
Retrospective Software
Evolution Analysis

Foundations of Software Evolution Network, January 18, 2002

Harald Gall and Mehdi Jazayeri
Technical University of Vienna
Distributed Systems Group

A-1040 Wien, Argentinierstraße 8/184-1
{gall,jazayeri }@infosys .tuwien.ac.at

H. Gall, TU Vienna 2

Outline

Software Evolution Analysis (SEA)

§ Goals and approach

SEA processes:

§ Change Sequence Analysis (CSA)

§ Change Report Analysis (CRA)

Software evolution and features

Conclusions and outlook

H. Gall, TU Vienna 3

Software Evolution Analysis

Problem
§ analyze the evolution of (very) large systems (e.g. 10 MLOC,

4 programming languages) across many releases

§ reveal hidden dependencies among modules

§ identify parts to be restructured/reengineered

Approach:

§ observe software evolution via release history

§ detect logical coupling via
§ change sequence analysis, and
§ change report analysis

§ visualize software release histories using color
and third dimension

Case Study: Telecommunication Switching System

H. Gall, TU Vienna 4

TSS case study structure

System

Subsystem A Subsystem B Subsystem C

Module a Module b Module c

Program 100 Program 200 Program 300

system level

subsystem level

module level

program level

H. Gall, TU Vienna 5

The Release Database

For each release stored:
§ Entries for elements at system, subsystem, module, and

program level together with relations among them
§ Systems and programs are characterized by version numbers

§ Program version numbers are independent of the system’s
version number

§ Changes result in incremented version number(s)

Each system release consists of
§ 8 subsystems, 47 to 49 modules, and

1500 to 2300 programs.

H. Gall, TU Vienna 8

SEA: Detection of logical Coupling

Change Sequence of a program <1 2 3 5 7 11>
§ program changed in releases 1, 2, 3, 5, 7, and 11

§ 5 changes

Subsequences as contiguous parts
§ <1 2 3>, <3 5 7>, etc.

Changes are represented by a (sub-) sequence

Identify potential “logical couplings” among programs

H. Gall, TU Vienna 9

SEA: Change Sequence Analysis

Approach:
§ compare change sequences of different modules

§ identify patterns of change

§ identify common “change sequences” (patterns)

Result: potential logical couplings

H. Gall, TU Vienna 10

F

A

D
E

H

B
C

G
2 changes

3 changes
4 changes
5 changes
8 changes
>9 changes

Coupling among subsystems

H. Gall, TU Vienna 11

SEA: Change Report Analysis

Approach:
§ verify logical coupling

§ examine change reports of modules with the same change
sequence

§ same reason for change defines logical coupling

Result: logical couplings among modules / subsystems

H. Gall, TU Vienna 12

Ver 2.4 — 96/03/12 10:10:07
TSS---PROGRAM CHANGE DESCRIPTION

ELEMENT NAME: Program 111 2.3 --> 2.4
CHANGED BY: John DOE
CHANGES as follows:

CHANGE NR: 1
CHANGE TYPE: B // bug fix
REFERENCE: BR 1443 // reference to a bug report number
ERROR CLASS: A // error class, i.e. operation in working state
DESCRIPTION: hanging of the circuits in environment xy.

CHANGE NR: 2
...

Example of a change report

H. Gall, TU Vienna 13

Change Reports Analysis

BR ... bug report
FD ... further development

SUB1 =<2 4 6 7>

BR 1443

FD 1

FD 2

FD 3

system releases

A.ab.4

A.ac.10

B.be.20

B.bh.27

2 4 5 61 7 8

H. Gall, TU Vienna 14

Results

Identified those modules and programs that should
undergo restructuring / reengineering

TSS: Constantly growing Subsystem C
§ not reflected in a high logical coupling with other subsystems

§ restructuring is “local” within Subsystem C and its modules

§ structural shortcoming is local in terms of subsystems, but high
module interrelationships

We detect stronger logical couplings via longer
sequences

H. Gall, TU Vienna 15

Visualization

v. 1
time

v. 2

v. 3

§ Structure of the system: visualization of tree
structure (2-D and 3-D)

§ Software attributes: color, region filling

§ Multiple releases: third dimension

RSN

RSN

RSN

RSN

RSN

A

B C

D E F G

H

TSS visualized

H. Gall, TU Vienna 20

Conclusions

Developed techniques to investigate very large software
systems on a macro -level to detect
§ structural shortcomings

§ dependencies among modules, change patterns

Database for product releases
§ data are relatively easy to obtain

§ valuable additional information
§ kind of change (corrective, adaptive, perfective , preventive)
§ correlation of behavior and kinds of changes

Such retrospective analysisis valuable complement to
code-based predictive analysis

H. Gall, TU Vienna 21

CAFÉ: Objectives

Investigate product family evolution
§ investigate relationship between feature set evolution and

product family evolution

§ investigate platform evolution in terms of integration of product-
specific features

Visualize product family evolution
§ investigate the evolution of feature sets in terms of their

relationship to components and structures

§ visualize different aspects such as time, structure, feature sets,
tasks, styles, patterns etc.

