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Abstract. The notion of refactoring —transforming the source-code of an object-
oriented program without changing its external behaviour— has increased the
need for a precise definition of refactorings and their properties. This paper intro-
duces a graph representation of those aspects of the source code that should be
preserved by a refactoring, and graph rewriting rules as a formal specification for
the refactoring transformations themselves. To this aim, we use type graphs, for-
bidden subgraphs, embedding mechansims, negative application conditions and
controlled graph rewriting. We show that it is feasible to reason about the effect
of refactorings on object-oriented programs independently of the programming
language being used. This is crucial for the next generation of refactoring tools.

1 Introduction

Refactorings are software transformations that restructure an object-oriented program
while preserving its behaviour [1–3]. The key idea is to redistribute instance variables
and methods across the class hierarchy in order to prepare the software for future ex-
tensions. If applied well, refactorings improve the design of software, make software
easier to understand, help to find bugs, and help to program faster [1].

Although it is possible to refactor manually, tool support is considered crucial. Tools
such as theRefactoring Browser support a semi-automatic approach [4], which is re-
cently being adopted by industrial strength software development environments (e.g.,
VisualWorks, TogetherJ, JBuilder, Eclipse3). Other researchers demonstrated the feasi-
bility of fully automated tools [5]; studied ways to make refactoring tools less depen-
dent on the implementation language being used [6] and investigated refactoring in the
context of a UML case-tool [7].

Despite the existence of such tools, the notion ofbehaviour preservation is poorly
defined. This is mainly because most definitions of the behaviour of an object concen-
trate on the run-time aspects (e.g., pre- and postconditions [8], observable input-output

3 seehttp://www.refactoring.com/ for an overview of refactoring tools
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[9]) while refactoring tools must necessarily restrict themselves to the static descrip-
tion as specified in the source-code. Therefore, refactoring tools typically rely on an
abstract syntax tree as a representation of the source-code and assert pre- and postcon-
ditions before and after transforming the tree [10]. Unfortunately, this representation
contains details about the control flow of a program, which are largely irrelevant when
specifying the effects of a refactoring on the program structure. Moreover, an abstract
syntax tree is necessarily dependent on the programming language being used, while
refactorings should be defined independently of the programming language [6].

For these reasons, we conclude that a lightweight graph representation of the source
code is more appropriate for studying refactorings. Such a representation should not
bother with the details necessary for sophisticated data- and control flow analysis or
type inferencing techniques, since these are necessarily dependent on the program-
ming language. Instead it should focus on the core concepts present in any class-based
object-oriented language –namely classes, methods and variables– and allow us to ver-
ify whether the relationships between them are preserved. Moreover, it should allow for
a transparant yet formal specification of the refactorings, as direct manipulations of the
graph representation.

Therefore, this paper presents afeasibility study to see whether graph rewriting can
be used to formalise what exactly is preserved when performing a refactoring. Sec-
tion 2 introduces the concept of refactorings by means of a small motivating example
and presents several types of behaviour that should be preserved. In section 3 we in-
troduce the typed graph representation of the source code and formalise two selected
refactorings (“encapsulate field” and “pull up method”) by graph rewriting productions.
Section 4 shows how this formalisation can be used to guarantee the preservation of
well-formedness and certain types of behaviour. Section 5 concludes the paper with the
lessons learned regarding the feasibility of graph rewriting as a formal basis for the
behaviour preserved during refactoring.

2 Motivating example: A Local Area Network simulation

As a motivating example, this paper uses a simulation of a Local Area Network (LAN).
The example has been used successfully by the Programming Technology Lab of the
Vrije Universiteit Brussel and the Software Composition Group of the University of
Berne to illustrate and teach good object-oriented design. The example is sufficiently
simple for illustrative purposes, yet covers most of the interesting constructs of the
object-oriented programming paradigm (inheritance, late binding, super calls, method
overriding). It has been implemented in Java as well as Smalltalk. Moreover, the ex-
ample follows an incremental development style and as such includes several typical
refactorings. Thus, the example is sufficiently representative to serve as a basis for a
feasability study.

2.1 Initial version

In the initial version there are 4 classes:Packet, Node and two subclassesWorkstation
andPrintServer. The idea is that allNode objects are linked to each other in a token ring



Version: April 7, 2002— Behaviour preserving program transformations 3

network (via thenextNode variable), and that they cansend or accept a Packet object.
PrintServer andWorkstation refine the behaviour ofaccept (and perform a super call)
to achieve specific behaviour for printing thePacket (lines 18–20) and avoiding endless
cycling of thePacket (lines 26–28). APacket object can onlyoriginate from a Work-
Station object, and sequentially visits everyNode object in the network until it reaches
its addressee that accepts thePacket, or until it returns to itsoriginator workstation
(indicating that thePacket cannot be delivered).

Below is some sample Java code of the initial version where all constructor methods
have been omitted due to space considerations. Although the sample code is in Java,
other implementation languages could serve just as well, since we restrict ourselves to
core object-oriented concepts only.

01 public class Node {
02 public String name;
03 public Node nextNode;
04 public void accept(Packet p) {
05 this.send(p); }
06 protected void send(Packet p) {
07 System.out.println(name + nextNode.name);
08 this.nextNode.accept(p); }
09 }

10 public class Packet {
11 public String contents;
12 public Node originator;
13 public Node addressee;
14 }

15 public class PrintServer extends Node {
16 public void print(Packet p) {
17 System.out.println(p.contents); }
18 public void accept(Packet p) {
19 if(p.addressee == this) this.print(p);
20 else super.accept(p); }
21 }

22 public class Workstation extends Node {
23 public void originate(Packet p) {
24 p.originator = this;
25 this.send(p); }
26 public void accept(Packet p) {
27 if(p.originator == this) System.err.println("no destination");
28 else super.accept(p); }
29 }

2.2 Subsequent versions

The initial version serves as the basis for a rudimentary LAN simulation. In subsequent
versions, new functionality is incorporated incrementally and the object-oriented struc-
ture is refactored accordingly. First, logging behaviour is added which results in an “ex-
tract method” refactoring ([1], p110) and an “encapsulate field” refactoring ([1], p206).
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Second, thePrintServer functionality is enhanced to distinguish between ASCII- and
PostScript documents, which introduces complex conditionals and requires an “extract
class” refactoring ([1], p149). The latter is actually a composite refactoring which cre-
ates a new intermediate superclass and then performs several “pull up field” ([1], 320)
and “pull up method” ([1], p322) refactorings. Finally, a broadcast packet is added
which again introduces complex conditionals, resolved by means of an “extract class”,
“extract method”, “move method” ([1], p142) and “inline method” ([1], p117).

2.3 Selected refactorings

Fowler’s catalogue [1] lists seventy-two refactorings and since then many others have
been discovered. Since the list of possible refactorings is infinite, it is impossible to
prove that all of them preserve behaviour. However, refactoring theory and tools assume
that there exist a finite set ofprimitive refactorings, which can then freely be combined
into composite refactorings.

For this feasability study, we restrict ourselves to two frequently used primitive
refactorings, namely “encapsulate field” and “pull up method”. The preconditions for
these two object-oriented refactorings are quite typical, hence they may serve as repre-
sentatives for the complete set of primitive refactorings.

EncapsulateField. Fowler [1] introduces the refactoringEncapsulateField as a way to
encapsulate public variables by making them private and providing accessors. In other
words, for each public variable a method is introduced for accessing (“getting”) and
updating (“setting”) its value, and all direct references to the variable are replaced by
dynamic calls (this sends) to these methods.

Precondition. Before creating the new accessing and updating methods on a class
C, a refactoring tool should verify that no method with the same signature exists in
any of C’s subclasses and superclasses,C included. Otherwise, the refactoring may
accidentally override (or be overridden by) an existing method, and then it is possible
that the behaviour is not preserved.

PullUpMethod. Fowler [1] introduces the refactoringPullUpMethod as a way to move
similar methods in subclasses into a common superclass. This refactoring removes code
duplication and increases code reuse by inheritance.

Precondition. When a methodm with signatures is pulled up into a classC, it
implies that all methods with signatures defined on the direct descendants ofC are
removed and replaced by a single occurrence ofm now defined onC. However, a tool
should verify whether the methodm does not refer to any variables defined in the sub-
class, because otherwise the pulled-up method would refer to an out-of-scope variable
and then the transformed code would not compile. Also, no method with signatures
may exist onC, because otherwise a method is overwritten accidentally, which may
break existing behaviour.
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2.4 Behaviour preservation

Since we focus on refactoring of source code, we only look at notions of behaviour
preservation that can be detected statically and do not rely on sophisticated data- and
control-flow analysis or type inferencing techniques. This restriction to the static struc-
ture of a program is important because source-code is all that refactoring tools may
operate on.

The general idea is that, for each considered refactoring, one may catalog the types
of behaviour that need to be preserved. For the feasibility study of this paper, we con-
sider three types of behaviour preservation, based on the fact that they are important
and non-trivial for the two selected refactorings. Section 4 discusses to which extent the
selected refactorings satisfy these preservation properties:

A refactoring isaccess preserving if each method implementation accesses at least
the same variables after the refactoring as it did before the refactoring. These variable
accesses may occur transitively, by first calling a method that (directly or indirectly)
accesses the variable. A refactoring isupdate preserving if each method implementa-
tion performs at least the same variable updates after the refactoring as it did before
the refactoring. A refactoring iscall preserving if each method implementation still
performs at least the same method calls after the refactoring as it did before the refac-
toring.

3 Formalising refactoring by graph rewriting

This section introduces a graph rewriting formalism to express refactorings in an intu-
itive and generic way. To this extent, we first explain the graph notation used to represent
source code.

3.1 Graph notation

The graph representation of the source code is rather straightforward. Software entities
(such as classes, variables, methods and method parameters) are represented bynodes
whose label is a pair consisting of a name and a node type. For example, the class
Packet is represented by a node with namePacket and type� (i.e., a�-node). The set
� � ����� �� �� ���� of all possible node types is clarified in Table 1. Method
bodies (�-nodes) have been separated from their signatures (�-nodes) to make it eas-
ier to model late binding and dynamic method lookup, where the same signature can
have many possible implementations.�-nodes (method bodies) and� -nodes (formal
parameters) have an empty name.

Relationships between software entities (such as containment, inheritance, method
lookup, variable accesses and method calls) are represented byedges between the cor-
responding nodes. The label of an edge is simply the edge type. For example, the in-
heritance relationship between the classesWorkstation andNode is represented by an
edge with type	 (i.e., an	-edge) between the�-nodesWorkstation andNode. The set

 � ��� 	��� 
� �� �� �� �� �� �� of all possible edge types is clarified in Table 2. For
�-edges (membership) the label is often omitted in the figures.
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Type Description Examples
� Class Node, Workstation, PrintServer, Packet
� methodBody (or implementation)System.out.println(p.contents)
� Variable name, nextNode, contents, originator
� methodSignature in lookup tableaccept, send, print
� formal Parameter of a message p
� (sub)Expression in method bodyp.contents

Table 1. Node type set� � ����� �� �� ����

Type Description Examples
	 � � � � dynamic methodlookup accept(Packet p) has 3 possible method bodies

 � � � � inheritance class PrintServer extends Node
� � � � � variablemembership variablename belongs toNode

� � � methodmembership methodsend is implemented inNode
� � � � � message parametertype print(Packet p)

� � � variabletype String name
� � � signature returntype String getName()


 � � � � formalparameter send(Packet p)
� � � actualparameter System.out.println(nextNode.name)

� � � � � expression in method bodyif (p.addressee==this) this.print(p);
else super.accept(p);

� � � � � cascaded expression nextNode.accept(p)
� � � � � dynamic method call this.send(p)
� � � � � parameteraccess p.originator

� � � variableaccess p.originator
� � � � � variableupdate p.originator = this

Table 2. Edge type set� � �	� 
��� �� 
� �� �� �� �� ��
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Using this notation, an entire program can be represented by means of a single typed
graph. Because the graph representation can become very large, we only display those
parts of the graph that are relevant for the discussion. For example, Figure 1 only shows
the graph representation of the static structure of the LAN simulation. (For�-nodes, a
name has been put between parentheses to make the graph more readable.)

contents V originator V addressee V

Packet C

i
Node C

name V nextNode V (send) B (accept) B

p

PrintServer C

(accept) B (print) B

Workstation C

(accept) B(originate) B

i

String C

send S P

paccept S P

poriginate S P

pprint S P

t

l

l

l

l

tprintln S Pp t

tt

t
t

Fig. 1. Graph representation of the static structure of the LAN simulation

A method body is represented by a structure consisting of�-labeled nodes con-
nected by edges that express information about dynamic method calls and variable in-
vocations (accesses and updates). For example, Figure 2 represents the method bodies
in classNode. The method body ofsend contains a sequence of two subexpressions,
which is denoted by two�-edges from the�-node to two different�-nodes. The sec-
ond subexpressionnextNode.accept(p) is a cascaded method call (represented
by a�-edge) consisting of a variable access (represented by an�-edge to the� -node
labellednextNode) followed by a dynamic method call with one parameter (represented
by a�-edge and corresponding�-edge originating from the same�-node).

We have deliberately kept the graph model very simple to make it as language in-
dependent as possible. It does not model Java-specific implementation features such as:
Java interfaces; explicit references tothis; constructor methods; control statements
(such asif, for, etc.); Java modifiers (such asabstract, protected, final);
inner classes; threads; exceptions.

3.2 Well-formedness constraints

On top of the above graph representation, we need to impose constraints to guarantee
that a graph is well-formed in the sense that it corresponds to a syntactically correct pro-
gram. These so-calledwell-formedness constraints are essential to fine-tune our graph



8 Tom Menset al. — DRAFT — Submitted to ICGT2002
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Fig. 2. Graph representation of the behaviour of classNode

notation to a particular programming language (in this case Java). In this paper we use
two mechanisms to express these constraints: atype graph andforbidden subgraphs.
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Fig. 3. Type Graph

The notion of atype graph is formally presented in [11–13]. Intuitively, a type graph
is a meta-graph expressing restrictions on the graphs that are allowed. Formally, a graph
is allowed only if there exists a graph morphism into the type graph: a node mapping
and edge mapping that preserves sources, targets and labels. For node labels, only the
second component, as introduced in Table 1, is taken into account. Figure 3 displays the
type graph needed for our particular graph representation.

Because type graphs alone are insufficient to express all constraints that we are in-
terested in, we use a second mechanism calledforbidden subgraphs. A graph� satisfies
the constraint expressed by a forbidden subgraph� if there does not exist an injective
graph morphism from� into�.

To specify forbidden subgraphs we use graph expressions of the form� ��
���

� , where
� and� belong to the node type set� of Table 1, and��� is a regular expression over
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the edge type set
 of Table 2. This graph expression denotes the set of graphs of the
form depicted in Figure 4, where the word�� � � � �� belongs to the language of���. If
� � � and� � � (i.e.,�� � � � �� is the empty word) then the graph of Figure 4 consists of
one node. A graph that contains more than one graph expression denotes the set of all
graphs obtained by substituting these edges in the obvious way.

a
l1 b

ln...

Fig. 4. The graph represented by the word	� � � � 	� belonging to the language of��


Some typical examples of well-formedness constraints, needed to guarantee that a
refactorings does not lead to an ill-formed graph, are given below:

WF-1 A variable cannot be defined in a class if there is already a variable with the
same name in the inheritance hierarchy of this class (i.e., in the class itself or in an
ancestor class or descendant class).

WF-2 A method with the same signature cannot be implemented twice in the same
class.

WF-3 A method in a class cannot refer to variables that are defined in its descendant
classes.

These constraints can be expressed by the forbidden subgraphs of Figure 5. The
forbidden subgraph forWF-3 uses two graph expressions. For example, expression
� ��

�
������

� denotes the set of all nonempty edge paths from a�-node to a� -node,
where the last edge must have either type� or type�.

WF-3

B

V

C m

         m i+

?* {a|u}

C

C

     i*

a Vm

a Vm

WF-1

1

2

B

B

l a S

a S

C

m

m l

WF-2

1

2

Fig. 5. Well-formedness constraints expressed as forbidden subgraphs

3.3 Graph rewriting productions

A graph rewriting is a transformation that takes an initial graph as input and transforms
it into a result graph. This transformation occurs according to some predetermined rules
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that are specified in a so-calledgraph production. Such a graph production is specified
by means of aleft-hand side (LHS) and aright-hand side (RHS). The LHS is used to
specify which parts of the initial graph should be transformed, while the RHS specifies
the result after the transformation. Often, a graph production can be applied to different
parts of a graph, leading to different occurrences (or matches) of the graph production’s
LHS. In this paper, we useparameterised graph productions, so that a production con-
tains variables for labels. Such parameterised productions can be instantiated by choos-
ing concrete values for the parameters. Figure 6 shows a production wherevar, accessor
andupdaterare such parameters.

var V
1

l l

B Bvar V
a e

updater S accessor S

E
e u

p

P
p

1

a

E

E
2 3

4 57

6

8

9

Fig. 6. Parameterised graph production����
��	���� 
�	������ ��������� �
������

The production of Figure 6 represents the refactoringEncapsulateField. LHS and
RHS are separated by means of an arrow symbol. In this production, all nodes are num-
bered. Nodes that have a number occurring in both the LHS and the RHS are preserved
by the rewriting (as is the case with node� in the example). Nodes with numbers that
only occur in the LHS are removed, and nodes with numbers that only occur in the RHS
(e.g., nodes� and�) are newly created.

In order to take into account the “context” in which the production is applied, con-
sisting of the (sub)expressions referring to the variable that is encapsulated, the produc-
tion is equipped with anembedding mechanism similar to the one investigated in [14].
This embedding mechanism specifies how edges are redirected.Incoming edges, i.e.,
edges that have their target node in the LHS but not their source node, are redirected
according to the incoming edges specification in Table 3. For example,��� �� � ��� ��
means that each update of the variablevar (represented by an incoming�-edge to node
�) is replaced by a dynamic method call to the updater method (represented by an in-
coming�-edge to node�). Outgoing edges are treated similarly, using the outgoing
edges specification in Table 3. For example,��� �� � ��� ��� ��� ��� ��� 	� means
that the method bodies (nodes� and	) that correspond to theaccessor andupdater
signature must be implemented in the same class as the one in which the variablevar
(node�) was defined. Similarly,�
� �� � �
� ��� �
� ��� �
� 
� means that the return type
of theaccessor method and the parameter type of theupdater method must be the same
as the type of the variablevar. The type graph of Figure 3 guarantees that embedding
table 3 iscomplete, i.e., all possible types of incoming and outgoing edges are covered.
Indeed, according to the type graph, a� -node can only have incoming�-edges and
�-edges, and outgoing�-edges and
-edges.
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incoming edges outgoing edges
��� ��� ��� �� ��� �� � ��� ��� ��� ��� ��� ��
��� ��� ��� 	� ��� ��� ��� ��� ��� 	�� ��� 
�

Table 3. Embedding Table

The embedding-based parameterised production of Figure 6 may be viewed as
a specification of an infinite set of productions in the algebraic approach to graph
rewriting [15–17]. A concrete production can be obtained from the embedding-based
one by the following two steps: (1) fill in the parameters of the parameterised graph
production with concrete values; (2) extend the LHS and RHS of the embedding-
based production with a concrete context. Figure 7 shows the productionEncapsu-
lateField(name,getName,setName) that is applied in the context of the LAN example
of Figure 2. The two gray�-nodes in Figure 7 are matched with the gray�-nodes of
Figure 2.

name V
    a    a

Node CString C
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 m

EE

Node C

d

String C

  tt

l l

B Bname V
a

e

setName S getName S

E
e u

p

P
p a

E

E

EE
d

t

Fig. 7. Single-pushout graph production����
��	���� 
�	��������������� �������� ob-
tained from the parameterised production of Figure 6

The second refactoring that we want to express by graph rewriting is
��������
���������
� ��	��� �����, which moves the implementation of a method
���� in some��	�� class to its�����
 class, and removes the implementations of the
method���� in all other children of�����
. Expressing this refactoring by a single
production –even a parameterised one with embedding mechanism– is problematic:
changes may have to be made inall subclasses of�����
, and the number of such
subclasses is not a priori bounded. A way to cope with the problem is to control the
order in which productions are applied. Mechanisms forcontrolled graph rewriting
have been studied in, e.g., [18–20]. Using these mechanisms,PullUpMethod can be
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expressed by two parameterised productions�� and��. �� moves the method����

one level higher in the inheritance hierarchy (i.e., from��	�� to �����
), and can only
be applied if it is immediately followed by an application of� �. This second production
removes the implementation of method���� from another subclass of�����
, and
has to be applied until there are no more occurrences of its left-hand side present. Both
productions�� and�� are equipped with an identity embedding, i.e., all incoming and
outgoing edges are preserved.
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Fig. 8. Productions�� and�� for controlled rewriting��		�
��� ���
������ � 
	�� �����

4 Preservation of refactoring properties

In this section we combine the formalisation of refactorings of subsection 3.3 with
another graph rewriting technique, negative application conditions, to guarantee certain
properties of the graphs that are derived. In particular, we consider certain types of
behaviour preservation, refactoring preconditions and well-formedness constraints.

4.1 Preserving behaviour

The types of behaviour preservation discussed in section 2.4 can be expressed formally
using the graph expression notation introduced in section 3.2.

The graph expression� ��
�
�

�
� can be used to express the property ofaccess preser-

vation. It specifies all possible access paths from a method body (�-node) to a variable
(� -node). The constraints imposed by the type graph of Figure 3 guarantee that there is
only one�-edge on such a path, and this edge is the last one in the path. Access preser-
vation means that, for each occurrence of� ��

�
��

� in the initial graph to be rewritten,
there is a corresponding occurrence of this graph expression in the resulting graph, con-
necting the same�-node and� -node. Thus, the nodes that match� and� should not
be removed or added by the graph production. In a similar way, we can expressupdate
preservation by means of the expression� ��

�
��

� .
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Graph expression� ��
�
�

�
� ��

�	
� ��



� � formalises the property ofcall preservation.

Subexpression� ��
�
��

� specifies that for each method body (�-node) that performs a
dynamic method call (�-edge) to some signature (�-node) in the initial graph, there
should still be a dynamic method call from the same method body to the same signature
in the resulting graph. Subexpression� ��

�	
� ��


�
� reflects that each signature that

is implemented in some class is understood by the class itself and all its descendant
classes.

EncapsulateField. To showupdate preservation for EncapsulateField, it suffices to
show that the preservation property expressed by� ��

�
��

� is satisfied for each method
body� that updates the variablevar that is being encapsulated. It follows from the form
of the graph production of Figure 6 that this is the case. This is illustrated in Figure 9,
that shows how a direct update ofvar is replaced by a slightly longer path that still
satisfies the property� ��

�
��
� . Access preservation can be shown in a similar way.Call

preservation is trivial since the refactoring does not change any dynamic method calls
or method bodies. (It does add new method signatures and method bodies, but this does
not affect existing method calls.)

E var V
u 1

B ?* E updater S
d 2

B ?*
B

l 4
E

e 7
var V

u 1

Fig. 9. Update preservation property of����
��	���� 
�	��������������� �
������

PullUpMethod. To showcall preservation for PullUpMethod, we have to check whether
the property� ��

�
��

� ��
�	

� ��

�

� is preserved by the refactoring. Subexpression
� ��

�
��

� is trivially fulfilled. Subexpression� ��
�	

� ��

�

� is illustrated in Figure 10:
all implementations of the signaturename in some child class ofparent are replaced by
the implementation of signaturename in parent itself. This means that the path� ��

�	
�

is replaced by a path� ��
�	

� ��


� and both paths belong to the graph expression

� ��
�	

� ��

�

�. Access preservation andupdate preservation are trivial, except in the
case where an implementation of the signaturename in some child class ofparent ac-
cesses or updates a variable. Since this implementation is removed (pulled up) by the
refactoring, it is possible that variable accesses or updates in this method implementa-
tion are not preserved. Hence, thePullUpMethod refactoring is not necessarily access
preserving or update preserving!

4.2 Preserving constraints

In general, the graph obtained by the application of a refactoring production has to sat-
isfy several constraints. On the one hand, it has to satisfy well-formedness constraints,
and on the other hand, refactorings are often subject to more specific constraints. For
example,EncapsulateField may not causeaccidental method overriding, i.e.,
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B C
m

name S l
parent C

i4 3 1
B C

mname S l
parent C

i4 3 1

Fig. 10. Call preservation property of��		�
��� ���
������ � 
	�� �����

the refactoring may not introduce new methods in a class if these methods are
already defined in one of its subclasses (RC-1)

All these constraints can be expressed in a natural way as postconditions for the
graph rewriting. However, for efficiency reasons, it is desirable to transform these post-
conditions intopreconditions. This avoids having to undo the refactoring if it turns out
that the constraints are not met. Formally, preconditions can be defined by using graph
rewriting with negative application conditions [21–23].

var V
m1 m l updater SC BC

i*
var V

m1 m l updater SC BC
i*

Fig. 11. Negative preconditions for theEncapsulateField refactoring

EncapsulateField. Figure 11 presents the negative preconditions needed in order for
EncapsulateField to satisfy refactoring constraintRC-1. The conditions specify that no
ancestor or descendant class of the class containing the variablevar should have imple-
mented a method with signatureupdater. Two similar negative application conditions
are needed for theaccessor method. Well-formedness constraintWF-1 is satisfied since
EncapsulateField does not introduce or move any variables, or change anything to the
class hierarchy. ConstraintWF-2 is satisfied thanks to the preconditions of Figure 11,
in the special case where	� is the empty word. ConstraintWF-3 is satisfied because
EncapsulateField only introduces a new variable access and update to a variable that is
defined by the class itself.

PullUpMethod. Figure 12 presents two negative preconditions forPullUpMethod, or
more specifically, for subproduction�� of Figure 8. The condition on the left specifies
that the methodname to be pulled up should not yet be implemented inparent, and the
condition on the right specifies that the implementation of the method to be pulled up
should not refer to (i.e., access or update) variables outside the scope of theparent.

PullUpMethod satisfies well-formedness constraintWF-1 since it does not intro-
duce or redirect any variables, or change anything to the class hierarchy. Constraint
WF-2 is satisfied thanks to the precondition on the left of Figure 12. ConstraintWF-3
is satisfied thanks to the precondition on the right of Figure 12.
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m l
name Sparent C B

41 l
name Sparent C B

41

V

3

         m i+
?* {a|u}

Fig. 12. Negative preconditions for thePullUpMethod refactoring

5 Conclusion and Future Work

This paper presented a feasibility study concerning the use of graph rewriting as a for-
mal specification for refactoring. Based on the specification of two refactorings (“en-
capsulate field” and “pull up method”) we conclude that graph rewriting is a suitable
formalism for specifying the effect of refactorings, because (i) graphs can be used as a
language-independent representation of the source code; (ii) rewriting rules are a natu-
ral yet precise way to specify the source-code transformations implied by a refactoring;
(iii) the formalism allows us to prove that refactorings indeed preserve the behaviour
that can be inferred directly from the source code.

In order to achieve our goal, we had to enrich the basic graph rewriting mechanism
by a number of additional techniques. Typing and forbidden subgraphs made it possible
to express well-formedness constraints in a natural way. The specification of infinite
sets of productions was facilitated by using parameterisation and an embedding mecha-
nism. The application of graph productions was restricted by using negative application
conditions and controlled graph rewriting. All these techniques have been investigated
in the literature, but a better integration is necessary to make the approach usable for
people less acquainted with graph rewriting.

The two refactorings as well as the types of behaviour preservation we studied, are
realistic and well documented. Because there are many other types of refactorings and
behaviour preservation, further research is needed in order to find out whether the used
graph representation needs to be modified, or whether other graph rewriting techniques
should be used. For example, initial attempts to specify refactorings such as “move
method” and “push down method” showed that it is difficult to manipulate nested struc-
tures in method bodies.

A central topic in future work will also be the investigation of methods to detect,
for a given graph property and graph transformation, whether or not the property is
preserved by the transformation. This requires further research into formalisms to ex-
press such properties, as well as the syntax that could be used as input for an automated
refactoring tool.

Similar to what has been described in [6], we will also study the impact of lan-
guage specific features (e.g., Java interfaces) to verify whether it is possible to express
refactorings independently of the programming language being used.

In the longer run, we want to investigate combinations of refactorings. Roberts [10]
has argued that primitive refactorings can be chained in sequences, where the precon-
ditions of one refactoring are guaranteed by the postconditions of the previous ones.
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Moreover, in some refactoring sequences it is possible to change the order without
changing the global effect. Such properties can be expressed using graph rewriting for-
malisms like the one in [22]. Refactoring tools may exploit these properties to optimise
the number of program transformations, in much the same way as database tools per-
form query optimisations. This reduces the amount of analysis that must be performed
by a tool, which is crucial for the performance and usability of refactoring tools.
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