Retrospective Software

Evolution Analysis

Harald Gall and Mehdi Jazayeri
Technical University of Vienna
Distributed Systems Group

A-1040 Wien, Argentinierstrae 8/184-1
{gall jazayeri}@infosys .tuwien.ac.at

@5

Foundations of Software Evolution Network, January 18, 2002

Outline
Im’ = = g - = 5 o o I _

Software Evolution Analysis (SEA)
= Goals and approach

SEA processes:
= Change Sequence Analysis (CSA)
= Change Report Analysis (CRA)

Software evolution and features

Conclusions and outlook

H. Gall, TU Vienna 2

Software Evolution Analysis

Im' = = 7' ,7 Gigtue g

Problem

analyze the evolution of (very) large systems (e.g. 10 MLOC,
4 programming languages) across many releases

reveal hidden dependencies among modules
identify parts to be restructured/reengineered

Approach:

= observe software evolution via release history
= detect logical coupling via
= change sequence analysis, and
= change report analysis
= visualize software release histories using color
and third dimension
Case Study: Telecommunication Switching System

H. Gall, TU Vienna 3

TSS case study structure

 n f o —
subsystem level i s $

| —

program level

H. Gall, TU Vienna 4

The Release Database

For each release stored:

Entries for elements at system, subsystem, module, and
program level together with relations among them

Systems and programs are characterized by version numbers

Program version numbers are independent of the system’s
version number

Changes result in incremented version number(s)

Each system release consists of

= 8 subsystems, 47 to 49 modules, and
1500 to 2300 programs.

H. Gall, TU Vienna 5

SEA: Detection of logical Coupling

Change Sequence of a program<12357 11>
= program changed in releases 1, 2, 3, 5, 7, and 11

= 5changes

Subsequences as contiguous parts
= <1 23> <357>, etc.

Changes are represented by a (sub-) sequence

Identify potential logical couplings” among programs

H. Gall, TU Vienna 8

SEA: Change Sequence Analysis

Approach:
= compare change sequences of different modules
= identify patterns of change
= identify common “change sequences” (patterns)

Result: potential logical couplings

H. Gall, TU Vienna 9

Coupling among subsystems

%anl\, TU Vienna 10

SEA: Change Report Analysis

Approach:

verify logical coupling

Example of a change report

fr 2.4 — 96/03/12 10:10:07
bS---PROGRAM CHANGE DESCRIPTION

—H <

. . EJEMENT NAME: Program 111 2.3 —> 2.4
= examine change reports of modules with the same change CHANGED BY: John DOE
sequence CHANGES as follows:
.) ’ .
same reason for change defines logical coupling | e
CHANGE TYPE: B // bug fix
Result: logical couplings among modules / subsystems REFERENCE: BR 1443 // reference to a bug report number
ERROR CLASS: A // error class, i.e. operation in working state
DESCRIPTION: hanging of the circuits in environment xy.
CHANGE NR: 2
H. Gall, TU Vienna 11 H. Gall, TU Vienna 12
Change Reports Analysis Results

system releases 1

Aoa BR1443
A' '10 FD1
ac.
2 O
B.be20
Bbh2 3 O
BR ... bugreport
FD ... further development
H. Gall, TU Vienna 13

|dentified those modules and programs that should
undergo restructuring / reengineering

TSS: Constantly growing Subsystem C

not reflected in a high logical coupling with other subsystems

restructuring is “local” within Subsystem C and its modules

structural shortcoming is local in terms of subsystems, but high
module interrelationships

We detect stronger logical couplings via longer
sequences

H. Gall, TU Vienna 14

Visualization

= Structure of the system: visualization of tree
structure (2D and 3-D)

= Software attributes: color, region filling
= Multiple releases: third dimension

V.2

time
H. Gall, TU Vienna

15

°We000 0 ¢ A

Ll

T'SS visualized

LA A AR
TEUGEETGG SN

111 E-Hf Tilialali'e
4 An

Conclusions

Developed techniques to investigate very large software
systems on a macro -level to detect
= structural shortcomings

= dependencies among modules, change patterns

Database for product releases
= data are relatively easy to obtain
= valuable additional information

= kind of change (corrective, adaptive, perfective, preventive)
= correlation of behavior and kinds of changes

Such retrospective analysisis valuable complement to
code-based predictive analysis

H. Gall, TU Vienna 20

CAFE: Objectives ﬁ
m: _ = = . = 5 . '. I,,

Investigate product family evolution

= investigate relationship between feature set evolution and
product family evolution

= investigate platform evolution in terms of integration of product-
specific features

Visualize product family evolution

= investigate the evolution of feature sets in terms of their
relationship to components and structures

= visualize different aspects such as time, structure, feature sefs,
tasks, styles, patterns etc.

H. Gall, TU Vienna 21

