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What is refactoring?

» Refactorings are software transformations that restructure
an object-oriented application while preserving its
behaviour.

» According to Fowler (1999), refactoring
> improves the design of software
> makes software easier to understand

> helps you find bugs
> helps you program faster
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Goal

> Improve tool support for refactoring object-oriented software ...
less ad hoc
more scalable (e.g., composite refactorings)
more language independent
more correct (e.g., guarantee behaviour preservation)

> ... by providing a formal model in terms of
> graphs
compact and expressive representation of program structure and behaviour
2-D nature removes redundancy in source code (e.g., localised naming)
> graph rewriting
intuitive description of transformation of complex graph-like structures

theoretical results help in the analysis of such structures
> (confluence property, parallel/sequential independence, critical pair analysis)
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Case study: LAN simulation

» Goal: show feasibility of graph rewriting formalism to
express and detect various kinds of behaviour preservation
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UML class diagram
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Java source code

public class Node {
public String name;
public Node nextNode;
public void accept (Packet p) {
this.send(p); }
protected void send (Packet p) {
System.out.println(
name +
"sends to" +
nextNode.name) ;
nextNode.accept (p); }

}

public class Packet {
public String contents;
public Node originator;
public Node addressee;

}

public class Printserver extends Node ({
public void print (Packet p) {
System.out.println (p.contents);
}
public void accept (Packet p) {
if (p.addressee == this)
this.print (p);
else
super.accept (p);

public class Workstation extends Node ({
public void originate (Packet p) {
p.originator = this;
this.send(p)

}
public void accept (Packet p) {

if(p.originator == this)
System.err.println ("no
destination");

else super.accept(p);
}
}
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Graph representation — part 1

» program structure
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Graph representation — part 2
I

» program behaviour for Node C
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Refactoring — Encapsulate Field

Fowler 1999, page 206
There is a public field

Make it private and provide accessors

public class Node {

public class Node ({ private String name;
public String name; private Node nextNode;
public Node nextNode; public String getName () {
public void accept (Packet p) { return this.name; }
this.send(p); } public void setName (String s) {

protected void send (Packet p) {
System.out.println (
name +
"sends to" +

this.name = s; }

public Node getNextNode () {
return this.nextNode; }

public void setNextNode (Node n) {

nextNode.name) ; this.nextNode = n; }
nextNode.accept (p); } public void accept (Packet p) {
} this.send(p); }

protected void send (Packet p) {
System.out.println (
this.getName () +
"sends to" +
this.getNextNode () .getName () ) ;
this.getNextNode () .accept(p); }
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Refactoring — Encapsulate Field

» before the refactoring
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Graph transformation — Encapsulate Fi
I

» refactoring is achieved by applying two occurrences of
production EncapsulateField(class,attr,type,accessor,updater)

> EncapsulateField(Node,name,String,getName,setName)
> EncapsulateField(Node,nextNode,Node,getNextNode,setNextNode)
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Behaviour preservation invariants

» Access preservation

> each method body (indirectly) performs at least the same attribute
accesses as it did before the refactoring

» Update preservation

» each method body (indirectly) performs at least the same attribute
updates as it did before the refactoring

> Statement preservation

> each method (indirectly) performs at least the same statements as
it did before the refactoring

» Type preservation

» each statement in each method body still has the same result type
or return type as it did before the refactoring
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Behaviour preservation invariants

> EncapsulateField preserves behaviour

» access preserving. all attribute nodes can still be accessed via a transitive
closure
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> update preserving: all attribute nodes can still be updated via a transitive
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Behaviour preservation invariants can be detected by graph patterns
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Conclusion

» Graph rewriting seems a useful and promising formalism to
provide support for refactoring
» More practical validation needed
» Current experiment only focuses on behaviour preservation
> A formalism can assist the refactoring process in many other ways

> Proposed FWO research project (4 years / 3 persons)
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Open questions

> Which program properties should be preserved by refactorings?
input/output behaviour, timing constraints, static versus dynamic behaviour

» What is the complexity of a refactoring?

complexity of applicability / complexity of applying the refactoring
» How do refactorings affect quality factors?

increase/decrease complexity, understandability, maintainability, ...
» How can refactorings be composed/decomposed?

composite refactorings / extracting refactorings from successive releases
» How do refactorings interact?

parallel application of refactorings may lead to consistency problems
> How to provide support for non-behaviour-preserving refactorings?
Co-evolution: How do refactorings affect design models?

» Language-independent formalism for refactoring?

A\
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