Evolution Metrics

Tom Mens Serge Demeyer
Programming Technology Lab Lab on Re-Engineering
Vrije Universiteit Brussel Universiteit Antwerpen
Belgium Belgium
tom.mens@vub.ac.be serge.demeyer@ua.ac.be

Vienna, 11 September 2001 International Workshop on Principles of Software Evolution 1



Goals
e

» Study existing research literature on evolution metrics to

@ classify existing approaches/techniques based on their purpose

@ compare existing empirical studies to identify open problems and
future research trends

Vienna, 11 September 2001 International Workshop on Principles of Software Evolution 2



Empirical approaches

» have been used to
» estimate maintenance cost, effort and productivity
» predict/estimate maintainability, reliability, ...
» predict improvements/degradations in quality/structure
» identify trends and change points in evolutionary behaviour
» identify (un)stable parts of the software
» identify the need for reengineering/restructuring
» understand the nature of software evolution processes

Vienna, 11 September 2001 International Workshop on Principles of Software Evolution 3



Purpose of evolution metrics
[

» Predictive versus retrospective analysis of the software

» Predictive (before evolution)

use previous and current releases to predict changes in future releases
(what, where, how, how much, how big, ...)

» Retrospective (after evolution)
compare different releases to
» understand the evolution (which kind, why)
» detect improvements/degradations of quality

» How versus what and why (cf. Lehman and Ramil)
» What and why: study nature and properties of evolution
» How: improve software evolution process

Vienna, 11 September 2001 International Workshop on Principles of Software Evolution 4



Purpose of evolution metrics
[

» Classify based on parts of software that are affected

» Evolution-critical parts need to be evolved due to

» poor quality, incomplete code, bad structure, unused code, duplicated
code, overly complex code

» Evolution-prone parts are likely to evolve
» correspond to highly volatile software requirements
(detect by examining release histories)

» Evolution-sensitive parts have high estimated change impact
» e.g., highly-coupled parts

Vienna, 11 September 2001 International Workshop on Principles of Software Evolution 5



Goals
e

» Study existing research literature on evolution metrics to

@ classify existing approaches/techniques based on their purpose

@ compare existing empirical studies to identify open problems and
future research trends

Vienna, 11 September 2001 International Workshop on Principles of Software Evolution 6



Long-term evolution studies

‘ Ramil&al00 Burd&Munro ¢a|l&a|98 Graves&al00 Perry&al98 Godfrey&al00
software size | large large very large | very large | very large very large
300 KLOC 10MLOC 1.5 MLOC 2.2 MLOC
kind of data change history | C source | release change change C source
code database history history code
granularity coarse: fine: function, | coarse: coarse: coarse: fine: LOC
subsystem, function call system, module, feature,
module subsystem, feature, modif.  req.,
module modif. req. file change
availability proprietary public domain | proprietary proprietary proprietary open source
time scale 10 years long 21 months several years | 12 years 6 years
# releases ? 30 8 major, 12 | >1/year 12 US, 15| 34 stable, 62
minor international development
# cases 1 1 1 1 1 1
purpose predictive predictive retrospective | predictive retrospective | retrospective
analysis statistical human human statistical statistical, visual, human
interpretation | interpretation visual interpretation
representativ | ? probably for C | ? ? for highly-reliable | ?
e code (GNU) ﬁmbedded real-
ime systems
Vienna, 11 September 2001 International Workshop on Principles of Software Evolution 7



Short-term evolution studies

‘ Mattsson&al99 Demeyer&a#99 Demeyer&al00 Antoniol&al99 Basili&al96
software size medium medium medium medium medium
70<NOC<600 500<NOC<800 100<NOC<1000 | 120<NOC<135 NOC=180
5<KLOC< 14
kind of data C++ source code | Smalltalk source | Smalltalk source | C++ source | C++ source
code code code code
granularity medium: classes | fine: classes, | fine: classes, | fine: classes, | fine: classes,
methods, ... methods, ... methods, LOC methods, ...
availability 1 proprietary & 2 | commercial 1 commercial, 2 | 1 public domain | academic
commercial public domain
time scale short <4 years short unknown very short
# releases between2and 5 | 3 between2and4 |7 major, 24 |1
minor
# cases 3 1 3 1 8
purpose predictive retrospective retrospective predictive predictive
analysis human human human statistical statistical
interpretation interpretation interpretation
representative ? for OO0 | for refactored | probably for C++ | No. Too small,
frameworks OO frameworks | code (GNU) too academic

Vienna, 11 September 2001

International Workshop on Principles of Software Evolution



Comparison of approaches

Short-term evolution

Long-term evolution

software size

medium

(very) large

kind of data | OO source code change management

database

availability | commercial, proprietary

public domain
granularity of metrics | fine or medium coarse
time scale | < 5 years > 2 years
# releases | < 10 >10
# case studies | between 1 and 3 1

analysis of results

human, visual

statistical, visual

representativeness

limited

often

Vienna, 11 September 2001

International Workshop on Principles of Software Evolution




Need more work on...

» Evolution metrics
» must be precise and unambiguous

» must be empirically validated (e.g., what constitute good coupling
and cohesion metrics)

» are preferrably language independent
» at which level of granularity?

» Scalability

» metrics require enormous amount of data about software
» becomes even worse when studying a release history
» visualisation and statistical techniques may help

Vienna, 11 September 2001 International Workshop on Principles of Software Evolution 10



Need more work on...

» Empirical validation
» validate on sufficiently large set of realistic cases
» take care with human interpretation
» ensure replicability
» common benchmark of cases to compare experimental results

» Compare evolutive nature of software based on
» Development process (open source vs traditional)
» Application domain (telecom, e-commerce, ...)
» Problem domain (GUI, embedded, distributed, real-time, ...)
» Solution domain (framework, program, library, ...)
» Process issues
» How can we predict/estimate productivity, cost, effort, time, ...

Vienna, 11 September 2001 International Workshop on Principles of Software Evolution 11



Need more work on...

» Measuring software quality

» How can we detect decreases/increases in quality?

» How can we express quality in terms of software metrics?
» Understanding evolution

» Can we detect the kind of evolution?

» Can we reconstruct the motivation behind a certain evolution?
» Data gathering

» Often, limited amount of data is available from previous releases

» Use change-based instead of state-based CM tools
» Document as much decisions/assumptions/... as possible

Vienna, 11 September 2001 International Workshop on Principles of Software Evolution 12



	Evolution Metrics
	Goals
	Empirical approaches
	Purpose of evolution metrics
	Purpose of evolution metrics
	Goals
	Long-term evolution studies
	Short-term evolution studies
	Comparison of approaches
	Need more work on...
	Need more work on...
	Need more work on...

