Declarative specification and calculation in view of software evolution 0

Raymond Boute

INTEC — Ghent University

Overview

- 0. Motivation
- 1. Functionals for transformation (induction: collecting the tools)
- 2. Making the functionals generic (design: generalizing the tools)
- 3. Functional predicate calculus (deduction: applying the new tools)
- 4. Conclusion

⁰Prepared for the 2002/01/18 meeting of the FWO Research Network "Foundations of Software Evolution".

0 Motivation

• Software evolution

- a. Software systems
- b. Design media (languages, software engineering tools)
- c. Intellectual means (paradigms, models)
- d. ...

• Evolution-insensitive methods and means

- Support for (abstract) specification and symbolic reasoning for a, b, c, d \cdots
- Program-like formalisms too detailed, implementation-oriented and unsuitable for human discourse and reasoning
- Declarative formalisms meet the needs, provided they meet their own ideals
 - * Functional and logic programming formalisms are still algorithmic

Only "genuine" declarativity can meet the objectives

* Mathematics as the proven formalism in other branches of engineering

• Observation (Reynolds):

In designing a programming language, the central problem is to organize a variety of concepts in a way which exhibits uniformity and generality. Substantial leverage can be gained in attacking this problem if the concepts can be defined concisely within a framework which has already proven its ability to impose uniformity and generality upon a wide variety of mathematics

• Problem with the existing formalisms of mathematics

- Intended for informal and semi-formal (human) discourse
- Heterogeneous mixture of very well-designed parts and very ad hoc designs
 - * Well-designed parts in algebra and analysis (due to Descartes and Leibniz)
 - * Ad hoc designs in discrete mathematics, logic and computer science (with exceptions)
- In software engineering, the highest standards of formality and precision are imposed by the discrete nature of the subject

1 Functionals for transformation

1.0 Functional Mathematics

- **Principle:** (re)defining mathematical objects, whenever feasible, as functions.
- Advantages
 - Conceptual: uniformity in treatment while respecting (only) essential differences
 - Practical: sharing general-purpose operators over functions
- Example: sequences (tuples, lists, ...)
 - Motivation for this choice: "interface" between discrete and continuous mathematics
 - Wide ramifications:
 - * Removal of all conventions having poor calculational properties Worst kind of violation: against Leibniz's principle (equals replaceable by equals, no exceptions)

```
Example: ellipsis a_0 + a_1 + \cdots + a_7
Letting a_i = i^2 yields 0 + 1 + \cdots + 49
```

- * Replacement by well-defined operators and algebraic calculation rules
- Importance: mathematical software, OpenMath etc.

• Sequences as functions

- Principle: (a, b, c) 0 = a and (a, b, c) 1 = b and (a, b, c) 2 = c
- Intuitively trivial, yet:
 - * in the literature handled often as entirely or subtly distinct from functions,
 - * in the few exceptions, functional properties left unexploited.
- Examples of functional properties of sequences
 - * Inverses: $(a, b, c, d)^- c = 2$
 - * Composition: $(0,3,5,7) \circ (2,3,1) = 5,7,3$ and $f \circ (x,y) = f x, f y$
 - * Transposition: $(f,g)^T x = f x, g x$

Seemingly secondary, but very useful once discovered

- Not obtainable by the usual formal treatments of lists, e.g.,
 - * recursive definition: [] is a list and, if x is a list, so is cons a x
 - * index function separate: $ind (cons \ a \ x) \ 0 = a \ and \ ind (cons \ a \ x) \ (n+1) = ind \ x \ n$ e.g., in Haskell: ind [a:x] 0 = a and ind [a:x] (n + 1) = x n

• Function(al)s for sequences

- Domain specification: "block" \square

$$\square n = \{k : \mathbb{N} \mid k < n\} \text{ for } n : \mathbb{N} \text{ or } n := \infty$$

- Length: #

$$\# x = n \equiv \mathcal{D} x = \square n$$
, equivalently: $\mathcal{D} x = \square (\# x)$, even $\# x = \square^- (\mathcal{D} x)$

- Prefix: >

$$\#(a > -x) = \#x + 1$$
 and $i \in \mathcal{D}(a > -x) \Rightarrow (i = 0) ? a \nmid x (i - 1)$

Observe use of the conditional: $c?b \nmid a = (a,b)c$.

- Shift: σ (for nonempty x)

$$\#(\sigma x) = \#x - 1$$
 and $i \in \mathcal{D}(\sigma x) \Rightarrow \sigma x i = x (i + 1)$

- The usual induction principle is a theorem (not an axiom)

$$\forall (x : A^* . P x) \equiv P \varepsilon \wedge \forall (x : A^* . P x \Rightarrow \forall a : A . P (a > x))$$

1.1 Towards point-free formulations

- **Signal flow systems** are assemblies of interconnected components whose dynamical behavior is modelled by functionals mapping input signals to output signals.
- Basic building blocks
 - Memoryless devices realizing arithmetic operations
 - * Sum (product, ...) of two signals x and y modelled as (x + y) t = x t + y t
 - * Explicit direct extension operator $\widehat{\ }$ (in engineering often left implicit)

- Memory devices: latches (discrete case), integrators (continuous case)

 $D_a x n = (n = 0) ? a \nmid x (n - 1)$ or, without the time variable, $D_a x = a > -x$

• Time is not structural, hence transformational design = eliminating the time variable

1.2 A transformation example

- From specification to realization
 - Recursive specification, given: set A and a:A and $g:A\to A$

$$\mathbf{def} \ f : \mathbb{N} \to A \ \mathbf{with} \ f \ n = (n = 0) ? \ a \nmid g \left(f \left(n - 1 \right) \right)$$

- Calculational transformation

$$f n = \langle \text{Def. } f \rangle \quad (n = 0) ? a \nmid g (f (n - 1))$$

$$= \langle \text{Def. } \circ \rangle \quad (n = 0) ? a \nmid (g \circ f) (n - 1)$$

$$= \langle \text{Def. } D \rangle \quad D_a (g \circ f) n$$

$$= \langle \text{Def. } \overline{=} \rangle \quad D_a (\overline{g} f) n$$

$$= \langle \text{Def. } \circ \rangle \quad (D_a \circ \overline{g}) f n, \tag{1}$$

hence $f = (D_a \circ \overline{g}) f$ by function extensionality.

- Functionals introduced (ignoring types for the time being)
 - Function composition: \circ , defined by $(f \circ g) x = f(g x)$
 - Direct extension (1 argument): —, defined by $\overline{g} \ x = g \circ x$

• Structural interpretations

- Note: the time variable is gone in $f = (D_a \circ \overline{g}) f$
- Structural interpretations of composition: (a) cascading; (b) replication

Property: $\overline{h \circ g} = \overline{h} \circ \overline{g}$ (proof: exercise)

– Immediate structural solution for the fixpoint equation $f = (D_a \circ \overline{g}) f$

- A third operator: transposition (already seen: composition, direct extension)
 - Purpose: swapping the arguments of a higher-order function

$$f^T y x = f x y$$

- Nomenclature borrowed from matrix theory
- Structural interpretations:
 - (a) from a family of signals to a tuple-valued signal,
 - (b) signal fanout

Subsumes the zip operator from functional programming zip[[a,b,c],[a',b',c']] = [[a,a'],[b,b'],[c,c']] assuming lists taken as functions.

• Calculating with transposition, composition and direct extension

- Duality between composition and transposition: provided x is not free in M,

$$M \circ (\lambda x.N) = \lambda x.MN$$
 and $(\lambda x.N)^T M = \lambda x.NM$.

- Generalizing direct extension to an arbitrary number of arguments:

$$(f \widehat{\star} f') x = f x \star f' x$$

$$= (\star) (f x, f' x)$$

$$= (\star) ((f, f')^T x)$$

$$= ((\star) \circ (f, f'))^T x$$

(hints added or ally) hence $f \mathrel{\widehat{\star}} f' = (\star) \circ (f,f')^T.$

We define the generalized direct extension operator $\stackrel{<}{-}$ by

$$\hat{g} h = g \circ h^T \tag{2}$$

for any function g whose argument is a function and any family h of functions.

2 Making the functionals generic

2.0 Conventions for functions

- Function = domain $(\mathcal{D} f)$ and mapping (unique f x for every x in $\mathcal{D} f$).
- Function equality = equality of the domains and the mappings
 - Leibniz's principle:

$$f = g \Rightarrow \mathcal{D} f = \mathcal{D} g \land (x \in \mathcal{D} f \cap \mathcal{D} g \Rightarrow f x = g x)$$
 (3)

- function extensionality: using a fresh dummy x,

$$\frac{q \Rightarrow \mathcal{D} f = \mathcal{D} g \land (x \in \mathcal{D} f \cap \mathcal{D} g \Rightarrow f x = g x)}{q \Rightarrow f = q}.$$
 (4)

- Style of definition (awaiting quantifiers)
 - a domain axiom of the form $x \in \mathcal{D} f \equiv x \in X \land p_x$
 - a mapping axiom of the form $x \in \mathcal{D} f \Rightarrow q_{f,x}$

(x a variable, X a set, p_x and $q_{f,x}$ propositions, subscripts specify free occurrences).

Example: the constant function specifier \bullet : for any set X and any e,

$$\mathcal{D}(X^{\bullet}e) = X \quad \text{and} \quad x \in X \Rightarrow (X^{\bullet}e) x = e. \tag{5}$$

• Denoting functions by abstractions

- Principle: recall the style of definition
 - * a domain axiom of the form $x \in \mathcal{D} f \equiv x \in X \land p_x$
 - * a mapping axiom of the form $x \in \mathcal{D} f \Rightarrow q_{f,x}$

If $q_{f,x}$ has the explicit form $f x = e_x$, then we denote the function by $x : X \wedge p \cdot e$ ($\wedge p$ optional)

- Axioms (a typed lambda calculus)

$$d \in \mathcal{D}(x: X \land p.e) \equiv d \in X \land p_d^x$$

$$d \in \mathcal{D}(x: X \land p.e) \Rightarrow (x: X \land p.e) d = e_d^x$$
(6)

- Examples
 - * $X \cdot e = x : X \cdot e$ (choosing x not free in e)
 - * $n: \mathbb{Z} \cdot 2 \cdot n$ doubles every natural number

2.1 Design criteria and method for generic functionals

• Reason for making fuctionals generic:

in functional mathematics, they become shared by many more kinds of objects than usual.

- Shortcomings of traditional operators: the restrictions on the arguments, e.g.,
 - $-f \circ g$ requires $\mathcal{R} g \subseteq \mathcal{D} f$, in which case $\mathcal{D} (f \circ g) = \mathcal{D} g$
 - f^- requires f injective, in which case $\mathcal{D} f^- = \mathcal{R} f$

• Approach used here;

- No restrictions on the argument function(s)
- Refine domain of the result function
- Conservative, i.e., if the traditional restriction is satisfied, the generalization yields the "old" case

2.2 Some important generic functionals

• Filtering (\downarrow) generalizes $f = x : \mathcal{D} f$. f x as follows: for any function f and predicate P,

$$f \downarrow P = x : \mathcal{D} f \cap \mathcal{D} P \wedge P x \cdot f x \tag{7}$$

Shorthand: f_P for $f \downarrow P$. Example: $f_{\leq n}$.

Also defined for sets: $x \in S_P \equiv x \in S \land Px$, yielding convenient abbreviations like $\mathbb{R}_{\geq 0}$.

• Composition (\circ) generalizes traditional composition: for any functions f and g,

$$x \in \mathcal{D}(f \circ g) \equiv x \in \mathcal{D}g \land g x \in \mathcal{D}f$$

$$x \in \mathcal{D}(f \circ g) \Rightarrow (f \circ g) x = f(g x).$$
 (8)

Conservational: if the traditional requirement $\mathcal{R} g \subseteq \mathcal{D} f$ is satisfied, then $\mathcal{D} (f \circ g) = \mathcal{D} g$. Illustrations

- Since sequences are functions, $(0,3,5,7)\circ(2,3,1)=5,7,3 \text{ and } (0,3,5,7)\circ(2,3,5)=5,7,\\ \text{but also } (0,3,5,7)\circ(5,3,1)=(7,3)\circ(-1) \text{ (not a sequence)}.$
- Similarly, since $f \circ (x, y) = f x$, f y (x and y in $\mathcal{D} f$), \circ subsumes the map operator from functional programming, viz., $f \in [x, y] = [f x, f y]$.

• Direct extension (^)

- Principle: for any (infix) operator \star and any functions f and g, we let the domain of $f \hat{\star} g$ contain exactly those values x for which the expression $f x \star g x$ does not contain any out-of-domain applications
- Resulting definition:

$$x \in \mathcal{D}(f \,\widehat{\star} \, g) \equiv x \in \mathcal{D} \, f \cap \mathcal{D} \, g \wedge (f \, x, g \, x) \in \mathcal{D}(\star)$$

$$x \in \mathcal{D}(f \,\widehat{\star} \, g) \Rightarrow (f \,\widehat{\star} \, g) x = f \, x \star g \, x. \tag{9}$$

- Transposition ($-^T$) Recall the definition ignoring types: $f^T y x = f x y$
 - Simplest argument type: $A \to (B \to C)$ (given sets A, B, C). The image f^T of $f: A \to (B \to C)$ has type $B \to (A \to C)$ and property $(f^T)^T = f$. Note: one usually writes $A \to B \to C$ for $A \to (B \to C)$.
 - We want the argument of T to be any function family.
 - * Liberal design: $\mathcal{D} f^T = \bigcup x : \mathcal{D} f \cdot \mathcal{D} (f x)$ or, in point-free style, $\mathcal{D} f^T = \bigcup (\mathcal{D} \circ f)$ (not elaborated here)
 - * Preferred design is with intersection in view of $g h = g \circ h^T$ to generalize (9)

$$\mathcal{D} f^{T} = \bigcap (x : \mathcal{D} f \cdot \mathcal{D} (f x))$$

$$y \in \mathcal{D} f^{T} \Rightarrow x \in \mathcal{D} f \Rightarrow f^{T} y x = f x y$$
(10)

or, in compact form, $f^T = y : \bigcap (\mathcal{D} \circ f) \cdot x : \mathcal{D} f \cdot f x y$.

3 Functional predicate calculus

3.0 Axioms

• Predicates are a boolean-valued functions.

Choice false/true versus 0 / 1 secondary here but, in a wider context, 0 / 1 is advantageous.

- Quantifiers \forall and \exists are predicates over predicates.
 - Informally:
 - * $\forall P$ means that P is the constant 1-valued predicate
 - * $\exists P$ means that P is not the constant 0-valued predicate.
 - Formal axioms:

$$\forall P \equiv (P = \mathcal{D}P^{\bullet}1) \text{ and } \exists P \equiv (P \neq \mathcal{D}P^{\bullet}0). \tag{11}$$

The axioms are conceptually indeed as simple as they seem, but they create a rich algebraic structure (dozens of useful calculation rules)

– Observation: \forall and \exists are typical elastic operators.

3.1 Intermezzo: elastic operators and ramifications

• Principle: functionals replacing the various kinds of common ad hoc abstractors, e.g.,

$$\forall x: X \qquad \sum_{i=m}^{n} \qquad \lim_{x \to a}.$$

Together with function abstraction (6) they yield readily recognizable expressions, e.g.,

$$\forall x: X . P x \quad \sum i: m ... n . x_i \quad \text{lim } (x: \mathbb{R} . f x) a$$

or, for less casual readers, point-free forms such as

$$\forall P \quad \sum x \quad \lim f a$$

Example: $\forall x : \mathbb{R} \cdot x^2 \ge 0$ obtains familiar form and meaning, but also a novel decomposition: \forall and $x : \mathbb{R} \cdot x^2 \ge 0$, are both functions.

- General importance: Same functionals for point-free and point-wise expressions.
- For predicate calculus:
 - A calculus of functions (familiar to working mathematicians and engineers)
 - Algebraic flavor, laws more calculation-friendly

3.2 Derived calculation rules

- First batch: simple rules derived directly from axioms (11) and function equality (3,4).
 - $\forall (X \cdot 1) \equiv 1 \text{ and } \exists (X \cdot 0) \equiv 0$
 - $\forall \varepsilon \equiv 1$ and $\exists \varepsilon \equiv 0 \ (\varepsilon \text{ is the } empty \text{ function or predicate with } \mathcal{D} \varepsilon = \emptyset)$
 - For any non-constant $P: \forall P \equiv 0 \text{ and } \exists P \equiv 1$

Theorems illustrative of the algebraic equational style:

- Duality: $\forall (\neg P) \equiv (\neg \exists) P$
- Meeting: $\forall P \land \forall Q \Rightarrow \forall (P \ \widehat{\land} \ Q)$. Conditional converse: $\mathcal{D}P = \mathcal{D}Q \Rightarrow \forall (P \ \widehat{\land} \ Q) \Rightarrow \forall P \land \forall Q$.

Typical calculational proof for duality

$$\forall (\neg P) \equiv \langle \text{Def. } \forall (11), \mathcal{D}(\neg P) = \mathcal{D}P \rangle \quad \neg P = \mathcal{D}P^{\bullet} 1$$

$$\equiv \langle \neg P = Q \equiv P = \neg Q \rangle \qquad P = \neg (\mathcal{D}P^{\bullet} 1)$$

$$\equiv \langle e \in \mathcal{D}g \Rightarrow \overline{g}(X^{\bullet}e) = X^{\bullet}(ge) \rangle \quad P = \mathcal{D}P^{\bullet}(\neg 1)$$

$$\equiv \langle \neg 1 = 0, \text{ def. } \exists (11) \rangle \qquad \neg (\exists P)$$

$$\equiv \langle x \in \mathcal{D}(\overline{g}f) \Rightarrow \overline{g}fx = g(fx) \rangle \quad \neg \exists P$$

Justifications are given between $\langle \rangle$ (Feyen's convention). All are properties of generic functionals (exercises).

• First batch (continued)

 Properties of constant predicates revealing the role of types (uncommon in logic textbooks)

$$\forall (X^{\bullet}0) \equiv X = \emptyset \text{ and } \exists (X^{\bullet}1) \equiv X \neq \emptyset$$

Combined with the earlier properties,

$$\forall (X^{\bullet} x) \equiv x \lor X = \emptyset \text{ and } \exists (X^{\bullet} x) \equiv x \land X \neq \emptyset$$

- Fast technique for laws of this kind: case analysis (a) and Shannon expansion (b, c)
 - a. $\forall P_0^v \land \forall P_1^v \Rightarrow \forall P$
 - b. $\forall P \equiv (v \land \forall P_1^v) \lor (\neg v \land \forall P_0^v)$
 - c. $\forall P \equiv (v \Rightarrow \forall P_1^v) \land (\neg v \Rightarrow \forall P_0^v)$

assuming v is a boolean variable in P. Similarly for \exists .

- Important consequenses are semidistributivity rules:
 - $* \forall (x \overrightarrow{\wedge} P) \equiv (x \wedge \forall P) \vee \mathcal{D} P = \emptyset$
 - $* \forall (x \stackrel{\rightharpoonup}{\Rightarrow} P) \equiv x \Rightarrow \forall P$
 - $* \forall (P \stackrel{\leftarrow}{\Rightarrow} x) \equiv \exists P \Rightarrow x$

where $\stackrel{\rightharpoonup}{-}$ is the (right) half direct extension operator

$$x \stackrel{\rightharpoonup}{\star} f = (\mathcal{D} f^{\bullet} x) \stackrel{\frown}{\star} f \tag{12}$$

- **Second batch:** metatheorems whose counterparts are axioms in logical textbooks. Here they are again *consequences* of the axioms (11) and function equality (3,4).
 - Instantiation: $\forall P \Rightarrow x \in \mathcal{D}P \Rightarrow Px$
 - Generalization: $q \Rightarrow x \in \mathcal{D} P \Rightarrow P x \vdash q \Rightarrow \forall P$

Importance:

- Basis for proving all properties usually appearing in logic textbooks
- Additional important rules for practical applications, e.g., trading

$$\forall P_R \equiv \forall (R \Longrightarrow P) \text{ and } \exists P_R \equiv \exists (R \land P)$$
 (13)

• Third batch: shows correspondence between point-free and conventional formulas. Convention: P, Q be predicates, $R: X \to Y \to \mathbb{B}$ for some X and Y.

Empty rule
$$\forall \varepsilon = 1$$

1-point rule $\forall (x \mapsto y) = y$
Merge rule $P \odot Q \Rightarrow \forall (P \cup Q) = \forall P \land \forall Q$
Distribution $\mathcal{D}P = \mathcal{D}Q \Rightarrow \forall (P \land Q) = \forall P \land \forall Q$
Transposition $\forall (\forall \circ R) = \forall (\forall \circ R^T)$
Composition $\forall P \equiv \forall (P \circ f)$ provided $\mathcal{D}P \subseteq \mathcal{R}f$
Trading $\forall (P \downarrow Q) \equiv \forall (Q \Rightarrow P)$

Replacing predicates by abstractions with boolean expressions, under proper conditions:

```
Empty rule
                       \forall (x:\emptyset . p) = 1
                       \forall (x:X:x=y\Rightarrow p)\equiv y\in X\wedge p_y^x
1-point rule
Domain split
                      \forall (x: X \cup Y . p)
                          \equiv \forall (x:X.p) \land \forall (x:Y.p)
 (if compat.)
                       \forall (x:X:p \land q)
Distribution
                           \equiv \forall (x:X.p) \land \forall (x:X.q)
Dummy swap \forall (x:X . \forall y:Y . p)
                           \equiv \forall (y:Y.\forall x:X.p)
Dummy chng \forall (x:X:p) \equiv \forall (y:Y:p_{fy}^x)
Trading
                      \forall (x: X \land p.q) \equiv \forall (x: X.p \Rightarrow q)
```

3.3 Example: refined function typing

Predicate calculus applicable in pure and applied mathematics, esp. software engineering. Here: only one example, wrapping up a few issues about the function range.

• Function range (\mathcal{R}): for any function F and any y,

$$y \in \mathcal{R} f \equiv \exists x : \mathcal{D} f \cdot y = f x$$
 (14)

- Alternative symbol (same axiom): { }
 - Motivation: expressions like $\{a, b, c\}$ and $\{n : \mathbb{Z} \cdot 2 \cdot n\}$ have their usual meaning.
 - $\text{ Abstraction vatiant: } x: X \mid p \text{ stands for } x: X \wedge p \,.\, x, \text{ as in } \square \, n = \{k: \mathbb{N} \mid k < n\}.$
 - Useful derived rule: $y \in \{x : X \mid p\} \equiv y \in X \land p_y^x$ (most often used rule in practice)
 - We do not use { } as a singleton set operator (ι instead)

- Illustration: the function inverse We define f^- for any f (not only injective f)
 - Principle: let $\mathcal{D} f^-$ contain just the points corresponding to unique elements in $\mathcal{D} f$
 - Formalization: bijectivity domain and the bijectivity range:

- Generic function inverse functional -, defined for any function f by

$$\mathcal{D} f^{-} = \operatorname{Bran} f \wedge \forall x : \operatorname{Bdom} f \cdot f^{-} (f x) = x. \tag{16}$$

• The function approximation paradigm for range refinement

- Purpose: formalizing tolerances for functions
- Principle: a tolerance function T specifiying, for every domain value x the set Tx of allowable values. Important: the domain of T serves as the domain specification Formalized: a function f meets tolerance T iff

$$\mathcal{D} f = \mathcal{D} T \quad \land \quad x \in \mathcal{D} f \cap \mathcal{D} T \Rightarrow f x \in T x.$$

Pictorial representation (example: radio frequency filter characteristic).

- Generalized Functional Cartesian Product X: for any family T of sets,

$$f \in XT \equiv \mathcal{D}f = \mathcal{D}T \land \forall x : \mathcal{D}f \cap \mathcal{D}T \cdot f x \in Tx.$$
 (17)

Properties: (a) If $X T \neq \emptyset$, then $X^{-}(X T) = T$

(b) with function equality $(f = g \equiv \mathcal{D} f = \mathcal{D} g \land \forall x : \mathcal{D} f \cap \mathcal{D} g \cdot f x = g x)$, we obtain $f = g \equiv f \in X (\iota \circ g)$ (exact approximation).

- Applications in the discrete mathematics

* Expressing the common Cartesian product: with T := A, B (a pair of sets),

$$X(A,B) = A \times B$$

assuming the common Cartesian product is defined (for pairs as fuctions) by

$$(a,b) \in A \times B \equiv a \in A \land b \in B$$

If $A \neq \emptyset$ and $B \neq \emptyset$, then $\times^-(A \times B) 0 = A$ and $\times^-(A \times B) 1 = B$.

* Expressing dependent types: letting $T := a : A \cdot B$ with a free in B,

$$\times (a:A.B) = \{f:A \rightarrow \bigcup a:A.B \mid \forall a:A.f \ a \in B\}$$

Convenient shorthand: $A \ni a \to B_a$ for $X : A : B_a$

Example: $A^+ \ni x \to A^{\# x-1}$ for the type of the σ -operator.

Other use: clearer in chained dependencies, e.g., $A \ni a \to B_a \ni b \to C_{a,b}$.

4 Conclusion

- Mathematical concepts and operators arising from a seemingly specialized area of engineering (signal flow realizations) can be made generic and thereby extend their applicability to a much wider area of engineering and mathematics.
- This was illustrated by an algebraic and functional formulation of predicate calculus, providing a convenient formalism for specification and reasoning about software systems of an evolutionary nature.