Intentional source-code views

et I

Kim Mens
(U. Catholique Louvain-la-Neuve)

Tom Mens
(Vrije U. Brussel)

Michel Wermelinger
(LabMAC — U. Lisboa)

May 19, 2002 IWPSE

Problem

m Software evolution and maintenance are hard

— “Information overload”
« Difficult to understand and browse large software systems

* When something breaks upon evolution, it is difficult to find out what,
where and why

— Insufficient support for managing crosscutting concerns
* “Tyranny of the dominant decomposition”

— “Intentions” of developers are not documented

« Difficult to understand relevant concerns, assumptions, intentions,
conventions, constraints

» Hidden or implicit in source code or in heads of developers

» Should be codified explicitly, e.g., to detect potential inconsistencies
and evolution conflicts

May 19, 2002 IWPSE

Solution

m Intentional source-code views
— Views may crosscut the implementation decomposition
— Relations among these views

— Explicitly codify important concerns, assumptions,
iIntentions and conventions ...

— ... that can be verified upon evolution
— Manage structural and semantic inconsistencies

May 19, 2002 IWPSE 3

Source-code views

m A source-code view
— Is a set of source-code entities that address a same concern
— One view can contain many entities
— Views may crosscut dominant implementation decomposition

m A source-code entity
— Can be any tangible language construct: method, class, variable
— One source-code entity can reside in multiple source-code views
m Views can be defined
— Extensionally = by explicit enumeration of their elements
— Intentionally = by declaratively describing their elements
— One view can have multiple (mutually consistent) definitions

m Kinds of views
— Predefined by language/environment ; Extracted by tools; User-defined

May 19, 2002 IWPSE

Examples of source-code views

m Logic predicates m Test suites

— All predefined logic predicates in — All methods for testing the SOUL
SOUL implementation and predicates

Alternative definitions: m Alternative definitions:

1) Everything stored in one of the 1) Every method implemented by a
subclasses of class LogicRoot subclass of class LogicTests

2) Everything in a class belonging to 2) Everything in a class belonging to
a category named ‘Soul-Logic* a category named “*Test

3) Explicit enumeration of all 3) Explicit enumeration of all relevant
relevant classes classes

Intentional view model

m [ntentional views are source-code views that

— Describe how to compute their elements

— Are declared as logic predicates over the implementation
* expressive, readable, concise
 using primitives from language model

— Can be used in multiple ways
« Generative: which entities belong to view?
 Verificative: does entity belong to this view?

— Can have alternative definitions
 All definitions should have the same “extension”
» This codifies implicit constraints on the elements of a view
» Can be used to detect evolution conflicts

May 19, 2002 IWPSE

Language model

name
Name contains Entity
stalbiSWith M 4
en fth

meta inherits hasExpression arguments

M

i ‘ base super ‘
Category Namespac+ meta Class suf Method Variable ExpressionTeceiver
-igAbstract : Boolean | -isAbstract : Boolean /\ N\
lassInCat ’ -isConstructor : Boolean
classInCategory)))
hasClassScope : Boolean Invocation
hasMeth
thodInProtocol S i
methodInProtocol | hhsPa amete;(:,-lfVanablkr Return

Parameter—

ACccesses Access
hasAttribute) -igUpdate : Boolean
Attribute | -tpSuper : Booleah
-hasClassScope : Boolean
May 19, 2002 IWPSE 7

Example: soulPredicates

view(soulPredicates,<byCategory,byHierarchy>).
viewComment(soulPredicates,
['This intentional view contains ALL classes that implement SOUL predicates (i.e., Prolog-like
predicates that may use Smalltalk code due to language symbiosis)."]).
default(soulPredicates,byCategory).

intention(soulPredicates,byCategory,?class) if

category(?category),

name(?category,?name),

startsWith(?name,['Soul-Logic']),

classInCategory(?class,?category).
include(soulPredicates,byCategory,[Soul.SoulTests.TestClauses1]).
include(soulPredicates,byCategory,[Soul.SoulTests. TestClauses2)).
include(soulPredicates,byCategory,[Soul.SoulTests. TestClassifications]).

intention(soulPredicates,byHierarchy,?class) if

May 19, 2002 IWPSE

Intention Viewer

% Star Browser on: byCategory _ [O] x|

General Services Help

o

- Soul Intentional Views (2l Intentional description

+% allntegersFrom1To? intention(soulPredicates hyCategary, 7class) if =
+‘¥ testclassif (2) categary(7categary), j
= ‘?i soullntentionalviews narme(?category, ?name),
----- -4z byCategory startsWAith(?name ['Soul-Logic']),
- hyHierarchy classinCategory(7class, Poategory) =|
-9 gueryCutput (1) _
%9 soulPredicates (2) BN 1y Categony j
; 0y ¥ Includes Excludes
- byHmrar:hy — [TestClauses1 = 2]
+-9 soulGenerationLibral TestClauses?
% soulMLI (2) TestClassifications
----- 42 byCategory
L1y byHierarchy
+-% ruleSelection (1)
+“76 soulDescriptionLibra
+‘?i userlnput (1)
+% soulMLILibrary (2) &] ~

May 19, 2002 i— Auto-spawn Results show extension | show relations | eckwellfurmednel

Extension Editor

& Star Browser on: soulPredicates (2)

=] E3

General

o

i..\:_g Soul Intentional Yiews L:|
+‘ii allntegersFrom1Tol
3% testclassif (2)

—“i soullntentionalviews

-4z hyCategory
L1y byHierarchy
% gueryOutput (1)

: -J-oulPredicates (2)
’2 byCategory
L1y byHierarchy
- soulGenerationLibral
5% soulMLI (2)

----- L byCategory

w4y byHierarchy

serdices Help

Comment

This intentional view contains ALL classes that
are implemented as SOLUL predicates {i.e.,
FProlog-like predicates that may use Smalltalk
code due to language symhbiosis).

hd

Elements in classification: soulFredicates

LogicPrimitives B
TestClauses?2

TestClauses1

LogicGenerationLayer

Logiclntentionalviews

LogicSmalltalkhL

LogicTutorial

TestClassifications

+-% ruleSelection (1) LagicSOULDescription

il i LogicProgramControlLayer
+g soulDescriptionLibra

e P ArithrmeticLayer

#% userinput (1)

+% soulMLILikrary (2)

£%9 soulPrimitiveLibrary
+“~i logicTesthethods (2
+‘B soulGrammarClause - |

RepositoryHandlingLayer
DataHandlingLayer
ErrarHandlingLayer

IO Layer

SymbiosisLayer

May 19, 2002

'_ Auto-spawn Fesults

showe intention

show relations :he:kcunaistenc;l

Example of relations among views

m Logic predicates m Test suites
— All predefined logic predicates in — All methods for testing the SOUL
SOUL implementation and predicates
Logic predicates Test suites
Contains [
corresponding
ArithmeticLayer ArithmeticTest
add(?n,?m,?sum) » testadd
factorial(?n.?fact) » testfactorial

— o

Relations among intentional views

, Logic predicates
m Relations e r

— Describe important relationships among the elements
of source-code views

— Are declared as logic predicates over source-code
views

* expressive, readable, concise

— Often simply as a predicate r over source-code entities Contains
and a set quantifier (L, [J)) to map it over the views

- ArB=-UOalUA:ObOB:arb
— Can be used in multiple ways (verificative / generative)
— Can be used to detect interesting evolution conflicts U
. Test| suites
m Example: test suite completeness

— Every logic predicate must have a corresponding test
method

corresponding

May 19, 2002 IWPSE 12

Generating code

m Test-suite completeness
— Every logic predicate must have a corresponding test method

m “Untested predicates” view
— Contains all predicates that have no corresponding test method
— Test-suite is complete if this view is empty

m Default test methods
— Can be generated automatically for all predicates in this view
» So that we have no untested predicates anymore

— Default test methods always fail
« So that developer is “forced” to test them

May 19, 2002 IWPSE

13

Contributions

m A logic meta-programming environment for
— active and enforceable documentation of object-
oriented source-code
m A model for intentional source-code views
— language-independent
— cross-cutting modularisation of implementation entities
— Intuitive and lightweight
— verifiable declarations
— codify intentions in software engineers’ heads

May 19, 2002 IWPSE 14

Contributions (2)

m A proof-of-concept prototype tool
— adding/removing/modifying views and relations

— detecting inconsistencies and evolution conflicts
* When alternative definitions are inconsistent
* When relations among views become invalid

— advanced browsing and structuring of source-code
— code generation

m Validated on a real-world case study
— ongoing evolution of SOUL
— little overhead, effort pays off (?)

May 19, 2002 IWPSE

15

Intentional source-code views
as architectural abstractions

Inputs

Outputs

Working

Memory

ereqg

v

Rule Interpreter

May 19, 2002

Rule
Interpreter

Knowledge
Base
iy
& o
e £
{)c? =
4‘? ol
g
&
Selected Rule Clause
Selected Data Selector

Clause Selection

[

asks [0
IWPSE

16

	
	Problem
	Solution
	Source-code views
	Examples of source-code views
	Intentional view model
	Language model
	Example: soulPredicates
	Intention Viewer
	Extension Editor
	Example of relations among views
	Relations among intentional views
	Generating code
	Contributions
	Contributions (2)
	Intentional source-code viewsas architectural abstractions

