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Problem

m Software evolution and maintenance are hard

— “Information overload”
« Difficult to understand and browse large software systems

* When something breaks upon evolution, it is difficult to find out what,
where and why

— Insufficient support for managing crosscutting concerns
* “Tyranny of the dominant decomposition”

— “Intentions” of developers are not documented

« Difficult to understand relevant concerns, assumptions, intentions,
conventions, constraints

» Hidden or implicit in source code or in heads of developers

» Should be codified explicitly, e.g., to detect potential inconsistencies
and evolution conflicts
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Solution

m Intentional source-code views
— Views may crosscut the implementation decomposition
— Relations among these views

— Explicitly codify important concerns, assumptions,
iIntentions and conventions ...

— ... that can be verified upon evolution
— Manage structural and semantic inconsistencies

May 19, 2002 IWPSE 3




Source-code views

m A source-code view
— Is a set of source-code entities that address a same concern
— One view can contain many entities
— Views may crosscut dominant implementation decomposition

m A source-code entity
— Can be any tangible language construct: method, class, variable
— One source-code entity can reside in multiple source-code views
m Views can be defined
— Extensionally = by explicit enumeration of their elements
— Intentionally = by declaratively describing their elements
— One view can have multiple (mutually consistent) definitions

m Kinds of views
— Predefined by language/environment ; Extracted by tools; User-defined
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Examples of source-code views

m Logic predicates m Test suites

—  All predefined logic predicates in — All methods for testing the SOUL
SOUL implementation and predicates

Alternative definitions: m Alternative definitions:

1) Everything stored in one of the 1) Every method implemented by a
subclasses of class LogicRoot subclass of class LogicTests

2) Everything in a class belonging to 2) Everything in a class belonging to
a category named ‘Soul-Logic* a category named “*Test

3) Explicit enumeration of all 3) Explicit enumeration of all relevant
relevant classes classes




Intentional view model

m [ntentional views are source-code views that

— Describe how to compute their elements

— Are declared as logic predicates over the implementation
* expressive, readable, concise
 using primitives from language model

— Can be used in multiple ways
« Generative: which entities belong to view?
 Verificative: does entity belong to this view?

— Can have alternative definitions
 All definitions should have the same “extension”
» This codifies implicit constraints on the elements of a view
» Can be used to detect evolution conflicts

May 19, 2002 IWPSE




Language model
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Example: soulPredicates

view(soulPredicates,<byCategory,byHierarchy>).
viewComment(soulPredicates,
['This intentional view contains ALL classes that implement SOUL predicates (i.e., Prolog-like
predicates that may use Smalltalk code due to language symbiosis)."]).
default(soulPredicates,byCategory).

intention(soulPredicates,byCategory,?class) if

category(?category),

name(?category,?name),

startsWith(?name,['Soul-Logic']),

classInCategory(?class,?category).
include(soulPredicates,byCategory,[Soul.SoulTests.TestClauses1]).
include(soulPredicates,byCategory,[Soul.SoulTests. TestClauses2)).
include(soulPredicates,byCategory,[Soul.SoulTests. TestClassifications]).

intention(soulPredicates,byHierarchy,?class) if
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Intention Viewer
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Extension Editor
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Example of relations among views

m Logic predicates m Test suites
—  All predefined logic predicates in — All methods for testing the SOUL
SOUL implementation and predicates
Logic predicates Test suites
Contains [
corresponding
ArithmeticLayer ArithmeticTest
add(?n,?m,?sum) » testadd
factorial(?n.?fact) » testfactorial

— o




Relations among intentional views

, Logic predicates
m Relations e r

— Describe important relationships among the elements
of source-code views

— Are declared as logic predicates over source-code
views

* expressive, readable, concise

— Often simply as a predicate r over source-code entities Contains
and a set quantifier (L, [J)) to map it over the views

- ArB=-UOalUA:ObOB:arb
— Can be used in multiple ways (verificative / generative)
— Can be used to detect interesting evolution conflicts U
. Test| suites
m Example: test suite completeness

— Every logic predicate must have a corresponding test
method

corresponding
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Generating code

m Test-suite completeness
— Every logic predicate must have a corresponding test method

m “Untested predicates” view
— Contains all predicates that have no corresponding test method
— Test-suite is complete if this view is empty

m Default test methods
— Can be generated automatically for all predicates in this view
» So that we have no untested predicates anymore

— Default test methods always fail
« So that developer is “forced” to test them
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Contributions

m A logic meta-programming environment for
— active and enforceable documentation of object-
oriented source-code
m A model for intentional source-code views
— language-independent
— cross-cutting modularisation of implementation entities
— Intuitive and lightweight
— verifiable declarations
— codify intentions in software engineers’ heads
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Contributions (2)

m A proof-of-concept prototype tool
— adding/removing/modifying views and relations

— detecting inconsistencies and evolution conflicts
* When alternative definitions are inconsistent
* When relations among views become invalid

— advanced browsing and structuring of source-code
— code generation

m Validated on a real-world case study
— ongoing evolution of SOUL
— little overhead, effort pays off (?)
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Intentional source-code views
as architectural abstractions
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