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What is refactoring?What is refactoring?

Refactorings are software transformations that restructure 
an object-oriented application while preserving its 
behaviour.
According to Fowler (1999), refactoring

improves the design of software
makes software easier to understand
helps you find bugs
helps you program faster
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GoalGoal

Improve tool support for refactoring object-oriented software …
less ad hoc
more scalable (e.g., composite refactorings)
more language independent
more correct (e.g., guarantee behaviour preservation)

… by providing a formal model in terms of
graphs

compact and expressive representation of program structure and behaviour
2-D nature removes redundancy in source code (e.g., localised naming)

graph rewriting
intuitive description of transformation of complex graph-like structures
theoretical results help in the analysis of such structures

(confluence property, parallel/sequential independence, critical pair analysis)
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Case study: LAN simulationCase study: LAN simulation

Goal: show feasibility of graph rewriting formalism to 
express and detect various kinds of behaviour preservation
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UML class diagramUML class diagram
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Java source codeJava source code

public class Node {
public String name;
public Node nextNode;
public void accept(Packet p) {
this.send(p); }

protected void send(Packet p) {
System.out.println(
name +
"sends to" +
nextNode.name);

nextNode.accept(p); }
}

public class Packet {
public String contents;
public Node originator;
public Node addressee;
}

public class Printserver extends Node {
public void print(Packet p) {
System.out.println(p.contents);
}

public void accept(Packet p) {
if(p.addressee == this)
this.print(p);

else
super.accept(p);

}
}

public class Workstation extends Node {
public void originate(Packet p) {
p.originator = this;
this.send(p);
}

public void accept(Packet p) {
if(p.originator == this)
System.err.println("no 

destination");
else super.accept(p);
}

}
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Graph representation – part 1Graph representation – part 1

program structure
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Graph representation – part 2Graph representation – part 2

program behaviour for 
class Workstation

L

L

L

Workstation C

(accept) B (originate) B

send M

(p) P

println M

(s) P

E

2 E

    P

EE

    Aoriginate M

(p) P

D

Node C

(accept) B I

1 E

E

Packet C

originator A

    U

accept M

(p) P

1 EE

    A

E  E

    A

E 2 ED
E

3 E

S

P

E

P
this

void originate(Packet p)
1:{ p.originator = this;
2: this.send(p); }
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Refactoring – Encapsulate FieldRefactoring – Encapsulate Field

Fowler 1999, page 206
There is a public field

Make it private and provide accessors
public class Node {

private String name;
private Node nextNode;
public String getName() {

return this.name; }
public void setName(String s) {

this.name = s; }
public Node getNextNode() {

return this.nextNode; }
public void setNextNode(Node n) {

this.nextNode = n; }
public void accept(Packet p) {

this.send(p); }
protected void send(Packet p) {

System.out.println(
this.getName() +
"sends to" +
this.getNextNode().getName());

this.getNextNode().accept(p); }
}

public class Node {
public String name;
public Node nextNode;
public void accept(Packet p) {

this.send(p); }
protected void send(Packet p) {

System.out.println(
name +
"sends to" +
nextNode.name);

nextNode.accept(p); }
}
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Refactoring – Encapsulate FieldRefactoring – Encapsulate Field

before the refactoring
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Refactoring – Encapsulate FieldRefactoring – Encapsulate Field

after the refactoring
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Graph transformation – Encapsulate FieldGraph transformation – Encapsulate Field

refactoring is achieved by applying two occurrences of 
production EncapsulateField(class,attr,type,accessor,updater)

EncapsulateField(Node,name,String,getName,setName)
EncapsulateField(Node,nextNode,Node,getNextNode,setNextNode)
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Behaviour preservation invariantsBehaviour preservation invariants

Access preservation
each method body (indirectly) performs at least the same attribute 
accesses as it did before the refactoring

Update preservation
each method body (indirectly) performs at least the same attribute 
updates as it did before the refactoring

Statement preservation
each method (indirectly) performs at least the same statements as 
it did before the refactoring

Type preservation
each statement in each method body still has the same result type 
or return type as it did before the refactoring
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Behaviour preservation invariantsBehaviour preservation invariants

EncapsulateField preserves behaviour
access preserving: all attribute nodes can still be accessed via a transitive 
closure

update preserving: all attribute nodes can still be updated via a transitive 
closure

5

attr AEE accessor M B
D L E AA attr AE

3 35

attr AEE updater M B
D L E UU attr AE

34 34

Behaviour preservation invariants can be detected by graph patterns

E ?*A A E ?*U A
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ConclusionConclusion

Graph rewriting seems a useful and promising formalism to 
provide support for refactoring

More practical validation needed
Current experiment only focuses on behaviour preservation
A formalism can assist the refactoring process in many other ways

Proposed FWO research project (4 years / 3 persons)
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Open questionsOpen questions

Which program properties should be preserved by refactorings?
input/output behaviour, timing constraints, static versus dynamic behaviour

What is the complexity of a refactoring?
complexity of applicability / complexity of applying the refactoring

How do refactorings affect quality factors?
increase/decrease complexity, understandability, maintainability, …

How can refactorings be composed/decomposed?
composite refactorings / extracting refactorings from successive releases

How do refactorings interact?
parallel application of refactorings may lead to consistency problems

How to provide support for non-behaviour-preserving refactorings?
Co-evolution: How do refactorings affect design models?
Language-independent formalism for refactoring?
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