
Coordination-based Evolution FSE meeting, January 18, 2002

© LabMAC/FCUL and ATX Software 1

Coordination-based Evolution

José Fiadeiro Antónia Lopes

Michel Wermelinger

LabMAC/University of Lisbon and ATX Software
PORTUGAL

with Luís Andrade

Presentation at the FSE network meeting, 18/1/02

Objectives

To provide a well founded approach to “Coordination”,
abstracting a mathematical characterisation from existing
languages and models, and using it to generalise the
concept to other contexts.
To show how the proposed characterisation can be used for
giving semantics to “Software Architectures”.
To show how “coordination technologies” can provide an
effective solution for software evolution in volatile
business domains.

Why Coordination ?

“Recent” languages like Linda, Gamma, Manifold, … have
promoted the separation between computation (what is
responsible for the functionality of services in basic
components) and coordination (the mechanisms that are
made available for components to interact);
“Programming by emergence”: local functionalities +
interactions
Black-box view of components: interactions can evolve
without changing the computations.

Why Category Theory ?

The mathematical tool, par excellence, for addressing
"structure" and "modularity”.
In Category Theory, entities are characterised in terms of
the relationships they have to other entities and not in
terms of their internal representation.
— The information one gets from the structure of an entity is

determined from the way that entity "interacts" with the other
entities.

— This is analogous, for instance, to the encapsulation mechanisms
made available by Abstract Data Types and Object-Oriented
Programming.

Coordination-based Evolution FSE meeting, January 18, 2002

© LabMAC/FCUL and ATX Software 2

n-account: Externalising the regulator

design reg is
in x:int, y: nat

do a: x≥y →

id

wit
→ a

bal
← x

v ← y
design channel’ is
in x: int, y:nat
do a: true→

design account is
in v:nat
out bal,num:int

do dep: true → bal:=bal+v
[] wit: true → bal:=bal-v

design n-account is
in v:nat
out bal,num:int

do dep: true → bal:=bal+v
[] wit: bal≥v → bal:=bal-v

Separation of Coordination and Computation

sign channel is
in x:int
do a[]

sig counter is
in val,day:nat
out count:int
prv d:int
do chg[count,d]
[] reset[count,d]

sign n-account is
in v:nat
out bal,num:int
do dep[bal]
[] wit[bal]

sign e-account is
in day:nat
out bal,num:int
prv count,d:int
do dep[bal,count,d]
[] wit[bal,count,d]
[] reset[count,d]

design account is
in v: nat
out bal,num:int
do dep[bal]: ...
[] wit[bal]: ...

design counter is
in val,day:nat
out count:int
prv d:int
do chg[count,d]: ...
[] reset[count,d]: ...

design channel is
in x:int

do a[]: true →

design e-account is
in day:nat
out bal,num:int
prv count,d:int
do dep[bal,count,d]: ...
[] wit[bal,count,d]: ...
[] reset[count,d]: ...

Structuring systems vs Refinement

Example

put

i

get

obuffer

prod

val

send

sender

rec

val receiver

pr_ps

p

pr_pdf

user

rec

rdoc printer

printsave end_pr

Generalisations

This categorical framework provides
– an ADL-independent semantics for existing principles

and techniques of SA
– a basis for extending the capabilities of existing

ADLs.

Examples:
• Heterogeneous connectors
• Higher-order connectors

Coordination-based Evolution FSE meeting, January 18, 2002

© LabMAC/FCUL and ATX Software 3

Reconfiguration: Related Work

Work done in Distributed Systems, Mobile Computing,
Software Architecture has at least one of the following
drawbacks:

— not addressed at the architectural level
— arbitrary reconfigurations not supported
— only low-level behaviour specification (process calculi, term

rewriting, etc.)
— interaction between computation and reconfiguration is complex,

implicit, or blurred

On the other hand, they sometimes provide tool support, in
particular automated analysis.

Reconfiguration: Approach

Explore the categorical approach to software
architectures and parallel program design
— architecture = categorical diagram; system behaviour = colimit
— architecture = graph; reconfiguration = rewriting

Develop a reconfiguration language for easier specification
and analysis.

Modifying the contract

The following rule restores a VIP contract to standard
when the average balance is below 1000.

if a < 1000 C

K RL

rrd

vval
customer nnum

aavgbal

bbal

account
ccredit

VIP

c-channel

a-channel

rrd

vval
customer nnum

aavgbal

bbal

account

standard

c-channel

a-channel

rrd

vval
customer

nnum

aavgbal

bbal

account

Reconfiguration Specification

rewrite rules are cumbersome to write: repetition of
nodes in graphs K and L; dummy nodes/arcs to control the
way rules are applied
ideal: reconfiguration language with high-level
programming constructs
but: ADLs only provide minimal reconfiguration support;
distributed systems have powerful languages but do not
have architectural abstractions
goal: compact, conceptually elegant language with formal
semantics for describing reconfiguration within
architectural description of a system

Coordination-based Evolution FSE meeting, January 18, 2002

© LabMAC/FCUL and ATX Software 4

Main script

script Main

prv i : record(a : Account)

script RestoreStandard ... end script

for i in match {a:Account | with
a.avgbal<1000}

loop

RestoreStandard(i.a)

end loop

end script

Auxiliary Script

script RestoreStandard

in a: Account

prv i: record(c:Customer; co:VIP)

for i in match {c:Customer;co:VIP |co(c, a)}
loop

remove i.co;

create standard(i.c, a);

end loop

end script role instantiation

condition on topology
refers the glue

input parameter

Notation for coordination contracts

coordination contract Traditional package

partners x : Account; y : Customer;

constraints ?owns(x,y)=TRUE;

coordination
tp: when y ->> x.withdrawal(z)

do call x.withdrawal(z)
with x.Balance() > z

end contract

A Coordination Rule has the form

<name> : when <trigger>
with <guardCondition>
do <set of actions>

Coordination Rules

The trigger defines when a rule
must be considered active.
It may be a condition, or a request to
a participant operation

The guard condition imposes
additional constraints on the
reaction to the trigger, when
regulated by this rule

The actions describe the behavior defined by the rule:
• extra behaviour to be executed before or after the
trigger operation,
• or replacement behavior for the trigger operation

Coordination-based Evolution FSE meeting, January 18, 2002

© LabMAC/FCUL and ATX Software 5

Coordination Semantics

X

before before

replace

after after

*->> Obj.x()

C1::rule1 C2::rule2

The trigger

The Rules of the several contacts involving object Obj that satisfy the
trigger and additional conditions

The Actions defined by
the rules

The transactional behavior
for the operation X under
coordination

The development process

OBJECTS CONTRACTS

Construction Evolution

CDE - Coordination Development Environment

Context Setup Contract
Development

Deployment

Component
Development

Testing

Run-Time
Configuration

Software System

Component Layer

Coordination Layer

A development and run-time environment for layered coordination
systems :
The coordination layer, defining the more volatile part of a system, is
built over the component layer, the stable parts of the business

Increased separation of the domain concepts (objects)
from the business rules that regulate their behaviour;
Coordination features available as first-class citizens
through a specific semantic primitive;
Support for different levels of change, reflecting the
evolution of the domain:
— Flexible mechanisms for inheritance of behaviour;
— Separation of coordination from computation.

Concluding remarks

Coordination-based Evolution FSE meeting, January 18, 2002

© LabMAC/FCUL and ATX Software 6

Increased separation of the domain concepts from the
business rules that regulate their behaviour;
— Recognising two different dynamics in system evolution:

changes to the way components operate and changes to the way
components are integrated (white vs black box);

— More flexibility in the software development process (plug and
play);

— Better integration/coordination of third-party, closed components
(e.g. legacy systems)

One step closer to a real industry of components.

Claimed contributions
URLs

Papers:
— www.atxsoftware.com/publications.html (also includes papers on

CommUnity and the categorical approach to software architecture)

Coordination Development Environment:
— www.atxsoftware.com/CDE

CommUnity Workbench:
— http://ctp.di.fct.unl.pt/~mw/sw/cw

