
Object-Oriented Refactoring Using Graph Rewriting
Technical Report vub-prog-tr-02-01

Last modification on 2001-12-19

Tom Mens
tom.mens@vub.ac.be

Vrije Universiteit Brussel

Serge Demeyer
serge.demeyer@ua.ac.be

Universiteit Antwerpen

Dirk Janssens
dirk.janssens@ua.ac.be
Universiteit Antwerpen

Abstract. This paper advocates need for a formal foundation for refactoring object-oriented software.
More specifically, it investigates the potential of graph rewriting as candidate formalism. Using a small
Java application as a case study, it shows how a range of different notions of behaviour preservation
can be expressed in a formal, yet intuitive, way. A number of other open research topics that can benefit
from a graph rewriting formalism are discussed as well.

Keywords. object-oriented software evolution, behaviour-preserving refactoring, graph rewriting,
program transformation

1. Introduction
Refactorings are software transformations that restructure a software system while preserving its behaviour. For
object-oriented software, an important part of the evolution is accomplished by means of refactorings [8] [22]
[23]. The key idea is to redistribute instance variables and methods across the class hierarchy in order to prepare
the software for future extensions. If applied well, refactorings improve the design of software, make software
easier to understand, help to find bugs, and help to program faster [8].
Although it is possible to refactor manually, tool support is considered crucial. Tools such as the Refactoring
Browser support a semi-automatic approach [25] while others demonstrated the feasibility of fully automated
tools [3] [21]. Research has also been conducted into making refactoring tools less dependent on the
implementation language being used [31] and several researchers are investigating refactoring at a higher level,
e.g., in the context of UML [30].
While the research on refactoring published so far has mainly concentrated on demonstrating the feasibility of the
technology, there are still many important questions that remain unresolved.
• Which program properties should be preserved by refactorings? Refactoring implies that "behaviour" is

preserved, but a precise definition of behaviour is rarely included. Even if it is, there is no commonly
accepted definition of behaviour. It is for instance accepted that refactoring will change the execution time of
certain operations, although this is an essential aspect of real-time behaviour. Hence, at the moment it is
unclear which aspects of behaviour can be safely ignored under which circumstances.

• What is the complexity of a refactoring? An analysis of the complexity of refactorings is necessary in order
to determine whether it is feasible to apply a given refactoring. We make a distinction between (a) the
complexity of determining whether a certain refactoring is applicable; (b) the complexity of applying the
refactoring itself. E.g., some refactorings will only make localised changes, while other transformations are
more global, and hence require more work or have a higher change impact.

• How do refactorings affect quality factors? Some refactoring increase the complexity of the class structure,
yet proponents claim that this extra complexity improves understandability. A classification of the
refactorings in terms of the quality factors they aim to improve is therefore essential.

• How can refactorings be composed and decomposed? Current refactoring approaches combine primitive
refactorings into more complex refactorings in an ad-hoc manner. Vice versa, given a program A and a
refactored version B, it is possible to extract a sequence of refactorings that transforms A into B?

• How do refactorings interact? It has been observed that the parallel application of refactorings may cause
potential consistency problems. Such observations must be modelled precisely because with large-scale

 Tom Mens is a Postdoctoral Fellow of the Fund for Scientific Research – Flanders (Belgium)

1

mailto:tom.mens@vub.ac.be
mailto:serge.demeyer@ua.ac.be
mailto:dmjans@ua.ac.be

systems different programmers will refactor parts of the system independently, and then the refactoring tools
must be able to determine the amount of overall coordination necessary.

These and many other questions can only be addressed adequately if we resort to a formal model of refactoring.
This model should be sufficiently transparent to serve as a conceptual tool guiding the refactoring process.
Moreover, the model should provide a framework for the development of software tools supporting refactoring.
One of the basic decisions to make when developing a formal model for refactoring is the representation of the
object-oriented programs to be refactored. We propose a graph-based representation for this purpose. The use of
such representations has a long history in the research about OO systems, and more recently class diagrams, use-
case diagrams and sequence diagrams have become widely accepted parts of the UML. The fact that a graph-
based representation is based on sets of anonymous vertices, rather than on names, allows one to avoid
redundancies and to obtain an intuitive notion of locality. For example, renaming can have a global impact in the
source code, but can be defined as a local operation when a graph-based representation is used. A concrete
example of this will be illustrated later in the paper.
Given that a program is represented by a graph, a refactoring can be seen as a graph rewriting step that
transforms that graph. This paper uses the formalism of conditional graph rewriting [5] [11] [12], where each
graph rewriting can be defined in terms of application preconditions and postconditions. This gives rise to a
direct link to existing work on refactoring. For example, [26] used pre- and postconditions to express refactoring
transformations. Using this formalism, checking the applicability of a given refactoring simply boils down to
pattern matching, by checking whether all preconditions required by the refactoring are satisfied in the graph.
This paper motivates why graph rewriting is a useful formalism for expressing object-oriented refactoring, and
mainly focuses on the first question above: Which program properties should be preserved by refactorings? We
provide an answer to this question by proposing an underlying graph representation for Java programs, by
defining refactoring transformations as graph rewritings, and by defining various kinds of behaviour preservation
as graph invariants that are preserved by these graph rewritings. This gives us a natural and intuitive means for
expressing and dealing with many different notions of behaviour preservation.

2. Running example: a Local Area Network
As a running example, this paper uses the Java implementation of a Local Area Network simulation (LAN). The
example has been used successfully by the Programming Technology Lab of the Vrije Universiteit Brussel and
the Software Composition Group of the University of Berne to illustrate and teach good object-oriented design to
students. The example is sufficiently simple for illustrative purposes, yet covers most of the interesting constructs
of the object-oriented programming paradigm.
The LAN simulation starts with a simplistic model that gets refactored as requirements are added. In its most
basic version, of which the UML class diagram is given in Figure 1, there are 4 classes: Packet, Node and two
subclasses Workstation and PrintServer. The idea is that all Node objects are linked to each other in a token ring
network, and that they can send or accept a Packet object. Such a Packet object can only originate from a
WorkStation object, and sequentially visits every Node object in the network until it reaches its addressee that
accepts the Packet, or until it returns to its originator workstation (indicating that the Packet cannot be
delivered).

+Node(in name : String)
+Node(in name : String, in nextNode : Node)
+accept(in p : Packet) : void
#send(in p : Packet) : void

+name[1] : String
+nextNode[1] : Node

Node

+Packet(in contents : String, in addressee : Node)

+contents[1] : String
+originator[1] : Node
+addressee[1] : Node

Packet

+Workstation(in name : String)
+Workstation(in name : String, in nextNode : Node)
+originate(in p : Packet) : void
+accept(in p : Packet) : void

Workstation

+PrintServer(in name : String)
+PrintServer(in name : String, in nextNode : Node)
+print(in p : Packet) : void
+accept(in p : Packet) : void

PrintServer

Figure 1: Class diagram of the initial LAN design

The Java code corresponding to this class diagram is presented below. Due to space considerations, constructor
methods are omitted from this paper.

2

public class Node {
 public String name;
 public Node nextNode;
 public void accept(Packet p) {
 this.send(p); }
 protected void send(Packet p) {
 System.out.println(
 this.name + nextNode.name);
 this.nextNode.accept(p); }
 }

public class Packet {
 public String contents;
 public Node originator;
 public Node addressee;
 }

public class PrintServer extends Node {
 public void print(Packet p) {
 System.out.println(p.contents); }
 public void accept(Packet p) {
 if(p.addressee == this) this.print(p);
 else super.accept(p); }
 }

public class Workstation extends Node {
 public void originate(Packet p) {
 p.originator = this;
 this.send(p); }
 public void accept(Packet p) {
 if(p.originator == this)
 System.err.println("no destination");
 else super.accept(p); }
 }

T

TT

TT

T

T

Figure 2: Java code of the initial LAN simulation

This LAN simulation can be extended gradually to incorporate features that are more complex. During this
extension, refactorings are often used to restructure the framework. Section 4 will present a number of these
refactorings. But first we will show how the running example can be expressed using a graph representation in
section 3.

3. The graph rewriting formalism
3.1 Graph notation
There is a more or less direct mapping from the Java code in Figure 2 to its graph representation. Classes,
attributes, methods and method parameters are mapped to nodes of the corresponding type and with the
corresponding name. For example, the class Packet is represented by a node with type C and name Packet.
Relationships between software entities (such as containment, inheritance, typing, method lookup, attribute
accesses and method calls) are represented by edges with the corresponding type between the corresponding
nodes. For example, the inheritance relationship between the classes Workstation and Node is represented by an
edge with type I between the nodes with type C and name Workstation and Node. Even the implementation of
method bodies is represented by means of edges and nodes (see later).

contents A originator A addressee A

Packet C

I
Node C

name A nextNode A (send) B (accept) B

PrintServer C

(accept) B (print) B

Workstation C

(accept) B(originate) B

I

String C

send M (p) P

accept M (p) P

originate M (p) P

print M (p) P

L

L

L

L

println M (s) P

Figure 3: Graph representation of the static structure of the LAN simulation

In this way, the LAN example can be represented by means of a single typed graph. However, because the graph
representation of the entire LAN example is large, throughout this paper we will always display those parts of the
graph that are relevant for the discussion only. For example, Figure 3 only shows the graph representation of the

3

static structure of the LAN simulation. It contains essentially the same information as can be found in the UML
class diagram of Figure 1.
As can be seen in Figure 3, nodes are represented by rectangles containing a pair of a node name and node type.
All possible node types are listed in Table 1. Nodes of type B (method body) and type P (formal parameter) do
not require a name, but a name between parentheses has been put in the figure to make the graph more readable.
Edges are represented by arrows between nodes. Edges have a required type but no name. All possible edge
types are listed in Table 2. M-edges (membership) are shown in the figure as arrowless lines. If necessary,
multiple edges of the same type that have the same source node may be numbered. For example, an M-node
(method signature) can contain multiple edges to P-nodes (formal parameters of the method), and the order of
these edges is important.

Node
type

Description Examples

C class Node, Workstation, PrintServer, Packet
B method body (or implementation) of a method System.out.println(p.contents)

A attribute (of variable or field) name, nextNode, contents, originator, …
M method signature (or method selector) in the

lookup table
accept, send, print

P formal parameter (or argument) of a message p
E a (sub)expression in the method body p.contents

Table 1: Node types

Edge type Description Examples
M: A C attribute membership attribute name belongs to Node
M: B C method membership send is defined in Node
M: P M parameter membership send(Packet p) : p is a parameter of send
T: P C message parameter type print(Packet p) : parameter p has type Packet
T: A C attribute type String name : attribute name has type String
T: M C message return type String getName() : method getName has return type

String
T: E C expression result type p.contents has result type String
L: M B method lookup void accept(Packet p) has three possible method

bodies
I: C C inheritance (or subclassing) class PrintServer extends Node

E: B|E E expression contained in a method
body or in another expression

S: E B static call super call or invocation of static (class) method
D: E M dynamic call (or late binding) this.send(p)

nextNode.accept(p)
P: E P|E|A actual parameter this.send(p)

System.out.println(nextNode.name)
A: E P|A access of a parameter or attribute p.originator == this

U: E A update of an attribute p.originator = this

this: E C explicit this reference p.originator == this
p.originator = this

Table 2: Edge types

In addition, Figure 4 and Figure 5 represent the (partial) implementation of the method bodies defined in classes
Node and Workstation, respectively, including information about method calls (static calls, dynamic calls and
super calls) and attribute invocations (accesses and updates). For example, the implementation of the method
body of send in the class Node is a sequence of two subexpressions, which is denoted by two ordered E-edges
from the B-node to two different E-nodes. The second subexpression this.nextNode.accept(p) is a cascaded
method call consisting of an attribute access (represented by an A-edge originating from the first gray E-node)

4

followed by a dynamic method call with one parameter (represented by a D-edge and P-edge originating from the
second gray E-node).

L L

Node C

name A nextNode A (send) B (accept) B

accept M (p) Pprintln M (s) P

E

1 E

D

 P
E

2 E A

E

 E

send M (p) P

D P
E

1 E

D

 PEE

 A

E

D

+ M

E P

 A

E E

 A

T

Figure 4: Graph representation of the behaviour of class Node

L

L

L

Workstation C

(accept) B (originate) B

send M

(p) P

println M

(s) P

E

2 E

 P

EE

 Aoriginate M

(p) P

D

Node C

(accept) B I

1 E

E

Packet C

originator A

 U

accept M

(p) P

1 EE

 A

E E

 A

E 2 ED
E

3 E

S

P

E

P
this

Figure 5: Graph representation of the behaviour of class Workstation

3.2 Discussion
This subsection provides a discussion about various issues related to the particular graph representation of the
previous subsection. A number of decisions regarding the graph presentation are due to particularities of the Java
programming language, while others are due to space considerations.
Type issues
• We only use classes as possible types. In Java, interfaces can also be used as types, but this is not dealt with

in this paper due to space limitations.
• Since Java assumes no-variance typing, the return type of a method should be the same in all subclasses.

Because of this, we can safely attach the return type to the method signature (M-node) rather than the
method body (B-node).

• Because the graph representation can be generated automatically from the source code, it is type correct, and
we assume that it remains type correct after performing a refactoring. In general, however, guaranteeing type
correctness requires significant type checking and type inference.

Method parameters
• Because method overriding is only allowed for methods that have the same signature, i.e., the same message

name, and the same number and types of parameters, the parameters of a method are attached to the method
signature (M-node) rather than the method body (B-node). Note that the names of parameters can be
different in subclasses, but we will ignore this information in the graph representation.

5

• Since actual parameters can only occur in presence of a (static or dynamic) method call, a P-edge must
always be accompanied by an S-edge or D-edge originating from the same source node. Conversely, each S-
edge or D-edge must be accompanied by a (possibly empty) ordered set of P-edges from the same source
node. All these P-edges represent the actual parameters of the call. The number of actual parameters must
correspond to the number of formal parameters.

Method calls
• To represent dynamic method lookup, we need to make a distinction between the method signature (M-node)

and the method-bodies (B-nodes). They are connected by means of L-edges. Each B-node must be the target
of exactly one L-edge. Conversely, an M-node can have many outgoing L-edges.

• Cascaded method calls (such as this.nextNode.accept(p))are expressed by means of an E-edge between
two E-node (the expression and its subexpression). Cascading is not possible when an E-node has an
outgoing U-edge since, for syntactic reasons, attribute update cannot be cascaded with method calls in Java.

Constructor methods. Due to space considerations, we do not treat constructor methods in this paper. Adding
them to the formalism is a straightforward matter. Constructor methods can be represented in a similar way as
ordinary methods. They also have late binding and super calls. The main difference is that they do not have a
return type.
Sequence of statements. A B-node or E-node can have an ordered set of outgoing E-edges to express all
subexpressions. In this way, we currently represent sequential statements (;) as well as conditional statements (if
(...) A; else B;).
Attribute update. Since an attribute update specifies the new value of the attribute, an U-edge can be
accompanied by at most one P-edge, denoting the expression that is being assigned to the attribute.
Java modifiers. In the current graph representation we ignored visibility information such as abstract, public,
private, protected and final. It is a straightforward extension of our graph representation to take these into
account.

3.3 Behaviour preservation invariants
There is no commonly accepted definition of what it means to preserve the behaviour of a program. Using an
input-output semantics, behaviour preservation means that, for all observable program inputs, the program
produces exactly the same output before and after the refactoring. A weaker notion of language preservation is
suggested by Bergstein [2]: the set of all acceptable program inputs must be the same before and after the
refactoring. When developing real-time systems, yet another notion of behaviour preservation is needed, since it
is crucial that the program is executed within the specified time constraints. When developing embedded
systems, there might be stringent constraints on the use of computer memory. These observations clearly show
the need for a whole range of different kinds of behaviour preservation, each focussing on a different aspect of
the program behaviour.

Notation Interpretation

C ? C

There is an edge of undetermined type between two nodes of type C (class).

? ?*A A

There is a nonempty edge path, of which the last edge has type A (access). The
target node has type A (attribute), and the source node type is undetermined.

C I+ C

There is a nonempty edge path of edges of type I (inheritance) between two
nodes of type C (class)

E A|U A

There is an edge of which the type is either A (access) or U (update) between a
source node of type E (expression) and a target node of type A (attribute).

P|A|M T C

There is an edge of type T between a source node of type P, A or M and a target
node of type C.

Table 3: Graph pattern notation

For the purpose of this paper, we have pragmatically chosen to look at only those notions of behaviour
preservation that can be expressed and detected in an efficient and intuitive way using our graph representation.
More specifically, in our formalism different kinds of behaviour preservation can be expressed by means of

6

graph invariants. These invariants are occurrences of graph patterns that remain unaltered by the graph rewriting.
To express these graph patterns concisely, we use a notation similar to regular expressions as illustrated in Table
3. ? denotes that the type is irrelevant, | denotes logical disjunction of types, * denotes a path of zero or more
edges and + denotes a nonempty edge path.
Below we illustrate some typical kinds of behaviour preservation that we would like to detect, and show how
they can be expressed in terms of graph invariants.
• Access preservation

Intuitively, a refactoring is access preserving if (the implementation of) each method performs at least the
same attribute accesses after the refactoring as it did before the refactoring. Note that these attribute accesses
may occur indirectly, by first calling another method that (directly or indirectly) accesses the attribute. In our
graph formalism, this can be expressed elegantly using the following graph invariant:

E ?*A A

It states that, if a (sub-)expression in some method body accesses a certain attribute before the refactoring, it
must still access this attribute after the refactoring.

• Update preservation
Similarly to access preservation, a refactoring is update preserving if (the implementation of) each method
performs at least the same attribute updates after the refactoring as it did before the refactoring. This can be
expressed elegantly using the following graph invariant:

E ?*U A

Because an attribute update requires one actual parameter that specifies the new value of the attribute to be
updated, we can imagine a stronger variant of update preservation that requires the values of all attribute
updates to be preserved as well. Since this is more difficult to detect statically we will not deal with it in this
paper.

• Statement preservation
A refactoring is statement preserving if (the implementation of) each method still performs at least the same
actions as it did before the refactoring. Note that these actions may be implemented somewhere else, e.g., in
another method that is being called. Again, this can be expressed by means of a graph invariant:

M ?*E E

• Type preservation
A refactoring is type preserving if each statement in each method still has the same result type or return type
as it did before the refactoring. This is captured in the following graph invariant:

E ?*T C

Note that this is a very weak notion of type preservation. More sophisticated forms can be defined, but this
always requires a certain amount of type inference.

Obviously, the above list of behaviour-preservation invariants is by no means complete. Another useful invariant
would be call preservation, which states that each method still performs the same method calls as it did before
the refactoring.
Many kinds of behaviour preservation cannot be expressed in our current graph representation. Examples of this
are time preservation and memory preservation, since these would require information about timing constraints
or memory constraints to be included in the graph formalism.

3.4 Graph rewriting notation
A graph rewriting is nothing more than a transformation that takes an initial graph as input and transforms it into
a result graph. This transformation occurs according to some predetermined rules that are specified in a so-called
graph production. Such a graph production is specified by means of a left-hand side and a right-hand side. The
left-hand side is used to specify which parts of the initial graph should be transformed, while the right-hand side
specifies the result after the transformation. In the formalism that we use, the left-hand side can contain negative

7

application preconditions that are used to restrict the applicability of the graph production [5] [11] [12] [13].
Often, a graph production can be applied to different parts of the graph, leading to different occurrences (or
matches) of the graph production’s left-hand side. In this paper, we use parameterised graph productions, so that
different occurrences of a graph production can be distinguished by attaching different parameters to the
production.
Figure 6 shows a typical example of a graph production. Left-hand side and right-hand side are separated by
means of a ::= symbol. Nodes that are preserved by the graph production are identified by numbers. Nodes on
the right-hand side that do not have a number attached are newly created by the graph production. The negative
preconditions are denoted by a dashed striked-through oval on the left-hand side. In this case, the negative
conditions specify that the transformation is only allowed if the class named type does not contain any
implementation (i.e., method body) for the method accessor with return type type and the method updater with
one parameter of type type.

class C

P E

 A

E

attr A

 U

type C

T

L L

(updater) B (accessor) B

updater M accessor M

(p) P

T

T

21

3

4

6

5

::=

class C

P

EE

attr A

type C
T

T

21

3

4

6

5

L L

(updater) B (accessor) B

DD

 A
E

1 E

updater M accessor M

E
1 E

 U

P(p) P

T
Figure 6: The conditional graph production EncapsulateField(class,attr,type,accessor,updater)

4. Graph refactoring productions
In this section, we discuss a number of typical refactorings that we have identified in the LAN example, and we
show how they can be expressed using our graph rewriting formalism. Each refactoring in this section follows
the same template:

• Motivation
• Example with Java source code
• Example in graph format
• Graph rewriting
• Behaviour preservation invariants

4.1 Rename method

Motivation
On page 273 of [8], the refactoring RenameMethod is motivated as follows:

The name of a method does not reveal its purpose.
Change the name of the method.

In Java, as well as most other languages, this refactoring is a global operation. The transformation requires a
change to all definitions of the method to be renamed (not only in the class where it is defined, but also in all
descendant classes where it is overridden) as well as to all static calls, dynamic calls and super calls to this
method.

Example with Java source code
In the evolution of the LAN example, suppose the method accept is renamed into receive. This requires a
change to three method definitions of accept, as well as to three calls of accept (one dynamic call and two super
calls). The Java source code before and after this refactoring is given below. The parts of the code that have been
modified by the refactoring are shown in italics.

8

// *** BEFORE the refactoring RenameMethod ***
public class Node {
 ...
 public void accept(Packet p) {
 this.send(p); }
 protected void send(Packet p) {
 System.out.println(
 name + "sends to" + nextNode.name);
 nextNode.accept(p); }
 }
public class PrintServer extends Node {
 ...
 public void accept(Packet p) {
 if(p.addressee == this) this.print(p);
 else super.accept(p); }
 }
public class Workstation extends Node {
 ...
 public void accept(Packet p) {
 if(p.originator == this)
 System.err.println("no destination");
 else super.accept(p); }
 }

// *** AFTER the refactoring RenameMethod ***
public class Node {
 ...
 public void receive(Packet p) {
 this.send(p); }
 protected void send(Packet p) {
 System.out.println(
 name + "sends to" + nextNode.name);
 nextNode.receive(p); }
 }
public class PrintServer extends Node {
 ...
 public void receive(Packet p) {
 if(p.addressee == this) this.print(p);
 else super.receive(p); }
 }
public class Workstation extends Node {
 ...
 public void receive(Packet p) {
 if(p.originator == this)
 System.err.println("no destination");
 else super.receive(p); }
 }

Example in graph format
The graph representation before the refactoring is depicted in Figure 7. The graph representation after the
refactoring is the same, except that the M-node with name accept has been renamed into receive. This means that
renaming can be expressed as a very localised operation in our graph representation. This is because all method
implementations and all method calls do not have to be renamed because they do not rely on the name of the
method.

9

Node C

nextNode A

accept M P

E

1 E

D
 P

E

2 E

 A EE

send M

D P

Workstation C
I

E

3 E
S

P

Printserver C

B

E

3 E S

P

L L L

P

BBB

L

T

Figure 7: Graph representation before the refactoring RenameMethod

Graph rewriting
The above refactoring can be expressed by the occurrence RenameMethod(Node,accept,receive) of the
parameterised graph production RenameMethod(class,old,new) that is formally defined as follows:

class C

L L

B B

new M old M

2

1

3

::=
L

B

new M

2

3

class C
1

Figure 8: Graph production RenameMethod(class,old,new)

Behaviour preservation invariants
All behaviour preservation invariants of section 3.3 remain satisfied by this graph rewriting, since nothing is
changed to the structure of the graph.

4.2 Encapsulate field

Motivation
On page 206 of [8], the refactoring EncapsulateField is motivated as follows:

There is a public field.
Make it private and provide accessors.

In other words, this refactoring aims to introduce methods for accessing (“getting”) and updating (“setting”) the
value of an attribute. All direct invocations of an attribute that is defined in a certain class are replaced by calls to
these methods. The accessing method that retrieves the attribute’s value has no arguments and has a return type
that is the same as the type of the attribute. The updating method that updates the attribute’s value has no return
type, but has one argument whose type is the same as the type of the attribute.

Example with Java source code
In the evolution of the LAN example, we found several occurrences of this particular refactoring. The Java
source code before and after one particular instance of this refactoring is given below:

10

// *** BEFORE the refactoring EncapsulateField ***
public class Node {
 public String name;
 public Node nextNode;
 public void accept(Packet p) {
 this.send(p); }
 protected void send(Packet p) {
 System.out.println(
 name +
 "sends to" +
 nextNode.name);
 nextNode.accept(p); }
 }

// *** AFTER the refactoring EncapsulateField ***
public class Node {
 private String name;
 private Node nextNode;
 public String getName() {
 return this.name; }
 public void setName(String s) {
 this.name = s; }
 public Node getNextNode() {
 return this.nextNode; }
 public void setNextNode(Node n) {
 this.nextNode = n; }
 public void accept(Packet p) {
 this.send(p); }
 protected void send(Packet p) {
 System.out.println(
 this.getName() +
 "sends to" +
 this.getNextNode().getName());
 this.getNextNode().accept(p); }
 }

Example in graph format
The picture of the graph representation before the refactoring is shown in Figure 4. The picture of the graph
representation after the refactoring is given in Figure 9. Note that, due to space limitations, we only show the
accessing methods getName and getNextNode in Figure 9. The updating methods setName and setNextNode have
been omitted from the figure.

T

T

L L L

Node C

(send) B (accept) B

accept M

(p) P

println M

(s) P

E

1 E

D
 P

E

2 E

E

 E

send M

(p) P

D

 P

E

1 E

D

 PEE E

D

+ M

E PE E

nextNode A name A

String C

T

T

T

L

(getName) B (getNextNode) B

 D
 D

 D
 D

E

1 E

E 1 E

getName M getNextNode M

 A
 A

Figure 9: Introducing accessor methods for class Node

11

Graph rewriting
The above refactoring can be formally expressed by two occurrences of the parameterised graph production of
Figure 6:

• EncapsulateField(Node,name,String,getName,setName)
• EncapsulateField(Node,nextNode,Node,getNextNode,setNextNode)

Behaviour preservation invariants
It is easy to check that the behaviour preservation invariants of section 3.3 remain satisfied by this graph
rewriting:
• The access preservation invariant is satisfied since the direct A-edge from E-node 5 to A-node 3 is replaced

by a path (D-L-E-A) of four edges from E-node 5 to A-node 3, and the last edge in this path is still an A-
edge.

• The update preservation invariant is satisfied since the direct U-edge from E-node 4 to A-node 3 is replaced
by a path (D-L-E-U) of four edges from E-node 4 to A-node 3, and the last edge in this path is still an U-
edge.

• The statement preservation invariant is automatically satisfied since the graph production EncapsulateField
has no influence on this graph invariant.

• The type preservation invariant is also satisfied, but this requires some type inferencing. On the left-hand
side of the graph production, since A-node 3 has a T-edge to C-node 1, we can infer that E-node 5 must have
the same type (since the result type of an attribute access is the same as the type of the attribute itself). On
the right-hand side of the graph production, since the new M-node with label accessor has a T-edge to C-
node 1, we can infer that E-node 5 must have the same type (since the result type of a dynamic method call
is the same as the return type of the method being called). Hence the (inferred) type of E-node 5 on the left-
hand side is preserved on the right-hand side.

4.3 Extract method

Motivation
On page 110 of [8], the refactoring ExtractMethod is motivated as follows:

You have a code fragment that can be grouped together.
Turn the fragment into a method whose name explains the purpose of the method.

In other words, if we have a method whose implementation is becoming too complex, we can refactor part of its
behaviour into a new auxiliary operation.

Example with Java source code
In the LAN example, we extract the printing functionality of the send method into a separate log method.

// *** BEFORE the refactoring ExtractMethod ***
public class Node {
 ...
 public void accept(Packet p) {
 this.send(p); }
 protected void send(Packet p) {
 System.out.println(
 this.getName() +
 "sends to" +
 this.getNextNode().getName());
 this.getNextNode().accept(p); }
 }

12

// *** AFTER the refactoring ExtractMethod ***
public class Node {
 ...
 public void accept(Packet p) {
 this.send(p); }
 protected void send(Packet p) {
 this.log(p);
 this.getNextNode().accept(p); }
 protected void log(Packet p) {
 System.out.println(
 this.getName() +
 "sends to" +
 this.getNextNode().getName()); }
 }

Example in graph format
The picture of the graph representation before the refactoring is shown in Figure 10. The picture of the graph
representation after the refactoring is shown in Figure 11.

Node C

name A nextNode A (send) B

accept M

(p) P

T

println M

(s) P

E

2 E

E

 E

send M

(p) P

D
 P

E 1 E

D

 PEE

 A

E

D

+ M

E P

 A

E E
 A A

L

Figure 10: Before extracting logging behaviour from the send method

LL

Node C

name A nextNode A (send) B

accept M

(p) P

T

println M

(s) P

E

2 E

E

 E

send M

(p) P

D
 P

E

D

 PEE

 A

E

D

+ M

E P

 A

E E
 A

(log) B

A

1 E

log M

(p) P

1 E

ED

 P

Figure 11: After extracting logging behaviour from the send method

Graph rewriting
The above refactoring can be expressed by the occurrence ExtractMethod(Node,send,log,{1}) of the
parameterised graph production ExtractMethod(class,old,new,StatList) that is formally defined as follows:

13

LL

class C

(old) B
E

 E
α

old M

(new) B

new M

1

2

3

4

 ::=

L

class C

(old) B
E

E
α

old M

1

2

3

4

 E
D

L

(new) B

new M E

∀ edge α ∈ StatList

Given the body of method old in class, all statements specified in StatList are redirected to the body of a
parameterless method new. Obviously, we could also define a more general version of this refactoring where
local variables of the old method are passed to the new method as parameters, but this only makes the example
more complex without contributing anything more to this paper.

Behaviour preservation invariants
• The access preservation, update preservation and type preservation invariants are automatically satisfied

since the graph production ExtractMethod has no influence on these graph invariants. It does not modify,
introduce or remove any attribute accesses, attribute updates or type information.

• The statement preservation invariant is satisfied since the edge path of length two on the left-hand side from
M-node 3 to E-node 4 via B-node 2 is replaced by a path (L-E-D-L-E) of five edges from M-node 3 to E-
node 4, and the last edge in this path is still an E-edge.

4.4 Replace data value with object

Motivation
On page 175 of [8], the refactoring ReplaceDataValueWithObject is motivated as follows:

You have a data item that needs additional data or behavior.
Turn the data item into an object.

Example with Java source code
In the LAN example, this refactoring has been used to introduce Document objects. This step is necessary in
order to prepare the framework for different kinds of documents that can be printed on different kinds of printers.
Before the refactoring, a Packet contains an attribute contents of type String. This variable is only accessed
through the accessor methods getContents and setContents. After the refactoring, the attribute contents of type
String is moved into a new class Document. Packet can still refer to it indirectly by means of a new attribute doc
of type Document. Consequently, all accesses and updates of the attribute must take place through an extra
indirection. Fortunately, this indirection can be encapsulated in the accessor methods getContents and
setContents.

// *** BEFORE the refactoring ReplaceDataValueWithObject ***
public class Packet {
 ...
 private String contents;
 public String getContents() {
 return this.contents;
 }
 public void setContents(String s) {
 this.contents = s;
 }
}

14

// *** AFTER the refactoring ReplaceDataValueWithObject ***
public class Packet {
 ...
 private Document doc;
 public String getContents() {
 return this.doc.contents;
 }
 public void setContents(String s) {
 this.doc.contents = s;
 }
}

public class Document {
 ...
 public String contents;
}

Example in graph format
The graph representation before the refactoring is depicted in Figure 12. The graph representation after the
refactoring is shown in Figure 13.

T

TT

L L

Packet C

contents A(setContents) B (getContents) B

getContents M

E 1 E

A

setContents M (s) P

 P

E1 E

U

String C

Figure 12: Before turning the attribute contents into a Document object

TT

L L

Packet C

(setContents) B (getContents) B

getContents M

1 E

A

setContents M (s) P
 P

1 E

U

String C

contents A

E

E

T

T

doc A

EE

Document C

A

E

A
E

Figure 13: After turning the attribute contents into a Document object

Graph rewriting
The above refactoring can be expressed formally by an occurrence
ReplaceDataValueWithObject(Packet,contents,String,doc,Document) of the parameterised graph production
ReplaceDataValueWithObject(class,attr,attrType,object,objType) that is shown below:

15

T

class C

attr A

E

A

 P E

U

attrType C
1 2

3

4 56
 ::=

T

class C

E

P
 U

attrType C

attr A
A

E

1 2

3

6

5

4

object A
 A

E

objType C

T

E E

 A

E

Behaviour preservation invariants
• The access preservation invariant is satisfied since the direct A-edge from E-node 5 to A-node 3 is replaced

by a path (E-A) of two edges from E-node 5 to A-node 3, and the last edge in this path is still an A-edge.
• The update preservation invariant is satisfied since the direct U-edge from E-node 4 to A-node 3 is replaced

by a path (E-U) of two edges from E-node 4 to A-node 3, and the last edge in this path is still an U-edge.
• The statement preservation invariant is automatically satisfied since the graph rewriting

ReplaceDataValueWithObject has no influence on this graph invariant.
• The type preservation invariant is also satisfied. Before and after the graph rewriting, there is an edge path

from E-node 5 to C-node 1, and another edge path from E-node 4 to C-node 1. Note that this is only a very
weak form of type preservation. In order to know more precisely whether all type information is preserved,
more extensive type inferencing is needed.

5. Open Questions
This paper is only a first step towards a complete formal foundation for object-oriented refactoring, and there is
still a lot of work to be done. Below we have compiled the most important things that remain to be done in the
form of a list of open questions with partial answers.
• Which other variants of behaviour preservation are important?

For each such variant, motivate why, and give a concrete situation or example.
• Which graph rewriting formalism is most appropriate for the purpose of refactoring (or software evolution

in general)?
This paper used conditional graph rewriting (based on the category-theoretical single-pushout approach) [5]
[11] [12]. In the research literature, many other graph rewriting formalisms can be found, and these
formalisms may be more appropriate for our needs. For example, Luqi and Goguen [17] propose hierarchical
evolutionary hypergraphs as an alternative formal model for software evolution.

• How can the graph rewriting formalism be made as language independent as possible?
In this paper, we only focussed on Java refactorings. However, the proposed formalism seems very well-
suited to specify object-oriented refactoring and its properties (such as behaviour-preservation) in a
language-independent way? If we apply the formalism for different languages, how should the language-
independent and language-specific features be separated? (In Java: static typing, interfaces, packages,
abstract keyword, constructors, visibility information such as public, private, protected, final. In Smalltalk:
dynamic typing, metaclasses, namespaces.)
Note that [31] presents an informal discussion on language-independence issues of object-oriented
refactorings.

• How can we express dynamic (or run-time) information about the software?
In the current graph representation we have excluded the following information since it requires a more
extensive data-flow and control-flow analysis:
• Order of messages, e.g., p.setOriginator(this); this.send(p)
• Conditional messages, e.g., if (p.addressee = this) this.print(p) else super.accept(p)

• Can the graph rewriting formalism help with retroactive analysis of the refactorings?
In this paper, we only considered proactive support for refactoring. If all refactorings can be applied
automatically, it is guaranteed that the refactorings do not lead to inconsistent programs, and that the
behaviour is preserved by means of graph invariants.

16

An alternative would be to provide retroactive support, by allowing the user to manually apply the
refactoring, with the option the check afterwards whether the applied refactoring is correct in the sense that it
preserves the program behaviour. The question is whether and how the graph rewriting formalism can
provide support for this. Another question is whether the graph rewriting formalism can be used to analyse
an arbitrary software evolution step to identify which (sequence of) refactoring(s) has been applied.

• How do refactorings affect quality factors?
Typically, refactorings aim to improve encapsulation, reduce complexity, and remove code redundancy.
Nevertheless, some refactoring increase the complexity of the class structure, yet proponents claim that this
extra complexity improves understandability. A formal classification of the different refactorings in terms of
the quality factors they aim to improve is therefore essential.

• How can a graph rewriting formalism help to cope with the interaction and composition of refactorings?
Graph rewriting seems to be an intuitive formalism to combine primitive refactorings into more complex
refactorings. Relevant material in the work on graph rewriting includes work on modularity and hierarchical
graphs [7] [24]. Graph rewriting can also prove helpful to cope with unexpected interactions between
refactorings, as such causing potential conflicts when these refactorings are applied in parallel. See [18] [19]
for the use of graph rewriting in the context of detecting evolution conflicts. Especially the formal theorems
about local confluence, parallel and sequential independence are relevant here. For example, local
confluence guarantees that, under certain conditions, a sequence of refactorings can be reordered without
influencing the end-result. This can be used to reorder the refactorings into a canonical form, or to remove
redundant refactorings.

• (How) should we provide support for non-behaviour-preserving refactorings?
In practice, many complex refactorings can be broken down in more primitive transformations. Often, these
transformations are only behaviour preserving if they are applied in combination with the other primitive
transformations. Hence, a formalism for refactoring should also be able to deal with transformations that are
only partially behaviour preserving.

• How do refactorings affect design models?
Refactorings are typically applied at the code-level, however these changes will also affect representations at
design level. Given the behaviour-preserving nature of refactorings, it should be possible for certain
representations of the software to identify which parts of the design remain unaffected and which parts must
be refactored. Possible formal approaches that can help with this are triple graph grammars and critical pair
analysis [6] [15] [28].

6. Conclusion
This paper presented a feasibility study of the use of graph rewriting as a formal foundation for refactoring
object-oriented software. While the initial results look very promising, there is still a considerable amount of
work needed, from the formal as well as the practical side.
From a formal side, …
From the practical side, automated tool support for refactoring is crucial, since refactoring is a time-consuming
and error-prone process. An ideal refactoring tool would enable its user to
- identify places in the program where refactoring is needed (see, e.g., [Simon&al 2001] [Kataoka&al 2001])
- visualize the program, or program part, considered a candidate for refactoring
- suggest possible refactorings for the program part considered, taking into account user-specified quality

factors
- detect whether a refactoring is applicable to a given piece of code. If not, suggest concrete changes that can

make the refactoring applicable
- automatically apply a given refactoring to the source code
- visualize the effect or impact of a refactoring on the program
- check retroactively whether the behaviour preservation invariants of a refactoring are satisfied if the

refactoring was performed through a manual process
- compose sequences of refactorings, and store frequently used composite refactorings for later use
- analyse two sequences of refactorings that have been applied in parallel with the aim to (1) detect potential

inconsistencies between these refactorings; (2) detect commonalities between these refactorings

17

- optimise sequences of refactorings by (1) reordering them into a canonical form; (2) removing redundancy in
the sequence

8. References
[1] K. Beck, Smalltalk Best Practice Patterns. Prentice Hall, 1997.
[2] P. L. Bergstein. “Maintenance of Object-Oriented Systems During Structural Evolution,” TAPOS Journal

3(3): 185-212, 1997
[3] E. Casais, "An Incremental Class Reorganization Approach," Proc. ECOOP'92, O. Lehrmann Madsen

(Ed.), LNCS 615, Springer-Verlag, 1992.
[4] A. Corradini, H. Ehrig, M. Löwe, U. Montanari and J. Padberg, "The Category of Typed Graph Grammars

and their Adjunction with Categories of Derivations," Proc. 5th Int'l Workshop on Graph Grammars and
their Application to Computer Science, LNCS, Springer-Verlag, 1996.

[5] H. Ehrig and A. Habel, "Graph Grammars with Application Conditions," The Book of L, G. Rozenberg and
A. Salomaa, eds., Springer-Verlag, 1986, pp. 87-100.

[6] H. Ehrig and A. Tsioalikis. “Consistency analysis of UML class and sequence
diagrams using attributed graph grammars”. In H. Ehrig and G. Taentzer,
editors, ETAPS 2000 workshop on graph transformation systems, March 2000.

[7] G. Engels and A. Schürr, "Encapsulated Hierarchical Graphs, Graph Types and Meta Types," Joint
Compugraph/Semagraph Workshop on Graph Rewriting and Computation. Electronic Notes in Theoretical
Computer Science, Vol. 2, Elsevier, 1995.

[8] M. Fowler, Refactoring: Improving the Design of Existing Programs, Addison-Wesley, 1999.
[9] W. G. Griswold, Program Restructuring as an Aid to Software Maintenance. PhD Thesis, University of

Washington, August 1991.
[10] W. G. Griswold and D. Notkin, “Automated assistance for program restructuring,” ACM Trans. Software

Engineering and Methodology, 2(3): 228-269, July 1993.
[11] A. Habel, R. Heckel and G. Taentzer, "Graph Grammars with Negative Application Conditions,"

Fundamenta Informaticae, Special Issue on Graph Transformations, Vol. 26, No 3,4 (June), 1996, pp. 287-
313.

[12] R. Heckel, Algebraic Graph Transformations with Application Conditions, Thesis, TU Berlin, 1995.
[13] R. Heckel and A. Wagner, "Ensuring Consistency of Conditional Graph Grammars: A Constructive

Approach," Lecture Notes in Theoretical Computer Science, Vol. 1, Elsevier Science, 1995.
[14] Y. Kataoka, M. D. Ernst, W. G. Griswold and D. Notkin, “Automated Support for Program Refactoring

Using Invariants,” Proc. Int. Conf. Software Maintenance, pp. 736-743, IEEE Computer Society Press,
2001.

[15] M. Lefering. Development of incremental integration tools using formal specifications. Technical Report,
RWTH Aachen, 1994.

[16] M. Löwe, "Algebraic Approach to Single-Pushout Graph Transformation," Theoretical Computer Science,
Vol. 109, 1993, pp. 181-224.

[17] Luqi, J. A. Goguen, “Formal Methods: Promises and Problems,” IEEE Software, pp. 73-85, January 1997.
[18] T. Mens, A Formal Foundation for Object-Oriented Software Evolution, PhD Thesis, Vrije Universiteit

Brussel, Belgium, Dept. Computer Science, September 1999.
[19] T. Mens, "Conditional Graph Rewriting as a Domain-Independent Formalism for Software Evolution,"

Proc. Int'l Agtive ’99 Conf., LNCS 1779, pp. 127-143, Springer-Verlag, 2000.
[20] T. Mens and T. Tourwé, “A Declarative Evolution Framework for Object-Oriented Design Patterns,” Proc.

Int. Conf. Software Maintenance, IEEE Computer Society Press, 2001.
[21] Ivan Moore, "Automatic Inheritance Hierarchy Restructuring and Method Refactoring," Proc. OOPSLA '96,

ACM Press, 1996.
[22] W.F. Opdyke, Refactoring Object-Oriented Frameworks, PhD Thesis, Univ. of Illinois at Urbana-

Champaign, 1992. Tech. Report UIUC-DCS-R-92-1759.
[23] W.F. Opdyke and R.E. Johnson, “Creating abstract superclasses by refactoring,” Proc. ACM Computer

Science Conference, pp. 66-73, ACM Press, 1993.
[24] A. Poulovassilis and M. Levene, “A Nested-Graph Model for the Representation and Manipulation of

Complex Objects,” ACM Transactions on Information Systems, 12(1): 35-68, ACM Press, 1994.

18

[25] D. Roberts, J. Brant and R.E. Johnson, "A Refactoring Tool for Smalltalk," J. Theory and Practice of Object
Systems, Vol. 3, No. 4, 1997, pp. 253-263.

[26] D. Roberts, Practical Analysis for Refactoring. PhD Thesis, University of Illinois at Urbana-Champaign,
1999.

[27] A. Schürr, "PROGRES: A VHL-Language Based on Graph Grammars," Proc. 4th Int'l Workshop on Graph
Grammars and their Application to Computer Science, LNCS Vol. 532, Springer-Verlag, 1991, pp. 641-
659.

[28] A. Schürr. Specification of graph translators with triple graph grammars. Technical Report AIB 94-12,
RWTH Aachen, 1994.

[29] F. Simon, F. Steinbruckner and C. Lewerentz, "Metrics Based Refactoring," Proc. 5th European
Conference on Software Maintenance and Reengineering, pp. 30- , IEEE Computer Society Press, 2001.

[30] G. Sunyé, D. Pollet, Y. LeTraon and J.-M. Jézéquel, “Refactoring UML models,” Proc. UML 2001, LNCS
2185, pp. 134-148. Springer Verlag, 2001.

[31] S. Tichelaar, Modeling Object-Oriented Software for Reverse Engineering and Refactoring. PhD Thesis,
University of Bern, 2001.

[32] L. Tokuda and D. Batory, "Evolving Object-Oriented Designs with Refactorings," Proceedings ASE'99,
IEEE Computer Society Press, 1999

[33] M. M. Werner, Facilitating Schema Evolution with Automatic Program Transformation. PhD Thesis,
Northeastern University, July 1999.

19

	Introduction
	Running example: a Local Area Network
	The graph rewriting formalism
	Graph notation
	Discussion
	
	
	
	
	
	Constructor methods. Due to space considerations, we do not treat constructor methods in this paper. Adding them to the formalism is a straightforward matter. Constructor methods can be represented in a similar way as ordinary methods. They also have lat
	Java modifiers. In the current graph representation we ignored visibility information such as abstract, public, private, protected and final. It is a straightforward extension of our graph representation to take these into account.

	Behaviour preservation invariants
	Graph rewriting notation

	Graph refactoring productions
	Rename method
	Motivation
	Example with Java source code
	Example in graph format
	Graph rewriting
	Behaviour preservation invariants

	Encapsulate field
	Motivation
	Example with Java source code
	Example in graph format
	Graph rewriting
	Behaviour preservation invariants

	Extract method
	Motivation
	Example with Java source code
	Example in graph format
	Graph rewriting
	Behaviour preservation invariants

	Replace data value with object
	Motivation
	Example with Java source code
	Example in graph format
	Graph rewriting
	Behaviour preservation invariants

	Open Questions
	Conclusion
	References

