Declarative specification and calculation
in view of software evolution’

Raymond Boute INTEC — Ghent University
Overview

0. Motivation

1. Functionals for transformation (induction: collecting the tools)

2. Making the functionals generic (design: generalizing the tools)

3. Functional predicate calculus (deduction: applying the new tools)

4. Conclusion

OPrepared for the 2002/01/18 meeting of the FWO Research Network “Foundations of Software Evolution”.

0

0 Motivation

e Software evolution

. Software systems

a
b. Design media (languages, software engineering tools)

o

. Intellectual means (paradigms, models)

d. .-
e Evolution-insensitive methods and means
— Support for (abstract) specification and symbolic reasoning
fora, b, c,d---

— Program-like formalisms too detailed, implementation-oriented
and unsuitable for human discourse and reasoning

— Declarative formalisms meet the needs, provided they meet their own ideals
*x Functional and logic programming formalisms are still algorithmic
Only “genuine” declarativity can meet the objectives

x Mathematics as the proven formalism in other branches of engineering

e Observation (Reynolds):

In designing a programming language, the central problem is to or-
ganize a variety of concepts in a way which exhibits uniformity and
generality. Substantial leverage can be gained in attacking this prob-
lem if the concepts can be defined concisely within a framework which
has already proven its ability to impose uniformity and generality upon
a wide variety of mathematics

e Problem with the existing formalisms of mathematics

— Intended for informal and semi-formal (human) discourse
— Heterogeneous mixture of very well-designed parts and very ad hoc designs

* Well-designed parts in algebra and analysis (due to Descartes and Leibniz)

* Ad hoc designs in discrete mathematics, logic and computer science
(with exceptions)

— In software engineering, the highest standards of formality and precision
are imposed by the discrete nature of the subject

1 Functionals for transformation

1.0 Functional Mathematics

e Principle: (re)defining mathematical objects, whenever feasible, as functions.
e Advantages

— Conceptual: uniformity in treatment while respecting (only) essential differences

— Practical: sharing general-purpose operators over functions
e Example: sequences (tuples, lists, .. .)

— Motivation for this choice: “interface” between discrete and continuous mathematics
— Wide ramifications:

* Removal of all conventions having poor calculational properties
Worst kind of violation: against Leibniz’s principle
(equals replaceable by equals, no exceptions)

Example: ellipsis ag + a; + - -+ + ay
Letting a; = i yields 0 +1 + --- + 49
x Replacement by well-defined operators and algebraic calculation rules

— Importance: mathematical software, OpenMath etc.

Sequences as functions

— Principle: (a,b,¢)0=a and (a,b,c)1 =0 and (a,b,c)2 =—c
— Intuitively trivial, yet:

x in the literature handled often as entirely or subtly distinct from functions,
x in the few exceptions, functional properties left unexploited.
— Examples of functional properties of sequences
x Inverses: (a,b,c,d)” ¢ =2
« Composition: (0,3,5,7)0(2,3,1) =5,7,3 and fo(z,y)= fx, fy
* Transposition: (f,¢)Tr = fz,gx

Seemingly secondary, but very useful once discovered

Not obtainable by the usual formal treatments of lists, e.g.,

% recursive definition: [] is a list and, if = is a list, so is consax

% index function separate: ind (consax)0 = a and ind (consaz) (n+1) = indxn
e.g., in Haskell: ind [a:x] 0 = a and ind [a:x] (n + 1) = xn

e Function(al)s for sequences

— Domain specification: “block” [

On={k:N|k<n} forn:Norn:=oco
Length: #

#x=n = Dz =[On, equivalently: Dz = O (#z), even # 2 =10 (Dx)
Prefix: >

#(a>z)=#x+1and
i€Da>z)=(1=0)7atz(i—1)

Observe use of the conditional: ¢?b 1t a = (a,b)c.

Shift: o (for nonempty x)

#(ox)=#xz—1and
i€D(ox)=>ocxi=x(i+1)

The usual induction principle is a theorem (not an axiom)
V(z:A* . Px) = PeANV(x:A*. Pz =Va:A.P(a>x))

1.1 Towards point-free formulations

e Signal flow systems are assemblies of interconnected components whose dynamical
behavior is modelled by functionals mapping input signals to output signals.

e Basic building blocks

— Memoryless devices realizing arithmetic operations

* Sum (product, ...) of two signals = and y modelled as (z + y)t =zt + yt
« Explicit direct extension operator — (in engineering often left implicit)

N .)
@ YDrts <c>yj>x+y

Y

— Memory devices: latches (discrete case), integrators (continuous case)

Doxn=(n=0)7atz(n—1)or, without the time variable, D,z = a> =z

X a>—2x a a>—2x X
—Z . p, (=5 Tt L

(b) (d)

e Time is not structural, hence transformational design = eliminating the time variable

1.2 A transformation example

e From specification to realization

— Recursive specification, given: set A and a: A and g: A— A
def f:N— Awith fn=(n=0)7atg(f(n—-1))

— Calculational transformation

fn="(Def f) (n=0)%atg(f(n—1))
= (Def. o) (n=0)7at(gof)(n—1)
= (Def. D) D,(gof)n
= (Def. =) Dq(7 f)n
= (Def. o) (Dacg)fn,

hence f = (D, 0g) f by function extensionality.
e Functionals introduced (ignoring types for the time being)

— Function composition: o, defined by (fog)x = f(gx)

— Direct extension (1 argument): =, defined by g x = gox

e Structural interpretations

— Note: the time variable is gone in f = (D, 07) f

— Structural interpretations of composition: (a) cascading; (b) replication

L f f o
[fou

—>

(a)

hOg

x
_I—" f fr

(b)

Property: hog = h oG (proof: exercise)

— Immediate structural solution for the fixpoint equation f = (D,07q) f

(Block diagram)

!

D, >

n

o

(LabVIEW diagram)

f<n

e A third operator: transposition (already seen: composition, direct extension)

— Purpose: swapping the arguments of a higher-order function
flyz=fry

— Nomenclature borrowed from matrix theory

— Structural interpretations:
(a) from a family of signals to a tuple-valued signal,
(b) signal fanout

/ Jo Jfox

r—— 00— 00— 06— 00— 00—
fra

b — —— x
W o LT
— Subsumes the zip operator from functional programming

Zip[[a’b’C] s [a’ ,b’ ,C’]] = [[a,a’] N [b,b’] s [C,C,]]

assuming lists taken as functions.

e Calculating with transposition, composition and direct extension

— Duality between composition and transposition: provided z is not free in M,

Mo(Az.N)=Xx.MN and (\z.N)"M = \x.NM.

— Generalizing direct extension to an arbitrary number of arguments:

(f*xfz = faxfa
= () (fz, f2)
= (),)
= ((Dolf, /)

(hints added orally) hence f % f' = (x)o (f, f)T.

We define the generalized direct extension operator — by
gh=goht (2)

for any function g whose argument is a function and any family A of functions.

10

2 Making the functionals generic

2.0 Conventions for functions
e Function = domain (D f) and mapping (unique f z for every z in D f).
e Function equality = equality of the domains and the mappings
— Leibniz’s principle:
f=9g=Df=DgAN(z€eDfNDg= fzr=gx) (3)
— function extensionality: using a fresh dummy x,
qg=Df=DgN(zeDfNDg= fzr=gx)
9= f=yg
e Style of definition (awaiting quantifiers)

: (4)

— a domain axiom of the formz € D f = x € X A p,
— a mapping axiom of the foom 2 € D f = ¢y,

(x a variable, X a set, p, and gy, propositions, subscripts specify free occurrences).

Example: the constant function specifier *: for any set X and any e,

D(X®e)=X and z€ X = (X*e)z=ce. (5)

11

e Denoting functions by abstractions

— Principle: recall the style of definition

*x a domain axiom of the formx € Df = x € X Ap,

* a mapping axiom of the form x € D f = qs,

If g7, has the explicit form fx = e,,

then we denote the function by z: X Ap.e (A p optional)

— Axioms (a typed lambda calculus)

deD(x: X Ap.e)
deD(z: X Ap.e)

— Examples

=

de X Npy
(x: X Ap.e)d= €]

* X *e=u1x:X.e (choosing x not free in e)

x n:7Z.2-n doubles every natural number

12

2.1 Design criteria and method for generic functionals

¢ Reason for making fuctionals generic:

in functional mathematics, they become shared by many more kinds of objects than usual.
e Shortcomings of traditional operators: the restrictions on the arguments, e.g.,
— fogrequires Rg C D f, in which case D (fog) =Dg
— [~ requires f injective, in which case D f~ =R f
e Approach used here;

— No restrictions on the argument function(s)
— Refine domain of the result function

— Conservative, i.e., if the traditional restriction is satisfied, the generalization yields
the “old” case

13

2.2 Some important generic functionals
e Filtering (|) generalizes f = x:D f. f x as follows: for any function f and predicate P,
flP = 2:DfNDPAPx.fx (7)
Shorthand: fp for f | P. Example: f,.
Also defined for sets: z € Sp = x € S A\ Pz, yielding convenient abbreviations like R>y.

e Composition (o) generalizes traditional composition: for any functions f and g,

xr€D(fog) = z€DgNhgreDf
z€D(fog) = (fog)z=[(g2). (8)

Conservational: if the traditional requirement R g C D f is satisfied, then D (fog) = D g.

IMlustrations

— Since sequences are functions,
(0,3,5,7)0(2,3,1) =5,7,3 and (0,3,5,7)0(2,3,5) = 5,7,
but also (0,3,5,7)0(5,3,1) = (7,3) o (—1) (not a sequence).

— Similarly, since fo(z,y) = fx,fy (z and y in D f), o subsumes the map operator
from functional programming, viz., f @ [x, y] = [f x, f y].

14

e Direct extension (&)

— Principle: for any (infix) operator * and any functions f and g, we let the domain
of f % g contain exactly those values = for which the expression fx x gx does not
contain any out-of-domain applications

— Resulting definition:
x€D(fxg) = z€DfNDgA(fx,gx) € D (%)
1€D(fig) = (fg)o—furgn (9)
e Transposition (—7) Recall the definition ignoring types: flyxr = fxy
— Simplest argument type: A— (B — C) (given sets A, B, ().
The image f1 of f: A— (B — C) has type B— (A— C) and property (f1)T = f.
Note: one usually writes A— B — C for A— (B—C).
— We want the argument of 7 to be any function family.
* Liberal design: D fT = U z:D f.D (f z) or, in point-free style, D fT = J (D o f)
(not elaborated here)
s Preferred design is with intersection in view of g h = goh” to generalize (9)
DT = N@:Df.D(f1))
yeDfT = zeDf= flya=fzy (10)
or, in compact form, fT =y: N (D of).x2:Df.fzy.

15

3 Functional predicate calculus

3.0 Axioms

e Predicates are a boolean-valued functions.
Choice false/ true versus 0 / 1 secondary here but, in a wider context, 0 / 1 is advan-
tageous.

e Quantifiers V and d are predicates over predicates.

— Informally:

x V P means that P is the constant 1-valued predicate
x 3 P means that P is not the constant 0-valued predicate.

— Formal axioms:
VP = (P=DP*1l) and 3P = (P#DP"*0). (11)

The axioms are conceptually indeed as simple as they seem,
but they create a rich algebraic structure (dozens of useful calculation rules)

— Observation: V and 3 are typical elastic operators.

16

3.1 Intermezzo: elastic operators and ramifications

e Principle: functionals replacing the various kinds of common ad hoc abstractors, e.g.,

Vr: X > lim .

i=m Ta
Together with function abstraction (6) they yield readily recognizable expressions, e.g.,
Ve:X. Px Yim.n.z; lim(z:R.fz)a
or, for less casual readers, point-free forms such as
VP Yz I|lim fa

Example: Yz :R.2% > 0 obtains familiar form and meaning,
but also a novel decomposition: V and z:R.z? > 0, are both functions.

e General importance: Same functionals for point-free and point-wise expressions.
e For predicate calculus:

— A calculus of functions (familiar to working mathematicians and engineers)

— Algebraic flavor, laws more calculation-friendly

17

3.2 Derived calculation rules
e First batch: simple rules derived directly from axioms (11) and function equality (3,4).
—V(X*l)=1land 3(X*0) =0
— Ve = 1 and Je = 0 (e is the empty function or predicate with De = ()
— For any non-constant P: VP = 0and dP =1

Theorems illustrative of the algebraic equational style:

— Duality: V(S P) = (F3)P
— Meeting: VP AVQ =V (P A Q).
Conditional converse: DP=DQ = V(P AQ)=VPAVQ.

Typical calculational proof for duality
V(P) = (Def.V(11),D(=P)=DP) =P=DP°1
FP=Q=P=5Q) P==(DP°*1)
= (e€Dg=7(X*%e)=X"*(ge)) P=DP*(—1)
(=1=0, def. 3 (11)) - (3P)
(2eD@f)=gfe=g(fz)) =3P

Justifications are given between () (Feyen’s convention).
All are properties of generic functionals (exercises).

18

e First batch (continued)

— Properties of constant predicates revealing the role of types
(uncommon in logic textbooks)

V(X®0)=X=0 and 3I(X°1) =X #0
Combined with the earlier properties,
V(X*2z) =2vX =0 and F3(X°*2) =2 AX A0

— Fast technique for laws of this kind: case analysis (a) and Shannon expansion (b, ¢)
a. VP§ N\NP} = VP
b. VP = (vAYPY)V (nvAVYFY)
c. VP = (v=VP)AN(—v=VEF)
assuming v is a boolean variable in P. Similarly for 3.
— Important consequenses are semidistributivity rules:
*x V(x AP) = (xt AVP)VDP =)
*x V(r=>P)=xz=>VP
* V(P=2) =3P =1

where — is the (right) half direct extension operator
vxf = (Dfta)xf (12)

19

e Second batch: metatheorems whose counterparts are axioms in logical textbooks.

Here they are again consequences of the axioms (11) and function equality (3,4).

— Instantiation: VP =x € DP = Px
— Generalization: =2 € DP = Px +— q=VP

Importance:

— Basis for proving all properties usually appearing in logic textbooks

— Additional important rules for practical applications,e.g.,, trading

VPr=V(R=P) and 3P = 3(RA P)

20

(13)

e Third batch: shows correspondence between point-free and conventional formulas.
Convention: P, () be predicates, R: X —Y — B for some X and Y.

Empty rule Ve=1

I-point rule VY (z—vy) =y

Merge rule P©Q =V(PUQ)=VPAVQ
Distribution DP=DQ=V(PAQ)=YPAVQ
Transposition V (V o R) =V (V o RT)

Composition ¥V P = YV (Po f) provided DP C R f
Trading V(PlQ) =VY(Q=P)

Replacing predicates by abstractions with boolean expressions, under proper conditions:

Empty rule V(z:0.p)=1

I-point rule V(z:X.z=y=p) =ye€ X Ap

Domain split YV (z: X UY .p)

(if compat.) =V(x:X.p)AV(z:Y .p)

Distribution ¥V (z:X .pAq)
=V(z:X.p)AV(z:X.q)

Dummy swap V(z:X .Vy:Y .p)
=V(y:Y.Vz:X.p)

Dummy chng V(x:X.p) = V(y:Y .p},)

Trading V(z: XAp.q) =V(z:X.p=q)

21

3.3 Example: refined function typing

Predicate calculus applicable in pure and applied mathematics, esp. software engineering.
Here: only one example, wrapping up a few issues about the function range.

e Function range (R): for any function F' and any y,

yeERf = Je:Df.y=fx (14)

e Alternative symbol (same axiom): { }

— Motivation: expressions like {a,b,c} and {n:7Z.2 - n} have their usual meaning.
— Abstraction vatiant: z: X | p stands for : X Ap.z,asin On = {k:N| k < n}.
— Useful derived rule: y € {z: X | p} = y € X Ap; (most often used rule in practice)

— We do not use { } as a singleton set operator (¢ instead)

22

e Illustration: the function inverse We define f~ for any f (not only injective f)

— Principle: let D f~ contain just the points corresponding to unique elements in D f

— Formalization: bijectivity domain and the bijectivity range:

Bdomf = {x:Df|Va":Df.fo=fa'=z=2a}

Branf = {z:Bdom f.fx}. (15)
— Generic function inverse functional —~, defined for any function f by
Df =Branf A Vz:Bdomf.f~(fx)==x. (16)

23

e The function approximation paradigm for range refinement

— Purpose: formalizing tolerances for functions

— Principle: a tolerance function T' specifiying, for every domain value x the set T x
of allowable values. Important: the domain of 7" serves as the domain specification

Formalized: a function f meets tolerance 7' iff

Df=DT N z€eDfNDT = fzecTlux.

Pictorial representation (example: radio frequency filter characteristic).
1Gain
Tx

fz

> Frequency

T
— Generalized Functional Cartesian Product X: for any family T of sets,
feXT = Df=DTAYVx:DfNDT.fxeTux. (17)

Properties: (a) If XT # 0, then X~ (XT)=T
(b) with function equality (f =g = Df = DgAVax:DfNDg.fx = gx), we
obtain f =g = f € X (1 og) (exact approximation).

24

— Applications in the discrete mathematics

* Expressing the common Cartesian product: with T:= A, B (a pair of sets),
X (A,B)=AxB
assuming the common Cartesian product is defined (for pairs as fuctions) by
(a,b) e AxB=acANbEB

If A% () and B # 0, then X (AxB)0=Aand X (Ax B)1=B.
* Expressing dependent types: letting T:=a: A. B with a free in B,

X(a:A.B)={f:A—>Ua:A.B|Va:A.fa€c B}

Convenient shorthand: Asa— B, for Xa:A.B,
Example: At >z — A%~ for the type of the o-operator.
Other use: clearer in chained dependencies, e.g., Asa— B,3b— Cyp.

25

4 Conclusion

e Mathematical concepts and operators arising from a seemingly specialized area of engi-
neering (signal flow realizations) can be made generic and thereby extend their applica-
bility to a much wider area of engineering and mathematics.

e This was illustrated by an algebraic and functional formulation of predicate calculus,
providing a convenient formalism for specification and reasoning about software systems
of an evolutionary nature.

26

