
1International Workshop on Principles of Software EvolutionVienna, 11 September 2001

Evolution MetricsEvolution Metrics

Tom Mens
Programming Technology Lab

Vrije Universiteit Brussel
Belgium

tom.mens@vub.ac.be

Serge Demeyer
Lab on Re-Engineering
Universiteit Antwerpen

Belgium

serge.demeyer@ua.ac.be



2International Workshop on Principles of Software EvolutionVienna, 11 September 2001

GoalsGoals

Study existing research literature on evolution metrics to

classify existing approaches/techniques based on their purpose

compare existing empirical studies to identify open problems and 
future research trends



3International Workshop on Principles of Software EvolutionVienna, 11 September 2001

Empirical approachesEmpirical approaches

have been used to
estimate maintenance cost, effort and productivity
predict/estimate maintainability, reliability, ...
predict improvements/degradations in quality/structure
identify trends and change points in evolutionary behaviour
identify (un)stable parts of the software
identify the need for reengineering/restructuring
understand the nature of software evolution processes



4International Workshop on Principles of Software EvolutionVienna, 11 September 2001

Purpose of evolution metricsPurpose of evolution metrics

Predictive versus retrospective analysis of the software
Predictive (before evolution)

use previous and current releases to predict changes in future releases
(what, where, how, how much, how big, ...)

Retrospective (after evolution)
compare different releases to

understand the evolution (which kind, why)
detect improvements/degradations of quality

How versus what and why (cf. Lehman and Ramil)
What and why: study nature and properties of evolution
How: improve software evolution process



5International Workshop on Principles of Software EvolutionVienna, 11 September 2001

Purpose of evolution metricsPurpose of evolution metrics

Classify based on parts of software that are affected
Evolution-critical parts need to be evolved due to

poor quality, incomplete code, bad structure, unused code, duplicated 
code, overly complex code

Evolution-prone parts are likely to evolve 
correspond to highly volatile software requirements

(detect by examining release histories)
Evolution-sensitive parts have high estimated change impact

e.g., highly-coupled parts



6International Workshop on Principles of Software EvolutionVienna, 11 September 2001

GoalsGoals

Study existing research literature on evolution metrics to

classify existing approaches/techniques based on their purpose

compare existing empirical studies to identify open problems and 
future research trends



7International Workshop on Principles of Software EvolutionVienna, 11 September 2001

Long-term evolution studiesLong-term evolution studies

?for highly-reliable 
embedded real-
time systems

??probably for C 
code (GNU)

?representativ
e

visual, human 
interpretation

statistical, 
visual

statisticalhuman 
interpretation

human 
interpretation

statisticalanalysis

retrospectiveretrospectivepredictiveretrospectivepredictivepredictivepurpose

111111# cases

34 stable, 62 
development

12 US, 15 
international

> 1 / year8 major, 12 
minor

30?# releases

6 years12 yearsseveral years21 monthslong10 yearstime scale

open sourceproprietaryproprietaryproprietarypublic domainproprietaryavailability

fine: LOCcoarse: 
feature, 
modif. req., 
file change

coarse: 
module, 
feature, 
modif. req.

coarse: 
system, 
subsystem, 
module

fine: function, 
function call

coarse: 
subsystem, 
module

granularity

C source 
code

change 
history

change 
history

release 
database

C source 
code

change historykind of data

very large
2.2 MLOC

very largevery large
1.5 MLOC

very large
10MLOC

large
300 KLOC

largesoftware size

Godfrey&al00Perry&al98Graves&al00 Gall&al98Burd&MunroRamil&al00



8International Workshop on Principles of Software EvolutionVienna, 11 September 2001

Short-term evolution studiesShort-term evolution studies

No. Too small, 
too academic

probably for C++ 
code (GNU)

for refactored 
OO frameworks

for OO 
frameworks

?representative

statisticalstatisticalhuman 
interpretation

human 
interpretation

human 
interpretation

analysis

predictivepredictiveretrospectiveretrospectivepredictivepurpose

81313# cases

17 major, 24 
minor

between 2 and 43between 2 and 5# releases

very shortunknownshort< 4 yearsshorttime scale

academic1 public domain1 commercial, 2 
public domain

commercial1 proprietary & 2 
commercial

availability

fine: classes, 
methods, …

fine: classes, 
methods, LOC

fine: classes, 
methods, …

fine: classes, 
methods, …

medium: classesgranularity

C++ source 
code

C++ source 
code

Smalltalk source 
code

Smalltalk source 
code

C++ source codekind of data

medium
NOC=180
5 < KLOC < 14

medium
120<NOC<135

medium
100<NOC<1000

medium
500<NOC<800

medium
70<NOC<600

software size

Basili&al96Antoniol&al99Demeyer&al00Demeyer&al99Mattsson&al99



9International Workshop on Principles of Software EvolutionVienna, 11 September 2001

Comparison of approachesComparison of approaches

statistical, visualhuman, visualanalysis of results
oftenlimitedrepresentativeness

1between 1 and 3# case studies
> 10< 10# releases
> 2 years< 5 yearstime scale
coarsefine or mediumgranularity of metrics

proprietarycommercial,
public domain

availability

change management 
database

OO source codekind of data
(very) largemediumsoftware size

Long-term evolutionShort-term evolution



10International Workshop on Principles of Software EvolutionVienna, 11 September 2001

Need more work on...Need more work on...

Evolution metrics
must be precise and unambiguous
must be empirically validated (e.g., what constitute good coupling 
and cohesion metrics)
are preferrably language independent
at which level of granularity?

Scalability
metrics require enormous amount of data about software
becomes even worse when studying a release history
visualisation and statistical techniques may help



11International Workshop on Principles of Software EvolutionVienna, 11 September 2001

Need more work on...Need more work on...

Empirical validation
validate on sufficiently large set of realistic cases
take care with human interpretation
ensure replicability
common benchmark of cases to compare experimental results

Compare evolutive nature of software based on
Development process (open source vs traditional)
Application domain (telecom, e-commerce, ...)
Problem domain (GUI, embedded, distributed, real-time, ...)
Solution domain (framework, program, library, ...)

Process issues
How can we predict/estimate productivity, cost, effort, time, ...



12International Workshop on Principles of Software EvolutionVienna, 11 September 2001

Need more work on...Need more work on...

Measuring software quality
How can we detect decreases/increases in quality?
How can we express quality in terms of software metrics?

Understanding evolution
Can we detect the kind of evolution? 
Can we reconstruct the motivation behind a certain evolution?

Data gathering
Often, limited amount of data is available from previous releases
Use change-based instead of state-based CM tools
Document as much decisions/assumptions/... as possible


	Evolution Metrics
	Goals
	Empirical approaches
	Purpose of evolution metrics
	Purpose of evolution metrics
	Goals
	Long-term evolution studies
	Short-term evolution studies
	Comparison of approaches
	Need more work on...
	Need more work on...
	Need more work on...

