A Graph Rewriting Model for
Object-Oriented Software Refactoring

Tom Mens, Serge Demeyer, Dirk Janssens
tom.mens@vub.ac.be {serge.demeyer | dirk.janssens }@ua.ac.be

Programming Technology Lab Lab on Re-Engineering
Vrije Universiteit Brussel Universiteit Antwerpen

What is refactoring?

» Refactorings are software transformations that restructure
an object-oriented application while preserving its
behaviour.

» According to Fowler (1999), refactoring
> improves the design of software
> makes software easier to understand

> helps you find bugs
> helps you program faster

FWO-WOG, January 2002, Brussels © Tom Mens, Vrije Universiteit Brussel)

Goal

> Improve tool support for refactoring object-oriented software ...
less ad hoc
more scalable (e.g., composite refactorings)
more language independent
more correct (e.g., guarantee behaviour preservation)

> ... by providing a formal model in terms of
> graphs
compact and expressive representation of program structure and behaviour
2-D nature removes redundancy in source code (e.g., localised naming)
> graph rewriting
intuitive description of transformation of complex graph-like structures

theoretical results help in the analysis of such structures
> (confluence property, parallel/sequential independence, critical pair analysis)

FWO-WOG, January 2002, Brussels © Tom Mens, Vrije Universiteit Brussel 3

Case study: LAN simulation

» Goal: show feasibility of graph rewriting formalism to
express and detect various kinds of behaviour preservation

workstation 1

1. originate(p)

>
&ccept(p)
}_> fileserver 1

workstation 3

2. send(p) Z
. 4. send(p)
printer 1 workstation 2
J 5. accept(p)
8.print(p) <

6. send(p)

7. accept(p)
FWO-WOG, January 2002, Brussels © Tom Mens, Vrije Universiteit Brussel 4

UML class diagram

originator
Node Packet
nextNode name contents

addressee

accept(p:Packet)

send(p:Packet)

AN
Workstation PrintServer FileServer

accept(p:Packet)
originate(p:Packet)

accept(p:Packet)
print(p:Packet)

accept(p:Packet)
save(p:Packet)

FWO-WOG, January 2002, Brussels

© Tom Mens, Vrije Universiteit Brussel

Java source code

public class Node {
public String name;
public Node nextNode;
public void accept (Packet p) {
this.send(p); }
protected void send (Packet p) {
System.out.println(
name +
"sends to" +
nextNode.name) ;
nextNode.accept (p); }

}

public class Packet {
public String contents;
public Node originator;
public Node addressee;

}

public class Printserver extends Node ({
public void print (Packet p) {
System.out.println (p.contents);
}
public void accept (Packet p) {
if (p.addressee == this)
this.print (p);
else
super.accept (p);

public class Workstation extends Node ({
public void originate (Packet p) {
p.originator = this;
this.send(p)

}
public void accept (Packet p) {

if(p.originator == this)
System.err.println ("no
destination");

else super.accept(p);
}
}

FWO-WOG, January 2002, Brussels

© Tom Mens, Vrije Universiteit Brussel

Graph representation — part 1

» program structure

T » Packet C
]
| [|
printn M | ()P |—~|-TF | String C [«T| contents A originator A addressee A
il M
M o P M f » Node C |« I
sen —1 (P
| N | I, Y M §\/ ‘
= iV L | |
acceptM || ()P name A nextNode A (send) B (accept) B
I N L N M *
originate M | (p) P Workstation C PrintServer C
| E L | | | | | |
print M () P (originate) B (accept) B |« »| (accept) B (print) B

FWO-WOG, January 2002, Brussels © Tom Mens, Vrije Universiteit Brussel 7

X

]
=

Graph representation — part 2
I

» program behaviour for Node C

. y
class Workstation — 1
(accept)B)| void originate (Packet p)
1:{ p.originator = this;
2: this.send(p); }
Packet C Workstation C [« [

| 3 | | |
originator A)/ (accept) B 1 F (originate) B
E

J}A
El€|E R /Zk this
n %o
Y A // /
printin M accept M originate M | [4|F send M
| | p | |
(s) P > (p) P |« (p) P |« (p) P
FWO-WOG, January 2002, Brussels © Tom Mens, Vrije Universiteit Brussel

Refactoring — Encapsulate Field

Fowler 1999, page 206
There is a public field

Make it private and provide accessors

public class Node {

public class Node ({ private String name;
public String name; private Node nextNode;
public Node nextNode; public String getName () {
public void accept (Packet p) { return this.name; }
this.send(p); } public void setName (String s) {

protected void send (Packet p) {
System.out.println (
name +
"sends to" +

this.name = s; }

public Node getNextNode () {
return this.nextNode; }

public void setNextNode (Node n) {

nextNode.name) ; this.nextNode = n; }
nextNode.accept (p); } public void accept (Packet p) {
} this.send(p); }

protected void send (Packet p) {
System.out.println (
this.getName () +
"sends to" +
this.getNextNode () .getName ()) ;
this.getNextNode () .accept(p); }

FWO-WOG, January 2002, Brussels © Tom Mens, Vrije Universitdit Brussel 9

Refactoring — Encapsulate Field

» before the refactoring

Node C

>

T

Mm

> name A nextNode A (send) B (accept) B
p L 4J 4 - /15 1]&5
N\ E
E

—F E
E |[«E—| E |«P] E |« E |«P] E |« - P
P L~
In)
v v ? 4 ? v

+ M printn M —{ (s) P send M —| (p) P acceptM —{ (p) P

FWO-WOG, January 2002, Brussels © Tom Mens, Vrije Universiteit Brussel 10

A
7=

Y — 7 , |

nextNode A (accept) B
J\
> I e
E

String C | /;{_L,l_: wlE e ¥ £

v
E |[«E—

. . T
>
V \i | O N ,

getName M | | getNextNode M || + M | | printin M | | send M accept M
; ; =

(s) P (p) P |« (p) P |«

2N
N
<5

A

FWO-WOG, January 2002, Brussels © Tom Mens, Vrije Universiteit Brussel 1

Graph transformation — Encapsulate Fi
I

» refactoring is achieved by applying two occurrences of
production EncapsulateField(class,attr,type,accessor,updater)

> EncapsulateField(Node,name,String,getName,setName)
> EncapsulateField(Node,nextNode,Node,getNextNode,setNextNode)

1

2

1 2
type C -| class C type C class C '|
== —— A S~ A Y —
nd /[\ T 5 3 7 I~ |
~ 3
y (up}agr) B (aCC&?KF) B\ L:l attr A \ » (updater) é A (accessor) B
A 6
/ A \ p L:I A 1 j A
/ 0 \ E }jz‘ E 4 d ‘ [E !
[| 4 5 P
|
updat;a//ﬂl \anessorM / accessor M

\NZ

\ /
QP)P \//

~ -~

~ —

- —_—

—_— —

FWO-WOG, January 2002, Brussels

/

(p) P

© Tom Mens, Vrije Universiteit Brussel

f]—ﬂb updat,ér M | |—5?—

12

Behaviour preservation invariants

» Access preservation

> each method body (indirectly) performs at least the same attribute
accesses as it did before the refactoring

» Update preservation

» each method body (indirectly) performs at least the same attribute
updates as it did before the refactoring

> Statement preservation

> each method (indirectly) performs at least the same statements as
it did before the refactoring

» Type preservation

» each statement in each method body still has the same result type
or return type as it did before the refactoring

FWO-WOG, January 2002, Brussels © Tom Mens, Vrije Universiteit Brussel 13

Behaviour preservation invariants

> EncapsulateField preserves behaviour

» access preserving. all attribute nodes can still be accessed via a transitive
closure

2 D L E A
E—>» attrA » E|—»| accessorM—» B | E—» attr A
5 3 5 3

> update preserving: all attribute nodes can still be updated via a transitive

closure
D L E]
» E{—» updater M —» B > E—| attr A

4 3

E —U> attr A

4 3

Behaviour preservation invariants can be detected by graph patterns

ELZATA ELZY A

FWO-WOG, January 2002, Brussels © Tom Mens, Vrije Universiteit Brussel 14

Conclusion

» Graph rewriting seems a useful and promising formalism to
provide support for refactoring
» More practical validation needed
» Current experiment only focuses on behaviour preservation
> A formalism can assist the refactoring process in many other ways

> Proposed FWO research project (4 years / 3 persons)

FWO-WOG, January 2002, Brussels © Tom Mens, Vrije Universiteit Brussel 15

Open questions

> Which program properties should be preserved by refactorings?
input/output behaviour, timing constraints, static versus dynamic behaviour

» What is the complexity of a refactoring?

complexity of applicability / complexity of applying the refactoring
» How do refactorings affect quality factors?

increase/decrease complexity, understandability, maintainability, ...
» How can refactorings be composed/decomposed?

composite refactorings / extracting refactorings from successive releases
» How do refactorings interact?

parallel application of refactorings may lead to consistency problems
> How to provide support for non-behaviour-preserving refactorings?
Co-evolution: How do refactorings affect design models?

» Language-independent formalism for refactoring?

A\

FWO-WOG, January 2002, Brussels © Tom Mens, Vrije Universiteit Brussel 16

	A Graph Rewriting Model forObject-Oriented Software Refactoring
	What is refactoring?
	Goal
	Case study: LAN simulation
	UML class diagram
	Java source code
	Graph representation – part 1
	Graph representation – part 2
	Refactoring – Encapsulate Field
	Refactoring – Encapsulate Field
	Refactoring – Encapsulate Field
	Graph transformation – Encapsulate Field
	Behaviour preservation invariants
	Behaviour preservation invariants
	Conclusion
	Open questions

