
May 19, 2002 IWPSE 1

Kim Mens 
(U. Catholique Louvain-la-Neuve)
Tom Mens 
(Vrije U. Brussel)
Michel Wermelinger 
(LabMAC – U. Lisboa)



May 19, 2002 IWPSE 2

Problem

Software evolution and maintenance are hard
– “Information overload”

• Difficult to understand and browse large software systems
• When something breaks upon evolution, it is difficult to find out what, 

where and why
– Insufficient support for managing crosscutting concerns

• “Tyranny of the dominant decomposition”
– “Intentions” of developers are not documented

• Difficult to understand relevant concerns, assumptions, intentions, 
conventions, constraints

• Hidden or implicit in source code or in heads of developers
• Should be codified explicitly, e.g., to detect potential inconsistencies 

and evolution conflicts



May 19, 2002 IWPSE 3

Solution

Intentional source-code views
– Views may crosscut the implementation decomposition
– Relations among these views
– Explicitly codify important concerns, assumptions, 

intentions and conventions …
– … that can be verified upon evolution
– Manage structural and semantic inconsistencies



May 19, 2002 IWPSE 4

Source-code views
A source-code view
– Is a set of source-code entities that address a same concern
– One view can contain many entities
– Views may crosscut dominant implementation decomposition

A source-code entity
– Can be any tangible language construct: method, class, variable
– One source-code entity can reside in multiple source-code views

Views can be defined
– Extensionally = by explicit enumeration of their elements
– Intentionally = by declaratively describing their elements
– One view can have multiple (mutually consistent) definitions

Kinds of views
– Predefined by language/environment ; Extracted by tools; User-defined



May 19, 2002 IWPSE 5

Examples of source-code views

Logic predicates
– All predefined logic predicates in 

SOUL
Alternative definitions:
1) Everything stored in one of the 

subclasses of class LogicRoot
2) Everything in a class belonging to 

a category named ‘Soul-Logic*’
3) Explicit enumeration of all 

relevant classes

Test suites
– All methods for testing the SOUL 

implementation and predicates
Alternative definitions:
1) Every method implemented by a 

subclass of class LogicTests
2) Everything in a class belonging to 

a category named ‘*Test’
3) Explicit enumeration of all relevant 

classes

Case study: SOUL, a logic interpreter implemented in VW Smalltalk



May 19, 2002 IWPSE 6

Intentional view model

Intentional views are source-code views that
– Describe how to compute their elements
– Are declared as logic predicates over the implementation

• expressive, readable, concise
• using primitives from language model

– Can be used in multiple ways
• Generative: which entities belong to view?
• Verificative: does entity belong to this view?

– Can have alternative definitions
• All definitions should have the same “extension”
• This codifies implicit constraints on the elements of a view
• Can be used to detect evolution conflicts



May 19, 2002 IWPSE 7

Language model

Entity

Expression

Name

Invocation

-isUpdate : Boolean
-toSuper : Boolean

Access

-isAbstract : Boolean
-isConstructor : Boolean
-hasClassScope : Boolean

Method Variable
-isAbstract : Boolean

ClassNamespace

-hasClassScope : Boolean

Attribute

Parameter

hasMethod

hasAttribute

hasParameter

meta hasExpressioninherits

contains

accesses

methodInProtocol

startsWithsubString
endsWith

name

Return

receiver

arguments

Self Variable

Category

classInCategory

super

meta sub

base



May 19, 2002 IWPSE 8

Example: soulPredicates
view(soulPredicates,<byCategory,byHierarchy>).
viewComment(soulPredicates,

['This intentional view contains ALL classes that implement SOUL predicates (i.e., Prolog-like
predicates that may use Smalltalk code due to language symbiosis).']).

default(soulPredicates,byCategory).

intention(soulPredicates,byCategory,?class) if
category(?category),
name(?category,?name),
startsWith(?name,['Soul-Logic']),
classInCategory(?class,?category).

include(soulPredicates,byCategory,[Soul.SoulTests.TestClauses1]).
include(soulPredicates,byCategory,[Soul.SoulTests.TestClauses2]).
include(soulPredicates,byCategory,[Soul.SoulTests.TestClassifications]).

intention(soulPredicates,byHierarchy,?class) if
…



May 19, 2002 IWPSE 9

Intention Viewer



May 19, 2002 IWPSE 10

Extension Editor



May 19, 2002 IWPSE 11

Example of relations among views

Logic predicates
– All predefined logic predicates in 

SOUL

Test suites
– All methods for testing the SOUL 

implementation and predicates

Logic predicates

∀ ∃Contains
corresponding

Test suites

ArithmeticLayer
add(?n,?m,?sum)
factorial(?n.?fact)
…

ArithmeticTest
testadd

testfactorial
…

Example: Test-suite completeness of SOUL



May 19, 2002 IWPSE 12

Relations among intentional views
Relations
– Describe important relationships among the elements 

of source-code views
– Are declared as logic predicates over source-code 

views
• expressive, readable, concise

– Often simply as a predicate r over source-code entities 
and a set quantifier (∀ , ∃ ) to map it over the views

• A r B ⇔ ∀ a ∈ A : ∃ b ∈ B : a r b
– Can be used in multiple ways (verificative / generative)
– Can be used to detect interesting evolution conflicts

Example: test suite completeness
– Every logic predicate must have a corresponding test 

method

Logic predicates

Test suites

∀

∃

Contains
corresponding



May 19, 2002 IWPSE 13

Generating code
Test-suite completeness
– Every logic predicate must have a corresponding test method

“Untested predicates” view
– Contains all predicates that have no corresponding test method
– Test-suite is complete if this view is empty

Default test methods
– Can be generated automatically for all predicates in this view

• So that we have no untested predicates anymore
– Default test methods always fail

• So that developer is “forced” to test them



May 19, 2002 IWPSE 14

Contributions

A logic meta-programming environment for
– active and enforceable documentation of object-

oriented source-code
A model for intentional source-code views
– language-independent
– cross-cutting modularisation of implementation entities
– intuitive and lightweight
– verifiable declarations
– codify intentions in software engineers’ heads



May 19, 2002 IWPSE 15

Contributions (2)

A proof-of-concept prototype tool
– adding/removing/modifying views and relations
– detecting inconsistencies and evolution conflicts

• When alternative definitions are inconsistent
• When relations among views become invalid

– advanced browsing and structuring of source-code
– code generation

Validated on a real-world case study
– ongoing evolution of SOUL
– little overhead, effort pays off (?)



May 19, 2002 IWPSE 16

Intentional source-code views
as architectural abstractions

Rule Interpreter Clause Selection

Facts and R
ules

Selected Rule
Selected Data

U
pdates

D
ata

State Data

Outputs

Inputs Knowledge
Base

Working
Memory

Rule
Interpreter

Clause
Selector

Rule
Interpreter

Clause
Selector

asks∀ ∃


	
	Problem
	Solution
	Source-code views
	Examples of source-code views
	Intentional view model
	Language model
	Example: soulPredicates
	Intention Viewer
	Extension Editor
	Example of relations among views
	Relations among intentional views
	Generating code
	Contributions
	Contributions (2)
	Intentional source-code viewsas architectural abstractions

