software architectures using
virtual software classifications. In Proceedings of TOOLS Europe 1999, pages 33–45. IEEE
Computer Society Press, 1999. TOOLS 29 — Technology of Object-Oriented Languages
and Systems, Nancy, France, June 7-10.

[TDV00] T. Tourwé and K. De Volder. Using software classifications to drive code generation. Work-
shop paper, Programming Technology Lab, Vrije Universiteit Brussel, Belgium, March
2000. ECOOP 2000 Workshop on Objects and Classification: a Natural Convergence.

[TOHSMS99] P. Tarr, H. Ossher, W. Harrison, and Jr. S. M. Sutton. N degrees of separation: Multi-
dimensional separation of concerns. In International Conference on Software Engineering
(ICSE 1999), 1999.

3


