
Recovering Behavioral Design Views:
a Query-Based Approach

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universiẗat Bern

vorgelegt von

Tamar Richner-Hanna
von Gr̈anichen, AG

Leiter der Arbeit: Prof. Dr. O. Nierstrasz, Dr. S. Ducasse

Institut für Informatik und angewandte Mathematik

Recovering Behavioral Design Views:
a Query-Based Approach

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakult¨at

der Universität Bern

vorgelegt von

Tamar Richner-Hanna

von Gränichen, AG

Leiter der Arbeit: Prof. Dr. O. Nierstrasz, Dr. S. Ducasse
Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakult¨at angenommen.

Der Dekan:

Bern, 17. Mai 2002 Prof. Dr. P. Bochsler

Abstract

The reality of software development is such that engineers must often perform mainte-
nance tasks with missing or out-of-date documentation and without the support of the
original developers. To understand the softwareas it is now, engineers use reverse engi-
neering tools to recover information from the code itself. Most such tools analyze only
static information about the system and so provide engineers with structural, rather than
behavioral models. It is, however, critical to understand the behavioral aspect of the soft-
ware system in order to carry out certain maintenance tasks.

To better understand programbehaviorengineers turn to tools which use dynamic
information collected during program execution. Such tools typically display all the dy-
namic information at very fine granularity, making it difficult to extract manageable mod-
els of behavior. They then rely on visualization and navigation techniques to help the
engineer locate information relevant to the change task.

In this dissertation we propose an approach to recovering behavioral models from
object-oriented software which is based onperspectives. Our approach enables an engi-
neer to declaratively define perspectives through which the dynamic information can be
viewed. It supports an iterative recovery process in which successive views of the soft-
ware system help the engineer to answer questions related to the maintenance task to be
performed. We claim that such an approach can overcome the difficulties of recovering
succinct and focused views of object-oriented software from dynamic information.

A perspective is a model of the kind of information that an engineer is interested
in. Our approach supports the construction of principally two kinds of such models:
component-connector models and collaboration models. We first identify a meta-model
for describing object-oriented software and its execution, then develop a simple declara-
tive way to express perspectives in terms of this meta-model: component-connector per-
spectives express a range of static groupings and dynamic relations; collaboration per-
spectives abstract from execution sequences to class collaborations. Using case studies
we demonstrate the validity of our approach by showing how perspectives are used in an
iterative process to recover both high-level and low-level succinct behavioral views.

v

Acknowledgments

First, I would like to thank the members of my Ph.D. committee. I thank my advisor,
Oscar Nierstrasz, for his support over the years, and for his help in improving the presen-
tation of my work. Many thanks to St´ephane Ducasse, who co-supervised this research.
He has followed my work through most of its stages and I thank him for his continu-
ous encouragement, for our many discussions and for the fruitful collaboration on several
papers. I thank Kai Koskimies for writing the referee report and for coming from Fin-
land to be the external examiner. My thanks to Professor Torsten Braun for chairing the
committee.

I thank my colleagues at the Software Composition Group: thanks to Serge Demeyer
for his guidance during the earlier stages of this work and to Roel Wuyts for many con-
structive comments towards the end. Thanks to Matthias Rieger for help with widgets,
and to Sander Tichelaar and Michele Lanza for discussions about ‘their’ case studies. To
my office mates, Franz Achermann and Juan Carlos Cruz, thanks for being there to listen,
to laugh with – and of course for enlightening discussions on software architecture, com-
position and coordination. Thanks to Gabriela Ar´evalo for cheering me on at the tiring
end phase, and for cookies. Thanks also to Alexandre Bergel, Isabelle Huber, Peng Liang,
Nathanael Sch¨arli and Therese Schmid. I thank you all for discussions, for reading drafts,
and for the fun we had.

Several people I met at conferences or as visitors to our group have commented on
my work and pointed me to interesting questions. In particular, I thank Gail Murphy,
Patrick Steyaert, Bjorn Freeman-Benson, Stan Jarzabek, Spencer Rugaber, Tarja Syst¨a
and Andrew Black for mostly brief, but helpful discussions.

I am grateful to the Swiss National Science Foundation for awarding me a Marie
Heim-Vögtlin grant at the beginning of my doctoral work. My thanks to Professor Di-
eter Hogrefe who initially sponsored my grant application and to Stefan Leue for several
discussions and for much encouragement while I was writing the grant proposal.

I am especially grateful for the logistic support for finishing this work. Lee-Kaja
Jost, and more recently, Maloti Bordoloi-Sharma were at home for the kids when I was
working. Most of all I thank my mother-in-law, Verena, who always readily took over in
the absence of our babysitters.

Finally, I thank my friends and family for their support. In particular, I thank Heinz
for his unfailing encouragement and for his patience in enduring through this enterprise.
Last but not least, I thank my children – Naomi, Jonas and Joel – for just being who they
are. Tamar Richner, May 2002

vii

Contents

1 Introduction 1
1.1 Approach and Contributions . 2

1.1.1 Research Hypothesis: the Nature of Design Recovery 2
1.1.2 Approach . 3
1.1.3 Contributions . 4

1.2 Structure of Dissertation . 5

2 Design Recovery for Object-Oriented Systems: a Survey 7
2.1 Reverse Engineering and Design Recovery: an Overview 8

2.1.1 Definitions . 8
2.1.2 What is Design? . 9
2.1.3 Design Views . 10
2.1.4 General Approaches to Design Recovery 12

2.2 Design Recovery for Object-Oriented Software 14
2.2.1 Describing Object-Oriented Software Design 15
2.2.2 Recovering Static Models . 17
2.2.3 Recovering Dynamic Models . 19
2.2.4 A Case of Design Recovery: Detecting Design Patterns 24

2.3 Our Work: Scope and Requirements . 26
2.3.1 Scope of Our Work . 27
2.3.2 Requirements for the Recovery of Behavioral Models 28

2.4 Conclusions . 29

3 The Iterative Query-Based Approach 31
3.1 The Iterative Process of Design Recovery 31

3.1.1 Concepts and Terminology . 33
3.2 The Source Model . 34

3.2.1 Why Dynamic Information? . 35
3.2.2 Modeling Static Information . 35
3.2.3 Modeling Program Execution 36

3.3 Using Perspectives to Recover Design Views 39
3.3.1 Concept View Recovery . 41
3.3.2 Collaboration View Recovery 43

x CONTENTS

3.3.3 Combining Concept and Collaboration View Recovery 44
3.4 Conclusions . 44

4 Concept View Recovery: the Declarative Framework 47
4.1 A Declarative Framework for Perspectives 47

4.1.1 The Representation Layer . 48
4.1.2 The Base Layer . 51
4.1.3 The Auxiliary Layer . 55

4.2 The Perspective Layer . 56
4.2.1 Views . 57
4.2.2 Perspectives . 58
4.2.3 Specifying Perspectives . 60

4.3 Tool Support: Gaudi 62
4.3.1 Discussion of Gaudi 63

4.4 Discussion of the Declarative Framework 65
4.4.1 Queries vs. Views: the Example of Design Pattern Detection . . . 66

4.5 Conclusions . 67

5 Concept View Recovery: Case Studies 69
5.1 Understanding Tools in HotDraw . 69

5.1.1 Extracting the Source Model . 70
5.1.2 Understanding Tools . 71

5.2 Looking for a Facade in the Refactoring Browser 76
5.2.1 The Refactoring Browser . 77
5.2.2 Extracting the Source Model . 78
5.2.3 Looking for a Facade 78

5.3 Evaluation and Discussion. 86
5.3.1 Lessons Learned .. 86
5.3.2 Towards a Methodology 87
5.3.3 Efficiency . 88
5.3.4 Generality of the Approach 89
5.3.5 Related Work . 91

5.4 Revisiting the Requirements 92
5.5 Conclusions . 94

6 Collaboration View Recovery 97
6.1 Collaboration-based Design . 98

6.1.1 An Example . 98
6.1.2 Collaborations and Roles in Forward Engineering 99

6.2 Reverse Engineering Collaborations and Roles 101
6.2.1 Describing Collaborations and Roles 101
6.2.2 Challenges to the Recovery of Collaborations 102
6.2.3 Overview of Our Approach . 103

6.3 Extracting Collaboration Views . 103

CONTENTS xi

6.3.1 Terminology and Concepts . 104
6.3.2 Pattern Matching . 105
6.3.3 The Query Model . 108

6.4 Tool support: The Collaboration Browser 109
6.4.1 Functionality of the Collaboration Browser 111
6.4.2 Implementation . 114

6.5 Validation of the Approach: Case Studies 115
6.5.1 Investigating Collaborations of Tools in HotDraw 115
6.5.2 Collaborations in CodeCrawler 122
6.5.3 Collaborations in the Refactoring Browser 125

6.6 Evaluation and Discussion. 128
6.6.1 Lessons learned . .. 128
6.6.2 Towards a Methodology 129
6.6.3 Pattern Matching . 129
6.6.4 Characterizing Collaborations and Roles 133
6.6.5 Generality of the Approach 134
6.6.6 Related Work . 135

6.7 Revisiting the Requirements 136
6.8 Conclusions . 138

7 Conclusions 139
7.1 Contributions . 139
7.2 Discussion . .. 141
7.3 Future Work . 143

References 145

xii CONTENTS

List of Figures

2.1 Reengineering concepts . .. 9
2.2 Design views as projections . 11
2.3 Jinsight display . 22
2.4 ISVis display . 23
2.5 Structure occurring in Strategy, State and Command patterns 25

3.1 Basic tool architecture . .. 31
3.2 The iterative process 32
3.3 Views and perspectives . 34
3.4 Meta-model of static information . 36
3.5 Direct and indirect sends .. 39
3.6 Concept views and collaboration views 40
3.7 A perspective . 41
3.8 A view . 42
3.9 The Collaboration Browser . 43

4.1 The declarative framework as layers of predicates 48
4.2 The framework as used in an iterative query cycle 49
4.3 Class diagram . 49
4.4 Sequence diagram . 50
4.5 The declarative framework showing predefined predicates 55
4.6 Perspective predicates . 59
4.7 View 1 . 61
4.8 Implementation of Gaudi . 63
4.9 The Gaudi tool . 64
4.10 Structure of Composite Design Pattern 66
4.11 Structure of Proxy Design Pattern . 67

5.1 HotDraw sample editor . 70
5.2 View 1 . 71
5.3 View 2 . 72
5.4 View 3 . 74
5.5 View 4 . 75
5.6 View 5 . 76
5.7 Looking for a facade in the Refactoring Browser 77

xiv LIST OF FIGURES

5.8 View 1 . 79
5.9 View 2 . 80
5.10 View 3 . 82
5.11 View 4 . 84
5.12 View 5 . 85
5.13 View 5 . 86

6.1 Class diagram for Bureaucracy 98
6.2 Class-collaboration matrix for Bureaucracy 99
6.3 Pattern matching and querying in the iterative query cycle 104
6.4 From an execution trace to collaborations and roles 104
6.5 LAN design . 106
6.6 LAN execution . 107
6.7 Collaboration Browser window . 111
6.8 Interaction Diagram window. 114
6.9 Context of method invocations . 117
6.10 Collaboration patterns forTool handleEvent 120
6.11 The known elements of CodeCrawler 122
6.12 Collaboration patterns as a function of trace size 133

List of Tables

2.1 Views addressing main development concerns 12

3.1 Meta-model of static information . 37
3.2 Meta-model of dynamic information 38

4.1 Predicates of the representation layer: the static entities and associations . 50
4.2 Predicates of the representation layer: dynamic relations 51
4.3 Predicates of the base layer: static relations. 53
4.4 Predicates of the base layer: rules based on dynamic information. 53
4.5 Predicates of the base layer: component clustering rules. 54
4.6 Predicates of the base layer: dynamic relations 54
4.7 Perspective types . 62

5.1 Main kinds of perspectives . 88

6.1 Collaboration description . 102
6.2 Pattern matching options . 108
6.3 Queries about method invocations in a trace 109
6.4 Queries about method invocations in a collaboration pattern 110
6.5 Interface matrix forTool . 117
6.6 Collaborations involvingTool . 118
6.7 Collaboration patterns forTool handleEvent: 119
6.8 Class-Collaboration description . 121
6.9 Collaborations involvingTool . 121
6.10 Interface matrix forFigureModel classes 123
6.11 Class-Collaboration matrix for CodeCrawler 125
6.12 Interface matrix forCompositeRefactoryChange 126
6.13 Collaborations forCompositeRefactoryChange 127
6.14 Collaborations forCompositeRefactoryChange 127
6.15 Size of case studies. 129
6.16 Collaboration patterns as a function of structure 131
6.17 Collaboration patterns as a function of relative depth 131
6.18 Collaboration patterns as a function of trace size 132
6.19 Collaboration matrix . 133

xvi LIST OF TABLES

1

Introduction

“A program that is used in a real world environment necessarily must change
or become progressively less useful in that environment”[LB85]

Software must constantly change and evolve. In order to perform changes on existing
software, engineers must be able to understand the software. The reality of software
development is such that development teams must often perform maintenance tasks with
missing or out-of-date documentation and without the support of the original developers.

In this context it is important to have access to tools which aid in program under-
standing. There is a large spectrum of approaches and tools which can help in this
[WTMS95][HYR96][KC98], ranging from debuggers [LHS97] to metric approaches
[FP96][LD02][DD99], from program visualization [KM96][PLVW98][JR97] and anima-
tion techniques [WMFB+98] to design conformance checkers [MN97][Wuy98][Ciu99].
These tools help engineers toreverse engineera conceptual model from the software
itself.

In considering models of software, we distinguish here in particular between structural
and behavioral models. Structural models describe how the software artifacts are orga-
nized, be it through inheritance relationships, packages or modules, whereas behavioral
models describe how these artifacts collaborate at runtime to carry out a certain function-
ality. Most program understanding and reverse engineering tools make use only of static
information to extract models of the software. However, for object-oriented software,
where there is a class-object dichotomy and polymorphism makes it hard to determine
what actually happens at run time, models extracted using static information only are
limited in conveying information about program behavior.

To better understand programbehaviorengineers turn to tools which use dynamic
information collected during program execution. Most of these tools display all the run-
time message exchanges and give information at a very low level of granularity. These
approaches thus recover verbose models and rely on visualization and navigation tech-
niques for helping the engineer to locate information relevant to the change task.

In our research we explored the feasibility of using dynamic information in a different
way than these tools. Whereas most approaches retain the time element present in the
execution trace and present it either as a vertical time line in a sequence diagram display

2 1. INTRODUCTION

[JR97][KM96] or as simulated or real time through animation techniques [WMFB+98],
we decided to ignore the time element altogether. We then investigated how the dynamic
informationwithout the time dimensionhelps in forming concepts about the high-level
and low-level design of the software.

Our motivation was the following: although we want access to low-level run-time
information, reverse engineering is not debugging – we also want help in forming general
concepts about the software’s behavior. When performing changes on software we want
compact high-level views which give us an idea of the relations of parts of the software
to each other and guide us in deciding where to focus. We need low-level views for
understanding the run-time interactions of objects inspecificparts of the software, rather
than everywhere. We want to know which parts of the software are involved in carrying
out a certain functionality and what their role is. We therefore want an approach which
can extract both high-level and low-level views, but which does not present us withall
the low-level information. We want an approach which helps us to focus on the part of
the software which is of interest for the maintenance task we must undertake, without
overwhelming us with details.

1.1 Approach and Contributions

In this section we describe our approach and the hypothesis it rests on, then outline the
contributions made in the dissertation.

1.1.1 Research Hypothesis: the Nature of Design Recovery

Our work on reverse engineering has been guided by the following two observations about
the nature of design recovery [MN97]. These two guidelines can be seen as a research
hypothesis which forms a basis for our approach.

The design recovery activity is task-specific.The kinds of questions we ask in design
recovery depend on the software maintenance task with which we are confronted.
If we want to replace the user-interface of a software system, for example, we will
need to discover the dependencies of the system on the present user-interface to
evaluate the work involved. If instead, we want to add functionality to the same
system, we will want to understand how related functionality is now carried out,
and which parts of the software have a role in carrying out this functionality.

The task we must undertake will dictate the questions we ask about the software.
We therefore do not need to extract a view which answers all possible questions
about an application, but rather the ability to tailor the recovered view to the ques-
tion at hand.

Design recovery is an iterative process.Whether or not we are using a tool, human in-
tervention is always required to interpret the result of design recovery. The design

1.1. APPROACH AND CONTRIBUTIONS 3

recovery cycle is then as follows: analyze the subject system with the goal of un-
derstanding a specific thing about it – extract a view – interpret the view and revise
the question – go back to the system to obtain an answer – revise the hypothesis
and question, and so on, until we have sufficient information for answering the
task-specific question.

Thus, ideally, the recovery approach must support an iterative process which is steered
by the engineer confronted with a maintenance task.

1.1.2 Approach

In this dissertation we describe an approach to recovering behavioral views of object-
oriented software. The essence of our approach for recovering views can be stated as
follows:

We enable a developer to construct a model of the kind of information that
he or she is interested in, then create a view of the software by showing the
dynamic informationthroughthis model.

We call the model constructed by the developer aperspective: it is the declarative lens
through which we view the dynamic information. Our approach supports the construction
of basically two kinds of perspectives which we considered important in understanding
the behavior of object-oriented programs.

The first kind of perspective enables an engineer to recover aconcept viewof the soft-
ware. Such a view presents the software as a set of components and connectors. The
semantics of the components and the connectors are defined by the engineer: components
are created by grouping together static elements of the software, such as classes or meth-
ods; connectors are defined by expressing a dynamic relationship between these static
elements, such as invocation or creation relationships. Concept views thus accommodate
a range of different views.

The second kind of perspective enables an engineer to recover acollaboration view
of the software. Such a view presents the dynamic information as a collection of class
collaborations. The goal here is to understand how instances collaborate at runtime to
carry out a certain functionality by abstracting from similar execution sequences to a col-
laboration. These abstractions are created by applying pattern matching to the execution
trace – the role of the engineer here is to specify what he or she considers to be similarity
in execution sequences by modulating the pattern matching criteria. This gives semantics
to the notion of collaboration.

A key part of our approach is the iterative querying it supports. Not every view cre-
ated using perspectives will answer all the questions a developer might have. But each
view will relate some information which helps the engineer to decide on the next view to
generate, and the next query to launch.

The approach we propose islightweight– a developer can quickly obtain initial views
with a minimum of investment. This means that the approach does not rely on sophis-
ticated analysis techniques for extracting an information base from the source code and

4 1. INTRODUCTION

that formulating perspectives to obtain views is simple. The approach also produces views
which aresuccinct– compact views which focus on the elements of interest and do not
rely on visualization techniques for navigating the information.

1.1.3 Contributions

The overall contribution of this dissertation is the development of a methodology for
reverse engineering behavioral design views of object-oriented programs using dynamic
information. Our research contains the following contributions:

� we analyze the problems of design recovery for object-oriented software systems
and survey current solutions and approaches. We look in particular at techniques of
dealing with dynamic information.

� we identify a lightweight model for representing object-oriented programs. This
model consists of a meta-model for representing static information in terms of the
basic static entities and relations of object-oriented software – classes, methods,
inheritance definitions, attributes, accesses and invocations – and a meta-model for
representing program execution as a sequence of message send events.

� we introduce the notion ofperspectiveas a declarative lens through which we will
view dynamic information. A perspective is a model of the kind of information that
a developer is interested in. We demonstrate that perspectives support the construc-
tion of two kinds of models which are particularly useful in understanding object-
oriented programs. The first kind of model is acomponent-connectormodel. A
component is a grouping of static elements of the software, a connector is a relation
between the components. These models are useful in obtaining high-level views
of the software, which we callconcept views. The second kind of model is that
of a collaboration– an abstraction of the interaction of instances to carry out a
certain functionality. Collaborations are useful in obtaining low-level views of the
software, which we callcollaboration views.

� for concept view recovery, we develop a way to express perspectives using a logic
programming language. We describe how component abstractions are specified by
grouping together static entities, such as classes, into a component, and how the
semantics of a connector is defined as a relation in terms of message send events.
We identify and encode connector types which express several interesting dynamic
relations, such as method invocation and object creation. We also demonstrate the
encoding of design pattern abstractions using dynamic information.

� using case studies, we demonstrate the use of perspectives for the iterative recovery
of concept views and identify several useful perspectives.

� for collaboration view recovery, we introduce pattern matching as a technique to
identify similar execution sequences in the trace as instances of one collaboration

1.2. STRUCTURE OF DISSERTATION 5

abstraction, and show how modulating the pattern matching criteria enables us to
change the semantics of a collaboration to reflect the model we are interested in.
We describe a simple query model for investigating collaboration patterns.

� using case studies, we demonstrate the recovery of collaborations. We show how
the query model is used to characterize a particular collaboration and to decompose
a program trace into collaborations.

� finally, we discuss how the two techniques of concept view recovery and collabora-
tion view recovery could be integrated into one tool.

1.2 Structure of Dissertation

The dissertation is structured as follows:
Chapter 2 surveys the problems of design recovery and the existing approaches. We

begin by presenting general approaches to design recovery and then focus in more detail
on the recovery of design models from object-oriented software. The recovery of dynamic
models, in particular, is discussed at length. At the end of this chapter, we distill a set of
requirements for our own work.

Chapter 3 introduces the elements of our approach. We discuss the iterative approach
in design recovery, present the meta-model for representing object-oriented programs and
their execution, and introduce concept view recovery and collaboration view recovery.

Chapters 4 and 5 describe concept view recovery, which is used to recover views of
a software system ascomponentsandconnectors. In Chapter 4 we present a declarative
framework on which concept view recovery is based, and the tool, Gaudi, which imple-
ments the framework. In Chapter 5 we then present the case studies conducted to validate
the application and conclude the chapter with a discussion and evaluation.

In Chapters 6 we present collaboration view recovery, which is used to recovercol-
laborationsand roles. We describe the use of pattern matching in the recovery of col-
laborations, and introduce a query model for querying about collaborations. We describe
the Collaboration Browser, a tool which supports the extraction and querying of collab-
oration, and present the case studies conducted to demonstrate the tool and validate the
approach.

The dissertation concludes with Chapter 7, where we summarize the contributions
made and discuss open problems and future work.

6 1. INTRODUCTION

2

Design Recovery for Object-Oriented
Systems: a Survey

The way we describe the process of software development has changed. Whereas ten
years ago the waterfall model was still used to describe the sequential steps in the devel-
opment process, it is now recognized that an iterative development cycle, as described by
the spiral model [Boe88], better reflects the reality of the development process. There is a
conscious effort in many organizations to encourage iterative development cycles which
result in early prototypes, thus allowing for elucidation of requirements and detection of
problems earlier in the software development process [Bec00].

With iterative development, the issue of software evolution is not restricted to the
aging of software, or to legacy systems. The iterative cycle acknowledges that software
evolves as we develop it, as we take into account more precise or newer requirements
and adapt it to changing environments. Software evolves constantly – and this means that
as we develop software we need to understand its current structure and behavior and to
communicate this understanding to others.

Round trip engineeringevokes the possibility of designing an application and auto-
matically deriving its implementation, manually adapting the implementation and auto-
matically updating the design documents to reflect the current state of the code [SZ99].
But until the advent of this “seamless integration of design diagrams and source code,
of modeling and implementation”[DDT99], we must deal with the issue of ‘manually’
deriving models which represent the current structure and behavior of our software.

In order to obtain models which describe the softwareas it is now, we must recover
design information from the software itself,i.e., reverse engineer the software. So reverse
engineering is not only important for legacy systems, it is an important part of the normal
development cycle and is essential in many software maintenance activities.

In this chapter we survey existing approaches to design recovery, both general ones
and ones specific to object-oriented software. From this survey we distill a set of require-
ments for our own work on the recovery of behavioral models. The chapter is organized
as follows: In Section 2.1 we present an overview of reverse engineering and design re-
covery. The chapter continues with Section 2.2 where we look more closely at design

8 2. DESIGN RECOVERY FOR OBJECT-ORIENTED SYSTEMS: A SURVEY

recovery for object-oriented systems. Finally, in Section 2.3 we introduces the require-
ments that have guided our work on the recovery of behavioral models.

2.1 Reverse Engineering and Design Recovery: an
Overview

We first present definitions related to reverse engineering, then follow in Section 2.1.2
and Section 2.1.3 with a discussion of what design is and how it is documented. Finally
in Section 2.1.4 we review general approaches to design recovery.

2.1.1 Definitions

To put our work in context, and to be clear in the use of certain terms, we present below ac-
cepted definitions for the important concepts which appear in the dissertation. Figure 2.1
illustrates these schematically.

“Forward engineering is the traditional process of moving from high-level
abstractions and logical, implementation-independent designs to the physical
implementation of the system. ”[CC90]

“Reengineering... is the examination and alteration of a subject system to
reconstitute it in a new form and the subsequent implementation of the new
form.”[CC90]

“Reverse engineeringis the process of analyzing a subject system to
identify the system’s components and their interrelationships, and to cre-
ate representations of the system in another form or at a higher level of
abstraction.”[CC90]

“ Design Recoveryrecreates design abstractions from a combination of code,
existing documentation (if available), personal experience, and a general
knowledge about problem and application domains.”[Big89]

The context for the work presented in this dissertation is reverse engineering and de-
sign recovery, and we will use these two terms interchangeably. As seen from Figure 2.1,
reverse engineering is an essential part of reengineering. Although our work does not
touch upon issues related to the alteration of the software system, it is clear that reverse
engineering and design recovery are essential for many software maintenance tasks.

A software maintenance task is simply a task which involves making changes to the
software. The definition of software maintenance offered by the ANSI/IEEE Standard
dates from 1983, and makes a distinction between change tasks before or after product
delivery, reflecting the waterfall model philosophy of its time:

2.1. REVERSE ENGINEERING AND DESIGN RECOVERY: AN OVERVIEW 9

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������

������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������

������
������
������
������
������
������
������

Reenginering

New requirements
Requirements

System (software)

Designs (models)

R
ev

er
se

 e
ng

in
ee

ri
ng

Forw
ard engineering

Figure 2.1: Reengineering concepts

“Software maintenanceis the modification of a software product [after de-
livery] to correct faults, to improve performance or other attributes, or to
adapt the product to a changed environment.”[ANS83]

For our purposes, however, we ignore the bracketed words in the definition,i.e., soft-
ware maintenance is almost any software development task in which we make modifica-
tions to the software for some reason. Several industry surveys suggest that the amount
of effort organizations spend on software maintenance as a percentage of their total pro-
gramming effort is between 65% and 75% [Som92].

2.1.2 What is Design?

Recovering design information from an existing application is crucial to engineers con-
fronted with a variety of software maintenance tasks. But what do we recover when we do
design recovery? What is design? The wordsdesign, architecture, architectural design
andsoftware structureare used by some people interchangeably, whereas others will ar-
gue vehemently about the critical differences which distinguish these concepts from each
other.

Design is more easily understood as a software development activity, thedesign pro-
cess, than as a product:

“Design is really two activities: architectural design and detailed design.
Architectural design involves making strategic decisions about how system
functionality is factored among independent components, how components
relate and how control transfers from one component to another. It often in-
cludes a specification of how users give and receive information, and how the
system communicates with other systems.

Detailed design consists of tactical decisions, such as the choice of algorithms
and data structures to meet performance and space objectives.”[GR95]

10 2. DESIGN RECOVERY FOR OBJECT-ORIENTED SYSTEMS: A SURVEY

What is embedded in the design process is the decision making process involved:

“Design is a creative process which requires experience and some flair on the
part of the designer. [...It] involves a number of different stages:

(1) Study and understand the problem

(2) Identify gross features of at least one possible solution. It is often useful
to identify a number of solutions and to evaluate each of these. The choice
of solution depends on the designer’s experience, the availability of reusable
components, the simplicity of the derived solutions [...]

(3) Describe each abstraction used in the solution [...]”[Som92]

It is exactly this decision making process – identifying several solutions and choosing
one among them – which gives us a key to understanding the resulting software system.
But this decision making process does not appear in the software, and is rarely to be
found in design documents. Indeed, one could argue that a good design document should
document not only the chosen solutions, but also the rejected options, so as to make it
easier to backtrack in the case of changing requirements or environment.

Although software design is a process, the word is also used to refer to the product of
this process. The real products of the design process, that is thedesignor architecture,
are all the important decisions taken about how to organize and structure the system.
Many of these often remain undocumented – typically all we have is the final product: the
implemented system. In the next section we will look more closely at what we want to
recover when we do design recovery.

Design and architecture. Software architecture has been defined as the decomposition
of the software into the main design elements (the components) of the system, the inter-
actions among these components (the connectors), and the rules or conventions governing
their assembly [SG96]. What is often presented as the architecture of an application is the
strategy used to solve the foremost design problem.

We will use the words architecture and design interchangeably, favoring the word de-
sign. Architecture is usually taken to be high-level design or implementation-independent
formalism to describe the decomposition of the system in to components and connec-
tors. For the purposes of this work, there is no gain in making a distinction between
architecture, design or software structure. The goal of recovery is to arrive at a model
for understanding the software – so the formality of the notation or its implementation-
independence is not important. The termsoftware architectureis a more useful notion in
the context ofarchitectural style, that is, a template for a certain structure which can be
recognized and reused.

2.1.3 Design Views

Any complex software system must deal with design problems along several axes. De-
cisions about the logical relationships between the domain concepts, for example, are

2.1. REVERSE ENGINEERING AND DESIGN RECOVERY: AN OVERVIEW 11

separate from decisions about concurrency and synchronization issues. Although design
issues often cross-cut each other and design decisions along separate axes must be con-
sistent with each other, we benefit from modeling these aspects separately. First, because
we are usually interested in one particular aspect, and second, because there is no one
notation which can be used to express all the aspects of a software design.

Figure 2.2: Design views as projections

We therefore describe a software design through models which express a certain view
of the software. Kruchten [Kru95], for example, proposes four views: logical view, pro-
cess view, physical view and development view, which are elaborated through the use of
scenarios, representing the important variations of the systems functionality. A variety
of strategies and techniques are used to map views on each other. The UML [BRJ99]
provides for different kinds of models to express the design: use case models capture
user requirements, static models describe the main elements and their relationships and
dynamic models describe the system’s behavior at runtime. Aspect-oriented program-
ming [KLM+97] also recognizes the need to reconcile different aspects of a system, and
proposes an approach for combining these at the programming language level. Figure 2.2
illustrates the idea of design views: each view can be seen as the projection of the software
system through a window; each view models one aspect of the software system.

Luckily, we rarely need to understand everything about a software system. We need
to understand just enough to carry out a specific maintenance task, with the assurance that
the changes we effect in the system do not have a detrimental effect on the rest of the
software. That is, indesign recovery, we want to recover a model of the system which
captures the particular aspect or view of the software which is of interest to us. So design
recovery is task-specific, it is driven by a particular question of interest.

We cite here a few examples of researchers and practitioners who advocate the use of
multiple views in software development and propose a repertoire of views: UML views
[BRJ99], Kruchten’s 4+1 views [Kru95], Siemens’ architectural description [SNH95] and
De Hondt [Hon98]. The IEEEDraft Recommended Practice for Architectural description
[IEE99] aims to support any number of views of a system, rather than a fixed set. Though

12 2. DESIGN RECOVERY FOR OBJECT-ORIENTED SYSTEMS: A SURVEY

there is no consensus on a minimal or complete set of views required in software devel-
opment, it is possible to list a representative set of views which addresses most of the
concerns, as shown in Table 2.1. Each view is described, together with references to the
names of the corresponding view in other publications.

View Description

Domain
Model

A domain model view describes the system in terms of the main domain concepts
and their relationships. This is thelogical view in [Kru95], conceptual architecturein
[SNH95].

Conceptual
Architecture

A conceptual architecture view describes a model of the organization of the system
which is shared among developers. In many projects a conceptual architecture is
agreed upon, such as a view of networking software as a layered system, or a typi-
cal architecture for a compiler. This view sometimes mirrors thedevelopmentview
described in [Kru95]

Feature A feature view [Hon98] groups together code elements which cooperate to provide a
certain functionality, describing as well interaction between features. Such a view is
related to UMLuse cases[BRJ99] and to the use ofscenariosin [Kru95].

Development A development view [Kru95] focuses on the organization of the software into subsys-
tems or modules. Represented aspackageor subsystemview in UML [BRJ99],mod-
ule or code architecturein [SNH95]. A development view can be further subdivided
into views which represent different aspects, such as an ownership view, traceability
view and customization view [Hon98].

Process A process view [Kru95] is a model of the concurrent tasks in a system and their com-
munication. It is used as well for looking at nonfunctional requirements such as per-
formance and fault-tolerance. Corresponds to theexecution architecturein [SNH95]

Physical A physical view [Kru95] describes the distribution of the software on machines and
processors. In UML this is called thedeploymentview. Soni et al. [SNH95] include
this aspect underexecution architecture.

Table 2.1: Views addressing main development concerns

Each of these views can be seen as a set of components (e.g., processes in the pro-
cess view, domain concepts in the domain model view) and the connectors between them
(e.g., process communication abstractions in the process view). The kind of task facing a
developer determines the kind of view of the system that he or she is interested in.

2.1.4 General Approaches to Design Recovery

Several cognitive models have been developed to describe the strategies used by program-
mers to understand programs [vMV95]. These can be roughly categorized intobottom-up
strategies andtop-downstrategies. In bottom-up strategies programmers chunk low-level
code artifacts into higher-level abstractions, whereas in top-down strategies programmers
hypothesize an initial model reflecting their current understanding, then analyze the code
to confirm or reject the hypothesis and use the information to revise their model. Studies
show that programmers typically switch between these two strategies in trying to under-
stand the software, and that the kinds of tools available to the programmers influences
the kind of strategy used [SWM97]. Reverse engineering techniques and tools all seek
to represent the software at a higher level than that of the information which is directly

2.1. REVERSE ENGINEERING AND DESIGN RECOVERY: AN OVERVIEW 13

extracted from the code, but vary in the degree to which they support these two basic
model building strategies. Tools which support only bottom-up strategies do not allow
an engineer to articulate any expectations about the structure of the system: higher-level
abstractions are discovered automatically, usually by clustering techniques. Top-down
techniques are more expectation-driven: the engineer describes some of the expectations
about the structure or about the kinds of views expected, and uses the tool to confirm or
reject those expectations, and to revise his or her model. Many tools support both strate-
gies: they offer some automatic clustering or concept recognition to suggest higher-level
abstractions, while also allowing an engineer to create such abstractions manually.

Visualization tools are also used to recover design models, but do not usually allow
for the explicit construction of higher-level abstractions or the description of the expected
models. Instead they display the low-level software elements (e.g., classes, calls between
objects) and rely on visual cues to aid an engineer in recognizing patterns and clusters and
to help to reject or confirmmentalmodels.

Metrics are useful in indicating problem areas in the code and can help an engineer to
focus the design recovery activity [FP96][Mar98][DD99], but they do not aim at recov-
ering a model from the software. Visualization tools can also display metrics associated
with software structures [DDL99] thereby coming closer to recovering a model of the
software.

Below we survey some of the approaches and tools for design recovery. Though we
have categorized these approaches as bottom-up, top-down and visualization approaches,
these should be understood as loose categories, since many tools contain elements of each.

Bottom-up approaches.The Rigi environment [WTMS95] allows users to build high-
level abstractions of code by repeatedly clustering lower-level elements into abstractions
through an interactive editor which manipulates program representations. The clustering
can be done automatically, based on cohesion and coupling criteria, or it can be specified
by the user.

In [HYR96] recognizersare used to detect C/Unix idioms associated with specific
architectural styles. The recognizers uncover relationships such as spawning, client-server
and implicit invocation and thus make it possible to generate views which show these
relationships between large program abstractions such as files or tasks. A similar approach
is presented in [FTAM96], who also use recognizers to identify language-specific clich´es.

Dali [KC98] is a workbench which integrates several extraction tools and allows for
the combination of the views obtained from these different sources. Shimba [SKM01]
is a reverse engineering environment which integrates tools for static and for dynamic
analysis of software and provides mechanisms for reducing the information in a static
view as a function of a dynamic view, andvice versa.

Top-down approaches. The Reflexion Model approach proposed by [MN97] allows
an engineer to define a high-level model of the software system and a mapping of the
source-code onto this model. Areflexion modelis then computed which shows how close
the high-level model comes to describing the source code. This allows the engineer to
iteratively refine the high-level model until it better reflects the implementation.

14 2. DESIGN RECOVERY FOR OBJECT-ORIENTED SYSTEMS: A SURVEY

The Reflexion Model approach is similar to a category of tools to check design
conformance. Sefika [Sef96] uses Prolog clauses to describe a high-level model and
check to see if the code complies with this model. This approach has also been used
to check for the presence of design patterns [KP96], for conformance to design guidelines
[Wuy98][Ciu99], and to codify software architectures [MWD99]. The Reflexion Model
approach, however, not only reports whether or not the code matches the high-level model,
but also reports the extent of deviation of the source code from the model.

Knowledge-based approaches to design recovery [DBSB91] allow an engineer to pose
high-level queries relating domain concepts to particular code features, but these ap-
proaches operate on a source model which includes not only information extracted from
the source code, but also information elicited from programmers and other experts. Hy+
[CMR92] is another query-based approach which uses a visual grammar to reason about
representations of the code.

Visualization tools. Most reverse engineering tools rely on some kind of visual notation
for displaying the high-level models recovered from the code. We distinguish, however,
between these kinds of visual displays and those of visualization tools. Visualization tools
do not display high-level models – they display the basic elements extracted from the
code (either statically or dynamically) and use visual techniques [War00] such as layout
algorithms, scaling and colour schemes to suggest patterns and groupings of these basic
elements. There is a large range of approaches for the visualization of software [BE96].
Here we mention a few tools that can be applied specifically to object-oriented systems.

CodeCrawler [DDL99], for example, displays object-oriented metrics as node at-
tributes in a range of graph layouts. Visualization techniques have been used especially
for displaying dynamic information, to handle the great volume of information gener-
ated through program execution. Theinformation muraltechnique used in the ISVis tool
[JR97] allows the user to visualize a complete trace on one screen and to get a feeling
for the patterns in the trace. Jinsight [PLVW98] displays interaction diagrams and makes
extensive use of color to highlight similar patterns and to suggest relationships of ele-
ments in the program trace. Animation is another technique used to deal with dynamic
information [WMFB+98].

2.2 Design Recovery for Object-Oriented Software

Whereas in the previous section we discussed design recovery strategies in general, we
will now survey the recovery of design models for object-oriented software in particular.
Though the main challenges in design recovery remain basically the same for object-
oriented software as they are for procedural systems, some of the approaches taken are
particular to object-oriented systems.

We start by reviewing some common models and notations used to describe object-
oriented software. The two main kinds of design models used to describe object-oriented
software are static models describing components and their structural relationships and
dynamic models which describe the behavioral aspect of an application. The recovery of

2.2. DESIGN RECOVERY FOR OBJECT-ORIENTED SOFTWARE 15

these two kinds of models is discussed in Section 2.2.2 and Section 2.2.3. Finally, Sec-
tion 2.2.4 presents the particular case of detecting design patterns in code. Design patterns
have both a structural and a behavioral aspect and so their recovery does not fall under the
previous categories.

2.2.1 Describing Object-Oriented Software Design

Software design is expressed through models which describe a view of the design. When
it comes to models, there are two separate issues: content and notation – semantics and
syntax. The first is the issue of what kind of information a model contains (what view
it models), while the second is the issue of what kind of notation we use for expressing
this information. The Unified Modeling Language (UML) [BRJ99] has now become an
industrial standard for describing object-oriented design; it proposes a modeling language
(a notation) as well as a set of model types (information content) to describe different
aspects of a software system. The same information content can, however, be expressed
using a different notation (e.g., an ADL, another visual formalism), and there are model
types (views) which UML cannot express very well (e.g., process model).

Commonly used models.Below we list models which are commonly used to describe
and document the design of object-oriented software, in terms of their information con-
tent. The issue of the notation used to express these is discussed later on.

� Application domain model. This is a description of the main elements of the
problem domain and how they relate to each other. It is the result of a domain
analysis and is usually a first step in object-oriented design: identifying domain
concepts and making the relationship between them explicit.

� Use-cases.In object-oriented design these document the behavior of the system
from the users’ point of view, with each use case representing a coherent unit of
functionality which the system supports. They are used to elucidate requirements
and are valuable in project planning [Fow97].

� Static models.Static models describe classes and their relationships.

� Dynamic models.Dynamic models describe how typical objects interact at runtime
to assure a certain functionality.

� Models of a single object.These describe the behavior of an object as a function
of its internal state.

� Process models.Process models describe how execution threads are assigned and
how processes communicate.

� Packages and subsystems models.These models describe how the software is
packaged.

16 2. DESIGN RECOVERY FOR OBJECT-ORIENTED SYSTEMS: A SURVEY

� Deployment models.Deployment models describe how the software is physically
distributed on machines.

� Design patterns. Design patterns [GHJV95] have also been used to document
software systems [BJ94][OQC97]. The strength of design patterns for program un-
derstanding is that they tap into familiar metaphors - and so their names give us a
handle on understanding them before we delve into the details of their structure and
collaborations. Such metaphors can succinctly describe components, the relation-
ships between them, and at the same time provide us with familiar scenarios for
their behavior.

� Role-based design.Role-based design is a way to decompose an object-oriented
application into a set of collaborations between classes, where each collaboration
encapsulates an aspect of the application. A class can participate in several collab-
orations, playing a distinct role in each. The participants are described by the role
they play in the collaboration and the collaboration itself is described by how these
roles interact [Ree96][RG98] .

These models are used to describe the views listed in Table 2.1.3. The application
domain model corresponds to a domain model view of the software, and sometimes also
to the conceptual architecture. The package and subsystem model corresponds to the
development view, the process model to the process view, the deployment model to the
physical view and use-cases to the feature view. Static models describing classes and
their relationships may be used to represent a domain model, a conceptual architecture or
a development view, whereas dynamic models may be used to represent feature views.

Notations. Below we briefly consider notations which can be used to express the models
listed above.

� UML. The Unified Modeling Language (UML) can be used to describe most of
the models listed above: domain models, use-cases, static models of classes and
their relationships and dynamic models of object interaction. The UML’s repertoire
of models includes also activity diagrams, state diagrams, package diagrams and
deployment diagrams, which will not be discussed here. The UML has limited sup-
port for expressing a process view of the design. The structure and collaborations
of design patterns can be expressed using UML, though the intent, tradeoffs and
other important documentation elements of a pattern remain elusive to any kind of
shorthand notation. UML can be adapted to express role-based designs.

Recently, UML is being studied for its suitability for the expression of general
architectural views [Hil99], in the context of work on an IEEEDraft Recommended
Practice for Architectural description[IEE99].

� Architecture Description Languages.In the last few years there has been a surge
of work on architectural description languages (ADLs) [SG96][MT97][Ach02].
ADLs can be used to describe the high-level design or architecture of a system

2.2. DESIGN RECOVERY FOR OBJECT-ORIENTED SOFTWARE 17

in terms of components, connectors and their configuration independent of the
programming-language which will be used for the implementation. As such, they
are not specific for describing object-oriented systems. There is yet no consensus
on what aspects of an architecture ADLs should model, and there is great disparity
in the goals and uses of different ADLs. Some ADLs concentrate on modeling a
process view of the architecture [All97], while others are used to describe particular
architectural styles [MORT96][MDEK95]. Most ADLs are based on a formal se-
mantic theory, but few of these languages allow a refinement from the architectural
description to the implementation.

Since ADLs have so far been used only in a research setting and are in general
not traceable to the implementation we will not consider their application in the
context of reverse engineering. We will look here only at the recovery of design
models which are currently used in object-oriented software development.

� Other notations. Many reverse engineering tools use their own visual notation to
display models which correspond roughly to those listed above.

2.2.2 Recovering Static Models

Static models of object-oriented software are usually described by UML class diagrams.
The notation of class diagram include the notions of class, with its operations and at-
tributes, and two kinds of relationships, generalization and association, between these
classes. Class diagrams, however, can be interpreted at different levels with respect to im-
plementation classes. Such levels of interpretation, though not part of UML, are essential
for avoiding confusion about the use of such diagrams. Fowler [Fow97] calls these levels
of interpretationperspectives:

Conceptual. The conceptual perspective treats the UML class diagram as representing
important domain concepts. The classes in such a diagram will be related to imple-
mentation classes, but there may not be a direct mapping. From this perspective, the
attributes describe a basic property of the domain concept, the operations describe
the principal functionality of the domain concept, and the associations describe
conceptual relationships between these domain concepts.

Specification. The specification perspective focuses on the interfaces of the software. In
this case a UML class represents a type, rather than an implementation class, and
this type may have many implementations. From this perspective a class attribute
means that this type must propose a way to query and to set the value of the attribute.
An operation is interpreted as a public method, and an association between two
classes represents a responsibility for navigating and for updating the relationship,
though how this is in fact implemented is not specified.

Implementation. In the implementation perspective UML classes are taken to represent
implementation classes. Attributes and operations then represent implementation

18 2. DESIGN RECOVERY FOR OBJECT-ORIENTED SYSTEMS: A SURVEY

attributes and methods. The presence of an association between two classes means
that there is some way to navigate from one to the other, either through a pointer, or
attribute (this is also difficult to interpret).

It is important to be clear about how we are using UML class diagrams in order to
make the right kind of interpretation. Fowler discusses perspectives in the context of for-
ward engineering. For reverse engineering, the problem is more acute: we must decide on
how to interpret code structures in order to map them to UML constructs of the particular
perspective we are interested in. In addition to the source code we may have the running
system as well, some documentation, users and developers which can provide cues on
how to recover a perspective of the software.

In general, we are likely to be interested in the higher level perspectives, rather than
in the implementation perspective. Consider the problem of recovering a conceptual per-
spective of the system. How can we distinguish between the important domain concepts
and the less important implementation level information? How can we recover a domain
concept which has been implemented by several classes in the code?

Even if we interpret a UML class diagram in the implementation perspective, the
elements of the model do not have a one-to-one mapping to code [DDT99]. Though
UML classes can be mapped to implementation classes, with UML operations mapping
to the methods, and attributes mapping to instance variables, the case for the relationships
of association and generalization is not straightforward. UML is a modeling language:
it does not tell you how to implement the relationships in the model. As a consequence,
there can be several implementations for the same modeling concept.

Problems. We summarize below the problems faced in recovering class diagrams from
code:

� Hard to map from programming language to UML. The concepts of a program-
ming language are not the same as those in the UML, or they can have different
implementations.

Different semantics in UML and programming languages. In a programming
language we have subclassing based inheritance, whereas the UML gener-
alization relationship is a subtyping relationship. In a similar vein, UML ag-
gregation and composition relationships may be implemented identically in
the code, so we cannot distinguish between these two kinds of relationships.

Language-dependent interpretation.C++, for example, distinguishes between
private and public methods whereas in Smalltalk all methods are public. So
just by looking at the methods we cannot deduce the public interface of a class.

Dynamically typed languages.For dynamically typed languages it is hard to de-
rive associations from the code.

� Too much information. Even if we make explicit the mapping from our program-
ming language to UML in order to arrive at a class diagram, this will be an imple-
mentation perspective of the code and contain too much information. In general,

2.2. DESIGN RECOVERY FOR OBJECT-ORIENTED SOFTWARE 19

we will need some heuristics to decide what kind of information to ignore in order
to arrive at a model which is not overloaded with irrelevant information.

� Granularity is too fine. Several classes may represent one important domain con-
cept. How can we group implementation level information to identify these con-
cepts?

Existing Solutions. Tools like Sniff+ [Tak96] and CIA++ [Gra92] have been developed
to support object-oriented application understanding based on static information and can
display classes and relationships between them. Their use for design recovery remains
limited, however, because of the difficulty of filtering relevant from irrelevant informa-
tion in the great mass of data extracted. Similarly, commercial tools which can extract
UML class diagrams from code [Rat98] produce diagrams which give an implementation
perspective of the software, crowded with details which may not be of interest to the user.
Heuristics are required to prune such diagrams in order to arrive at representations which
present interesting information succinctly.

Rose/Architect [EK99] is one step in this direction. It is a tool prototype which uses
simple structural reduction rules to remove extraneous information from UML class di-
agrams. Furthermore, it allows for the logical grouping of classes into ‘planes’, repre-
senting classes in a certain view, and for the projection of the class diagram through this
plane, or view. Racz and Koskimies [RK99] describe a tool which compresses UML class
diagrams by exploiting abstraction relationships such as inheritance, aggregation and im-
plementation.

Finally, approaches such as the Rigi environement [WTMS95] and the Reflexion
Model [MN97] operate on any set of relations, and so can be used on information ex-
tracted from the code using parsing tools. These tools produce high-level views of the
software which do not have specific object-oriented design semantics.

2.2.3 Recovering Dynamic Models

Dynamic models are usually expressed using UML interaction diagrams. Interaction di-
agrams provide a notation for describing how objects interact to perform a task, and are
typically used to model how the software realizes a particular use case, or a scenario
which is part of the use case.

There are two kinds of interaction diagrams: collaboration diagrams and sequence
diagrams. Sequence diagrams show the activity of each participating object as a vertical
line, and the message exchanges between objects as horizontal lines. Collaboration dia-
grams depict objects as rectangles and represent message exchanges between objects as
directed links. The sequence and the nesting of the messages is described by numbering
the links with a nested numbering scheme. Interaction diagrams are intended to describe
typical execution scenarios. They also provide special notations for expressing condition-
ality, iteration and multiple threads of control, though using these features often results in
overly complex diagrams which are hard to decipher [Fow97].

20 2. DESIGN RECOVERY FOR OBJECT-ORIENTED SYSTEMS: A SURVEY

At a design level an interaction diagram models an important scenario without neces-
sarily representing all the details of message exchange at runtime. The interaction diagram
is an abstraction of the collaboration of objects playing specific roles at runtime.

Using static information. In dynamically-typed languages, identifying collaborating
classes is difficult from static information only. But even in statically typed languages,
where we can identify collaborating classes through the attribute and method argument
types, we do not have the control flow information necessary to understand how the
classes collaborate in a particular scenario. Dynamic binding and polymorphism make
it difficult to obtain precise control flow information using static tools which work for
procedural languages, though some slicing tools have recently been extended to handle
features of statically typed object-oriented languages [LH96][TAFM97].

Using dynamic information. To obtain interaction diagrams from the execution of a pro-
gram we must be able to instrument the code in order to trace all the message sends which
occur. It is possible then to generate a sequence diagram for the whole trace, but such a
sequence diagram is huge. As an example, an Interaction Diagram [BFJR98] display was
obtained by instrumenting the methods of 28 classes of the HotDraw [BJ94] graphical ed-
itor framework then running a simple scenario on the sample editor, (create a rectangle
and a bezier figure, group them together and then ungroup them). This resulted in a trace
in which 224 objects (vertical lines) appear and 2,6048 method invocations (horizontal
lines) occur. Whereas the intention of UML sequence diagrams as a modeling notation
is to succinctly describe a collaboration, at the right level of detail and granularity for
communicating the behavior of objects, sequence diagrams generated by tracing message
sends are nothing but succinct and include much uninteresting information. Collabora-
tion diagrams are compacter since they show no time line, but they become crowded and
unreadable when used to represent all message exchanges in a program execution.

Problems. We summarize below the problems faced in recovering interaction diagrams
from code:

� Static information is not enough. Detecting and deciphering interactions of ob-
jects in the source code is not easy: polymorphism makes it difficult to determine
which method is actually executed at runtime, and inheritance means that each ob-
ject in a running system exhibits behavior which is defined not only in its class, but
also in each of its superclasses. This difficulty is further aggravated in the case of
dynamically typed languages like Smalltalk where no type definition is available at
compile time.

� Dynamic information is too much. Program tracing results in a great volume
of low-level information from which we must sift the details relevant for our in-
vestigation. Here, the problems of focus, granularity and generalization must be
addressed:

Focus. In extracting an interaction diagram, we generally want to focus only on one
small aspect of the program behavior. The problem here is that of locating the
aspect that interests us inside the program trace.

2.2. DESIGN RECOVERY FOR OBJECT-ORIENTED SOFTWARE 21

Granularity. Trace level information gives us the interaction of objects. But we
are often interested in the interaction between several logical groupings of
objects, rather than in all the low-level method invocations.

Generalization. Even if we have located an interaction of interest in the program
trace, and have represented it at a coarse granularity, we would like to abstract
from all such instances of a collaboration to a more general representation of
a collaboration with the same semantics.

Existing Solutions. When using dynamic information to recover behavioral models, the
volume of information generated through program tracing is one of the main challenges.
This challenge has been addressed by a variety of tools using strategies along three dif-
ferent axes:

� Summarization through Metrics. In this strategy information collected at run-
time is summarized in some compact way, using a metric or some other statistical
measure, for example, the frequency of calls or the number of objects. This measure
is usually visually rendered [PHKV93][WMFB+98][SSC96].

� Filtering and Clustering. In this strategy the amount of information to
be displayed or analyzed is reduced using filtering and clustering techniques
[JR97][WMFB+98][LN95a][SKM01], thus addressing the problem of focus and
granularity discussed above.

� Visualization Techniques. A variety of techniques permit the display of large
volumes of information. The time element in a screen display can be removed
throughanimation[PHKV93][WMFB+98][SSC96]. The display can be simplified
by elisionof some of the information which remains accessible through hyperlinks
[KM96] or the use of other visual mechanisms [PLVW98]. The information can be
compressed to be displayed as avisual pattern, as done in the Information Mural
technique [JR97].

As can be seen from the list above, many tools integrate two or three of these strate-
gies. Most of the tools, however, rely to some degree on visualization techniques. That is,
they do not display high-level models, but rely on visual techniques and cues to suggest
patterns and grouping of basic low-level elements.

Walker et al. [WMFB+98], for example, use program animation techniques to dis-
play the number of objects involved in the execution, and the interaction between them
through user-defined high-level models. Their tool thus uses all three strategies: anima-
tion as a visualization technique, the summarization strategy for showing the number of
live objects as a histogram, and reduction of the information space by allowing the user
to cluster together code elements to create a high-level model.

De Pauw et al. [PHKV93] use both animation and summarization. They propose
three kinds of layouts for displaying the communication behavior of an application as it
executes: spring layout, histogram layout and matrix layout. These layout are used to

22 2. DESIGN RECOVERY FOR OBJECT-ORIENTED SYSTEMS: A SURVEY

Figure 2.3: Histogram of objects graph of the Jinsight tool

produce seven kinds of graphs, a few of which are discussed below. Theinter-class call
clustergraph uses a spring layout. It shows class names as floating labels; as the program
executes classes which communicate frequently gravitate towards each other, whereas
those which communicate rarely repel each other. The histogram layout is used to display
a histogram of instancesshowing the number of instances alive of each class, using a
color scale to indicate the relative number of messages each instance has received so far.
Figure 2.31 is an example of a histogram layout which uses color to indicate the level of
activity of the objects and also displays the current communication between them. Matrix
layouts are used for theinter-class call matrix, allocation matrix, functions-instances
matrixgraphs which show the relative frequency of class communications, the allocation
relationship between classes and and the invocation of methods on instances, respectively.

The visualizations proposed by Sefika et al. [SSC96] are similar to the spring layout
of [PHKV93]. [SSC96] also display static information in a similar layout for the purpose
of comparing and contrasting information extracted statically with information obtained
through program execution. The tools of [Sef96] can also display the interaction of ar-
chitectural units (rather than classes, as in [PHKV93]), but to do this they depend on an
instrumentation strategy which is particular to the domain of the application (the Choices
operating system).

Several tools are based on a sequence diagram display. The Scene tool [KM96] uses
hyperlinks to help a user navigate information which can not be displayed on one screen
and also connects the sequence diagrams to the source code. SCED [KSTM98] displays
message exchanges in a notation similar to sequence diagrams, and can also extract infor-
mation on constraints, conditional branching and iteration. Shimba [SKM01] uses Rigi
[MWT95] to create static abstractions so as to simplify the sequence diagram displayed

1from Jinsight pages http://www.research.ibm.com/jinsight/

2.2. DESIGN RECOVERY FOR OBJECT-ORIENTED SOFTWARE 23

Figure 2.4: ISVis display

(using SCED) by reducing the number of vertical lines. It also offers pattern matching
capabilities to detect similar sequences of message exchange.

ISVis [JR97][JSB97] displays sequence diagrams showing the communication be-
tween actors, where an actor is a clusterings of objects. As seen in Figure 2.42 an in-
formation mural display to the right of the sequence diagram shows the whole trace as a
visual pattern and acts as a navigational aid through the more detailed sequence diagram.
The ISVis tool uses filtering and clustering to reduce the amount of information to be
displayed: the trace data can be edited to remove specific interactions, and actors in the
trace scenario can be clustered together to produce a composite actor. This has the effect
of reducing the number of horizontal lines (through filtering) and the number of vertical
lines (through clustering) to be displayed. The tool also has features for replacing a low-
level interaction (exchange of messages between actors) with a reference to a scenario –
further reducing the number of horizontal lines to be displayed.

More recent work of De Pauw et al. on Ovation [PLVW98], whose features are now
integrated into the Jinsight tool, experiments with sequence diagram based displays which
allow an engineer to use a variety of elision mechanisms to control the amount and level
of information to be displayed. The tool uses pattern matching to identify recurring in-
teraction sequences, so that the visual manipulation can be applied to all occurrences of
a pattern. As in ISVis [JR97], this work aims at reducing the conceptual overload for the
user by identifying similar patterns in a trace.

Program Explorer [LN95a] offers simple sequence diagram and collaboration diagram
like layouts intended for displaying a small part of a trace. In this tool static and dynamic
information is reified as Prolog facts, allowing for the coupling of static and dynamic

2from ISVis User’s Guide at http://www.cc.gatech.edu/morale/tools/isvis/isvis.html

24 2. DESIGN RECOVERY FOR OBJECT-ORIENTED SYSTEMS: A SURVEY

information in checking for the presence of design patterns in code. The visualizations
offered are, however, at the level of object interactions and require a good understanding
of the application in order to be interpreted correctly.

Evaluation of Existing Approaches. The approaches discussed above all rely on vi-
sualization to convey information to the user. They can be divided into two categories:
discreteapproaches retain the individual run-time events andsummaryapproaches display
cumulative information. Summary approaches are good at indicating certain characteris-
tics of an application, without giving exact information. De Pauw et al. [PHKV93], for
example, present a catalogue of different kinds of displays together with a guidelines on
how to interpret visual patterns in each display. “A program that exploits code inheri-
tance extensively will show many blue squares over time” and “Bars that grow rapidly
can reflect object creation in tight loops” are two examples of such guidelines. In con-
trast, discrete approaches are better at answering specific low-level questions, and seem
to be very useful in debugging. Discrete approaches which incorporate pattern match-
ing in order to generalize from a specific event sequence to a message exchange pattern
[PLVW98][JR97] are better at revealing overall behavior of an application, but their dis-
play is still verbose, making it cumbersome to find the information of interest.

Reverse engineering approaches which operate on any set of binary relations can be
used to build higher-level models using dynamic information instead of static informa-
tion (e.g., operating on object send relations), and so result in more succinct models. The
Reflexion Model approach [MN97], for example, would allow a user to view the mes-
sage send relation through a high-level model defined by the user. Such an approach is,
however, not good at answering low-level questions about object interactions.

Role models [Ree96][RG98] and collaboration-based designs provide a succinct way
to express the interaction of classes, and to decompose an application into significant
collaborations. In this sense they span two kinds of levels: one level is the decompo-
sition of an application into coarse units (the collaborations), the lower level is the one
which describes the contents of the collaboration (how objects interact to ensure a certain
functionality). Except for [Hon98], who reports work on the extraction of collaboration
contracts [Luc97] using full parse tree information, there is currently no published work
on the recovery of roles and collaborations. The recovery of design patterns is related to
the problem of recovering roles and collaborations, because design patterns represent a
template of a collaboration. As such, design pattern detection is also an aid in understand-
ing program behavior.

2.2.4 A Case of Design Recovery: Detecting Design Patterns

Because the recovery of design patterns from code incorporates aspects of the recovery
of both static and dynamic models, it is interesting here to look at the challenges of this
problem. Whereas UML class diagrams and interaction diagrams only record the design
without giving us insight into the rationale behind it, it has been argued that design pat-
terns [GHJV95] [BMR+96] give us insight into the ‘why’ of the design. Because each
design pattern presents a solution to a specific design problem, describing the design pat-

2.2. DESIGN RECOVERY FOR OBJECT-ORIENTED SOFTWARE 25

terns in a framework can give readers an understanding of the problem that the current
design is intended to solve [BJ94].

Brown [Bro96] discusses the difficulties in detecting design patterns in code. In order
for a pattern to be detectable its template solution (structure) must bedistinctiveand
unambiguous. Distinctive means that the implementation must be due the use of this
pattern and not some other pattern. Unambiguous means that there is a unique way (or at
least only a few ways) to represent this pattern in the code.

Few patterns satisfy this criteria: consider for example the Strategy, State and Com-
mand patterns. Strategy and State have almost identical code structures, and a sub-
structure of Command is similar to this structure, shown in Figure 2.5. In other words,
the template solution for these patterns is not distinctive: by looking at the code we would
not be able to tell which pattern has been applied without a deeper understanding of the
domain and the intended functionality.

Client

ConcreteServerA ConcreteServerB ConcreteServerC

AbstractServer

Handle()

Handle()Handle()Handle()

Request()

Figure 2.5: Structure occurring in Strategy, State and Command patterns

Many patterns can also be implemented in different ways and are implemented differ-
ently in different programming languages, making the problem of their detection difficult.
Some simple patterns like Composite and Template can more easily be recovered. These
are patterns whose structure is simple and whose intent is so general that we can rarely
make a mistake in interpreting it. But detecting Composite and Template patterns in large
code may not be of much help in obtaining an interesting design view of the code.

Detecting design patterns in the code, therefore, requires enough understanding of the
code to be able to make some interpretation about the intent of specific pattern structures.

Problems.We summarize the problems as follows:

� Ambiguity. Several design patterns have a similar code structure.

� Non-distinctiveness.A design pattern may be implemented in different ways.

� Crowded model.Where design patterns overlap this may be hard to untangle.

� Incomplete model. Extractable design patterns represent just a small part of the
code.

26 2. DESIGN RECOVERY FOR OBJECT-ORIENTED SYSTEMS: A SURVEY

Existing Solutions.Work on recovering design patterns in code ranges from approaches
of automatic detection [KP96] to integrating design pattern recovery in an interactive re-
verse engineering environment [KSRP99]. [KP96] use Prolog to look for structural design
patterns (Adapter, Bridge, Composite, Decorator and Proxy) in C++ code. They analyze
C++ header files to extract design information, making specific assumptions about how
aggregations and associations have been implemented in the code, and represent this in-
formation as Prolog facts. Each pattern is then described by a Prolog rule which chains
a list of facts specifying necessary (but not sufficient) properties for the presence of the
pattern in the code. In the experiments conducted most of the pattern instances in the
code were found, but the number of false positives was high (ranging from 14% to 40%
for any significant number of patterns found). In SOUL [Wuy01], a logic-programming
language integrated into Smalltalk, rules are used to describe design patterns, using full
parse tree information. In [Sef96] design patterns are also represented as Prolog rules,
and conditions are specified for violation of the pattern as well as those for compliance
to the pattern. [Bro96] make use of dynamic information for the detecting Composite,
Decorator and Template Method patterns in Smalltalk applications.

In the SPOOL project [KSRP99] pattern detection is integrated in an interactive en-
vironment for design recovery. Patterns can be reified as ‘abstract design components’
which are stored in a design repository. The code repository is then queried to search the
source model for this structure. The authors make a case for the visualization of patterns:
“we claim that only thevisualizationof the implemented patterns in thecontextof the
application at hand will make documentation with patterns truly effective, elucidate the
rationale behind the framework’s design and make the applied patterns more tangible and
understandable”. For each pattern description the authors posit one unique reference class.
When a reference class is identified in the code, a bounding box is drawn around it on the
screen. Classes in the code which are reference classes for several design components
will have several bounding boxes and so will stand out on the display. This visualization
allows a user to interpret the structure in its context. The authors discuss the recovery of
Template Method, Factory Method and Bridge patterns, conceding that human insight is
necessary in reliably detecting design patterns in code.

2.3 Our Work: Scope and Requirements

In surveying existing solutions to the extraction of behavioral models we see that most
approaches based on dynamic information result in verbose displays of sequence dia-
grams. These approaches combine the sequence diagram displays with techniques to
reduce the amount of information presented: visualization, navigation, filtering and clus-
tering, in order to help developers arrive at the information of interest [KM96][PLVW98]
[JR97][SKM01]. Approaches which summarize statistics from dynamic information
[PHKV93], or use static information only [WTMS95][MN97] produce more succinct
models, but they are limited in conveying the behavioral aspect of the software.

In our work we explored an alternative approach for the recovery of behavioral mod-
els. We enable a developer to view the dynamic information, without the time dimension,

2.3. OUR WORK: SCOPE AND REQUIREMENTS 27

through a model he or she has specified – a perspective. We demonstrate that an ap-
proach based on perspectives can overcome some of the limitations of current solutions
for extracting behavioral models. Our contribution is to add a new point in the spectrum
of design recovery techniques by demonstrating alightweightapproach which extracts
compactbehavioral models.

In this section we distill a set of requirements against which we will later evaluate our
work and contribution.

2.3.1 Scope of Our Work

We first clarify what we mean bybehavioralmodels. We then make explicit what kinds
of questions we do not aim to answer to delineate clearly the scope of our work.

Behavioral models.A behavioral model is a model which captures the dynamic aspects
of a software system: how objects collaborate and cooperate in performing a task, and how
responsibilities are distributed among these objects. This does not mean that the elements
in a behavioral model are objects and the message sends between them. A behavioral
model can abstract from the actual runtime interactions to illustrate relationships between
components which are, however, anchored in the runtime events. Behavioral models
should provide answers to the following kinds of questions:

� how do the main domain elements relate to each other?

� what parts of the software implement a specific feature?

� to which messages does an instance of a certain class respond?

� how many instances of a class are present at runtime?

� which objects are responsible for creating instances of a certain class?

� which class instances participate in the interaction resulting from the invocation of
a particular method?

� what are variations on the way a method is executed?

Purpose. We do not aim to develop a debugging tool, nor a tool for coverage analysis,
memory analysis or performance tuning. Our goal is to extract models which help a
developer quickly gain the understanding necessary to perform maintenance tasks such as
adding functionality, extracting a reusable components, detecting changes from a previous
version or refactoring the code.

Other behavioral models.The UML [BRJ99] provides for four kinds of behavioral mod-
els: sequence diagrams, collaboration diagrams, state diagrams and activity diagrams.
Sequence diagrams and collaboration diagrams have been discussed in Section 2.2.3. Our
work considers mostly the behavioral information conveyed by such models. State dia-
grams describe the state machine of a single object responding to external stimuli. In our

28 2. DESIGN RECOVERY FOR OBJECT-ORIENTED SYSTEMS: A SURVEY

work we do not consider the extraction of state diagrams [KSTM98]. Activity diagrams
are a variant on state diagrams and are used to describe how activities are coordinated.
They are particularly useful for modeling dependencies between several tasks an opera-
tion has to achieve. In our work we do not address the recovery or modeling of activity
diagrams.

Language model.We restrict ourselves to single-threaded software applications, so we
do not handle the notion of process in our model. The tools we have developed currently
operate on Smalltalk programs – but we argue in the dissertation that the concepts and
techniques we apply are general enough to be applicable to other class-based object-
oriented languages.

2.3.2 Requirements for the Recovery of Behavioral Models

We have claimed that current approaches suffer from the following problems: they pro-
duce initial verbose views with too much low-level information which makes it hard for a
developer to focus on the information of interest. In order to provide focus, they then rely
on visualization and navigation techniques. By contrast, we aim to provide focus earlier,
without showing all low-level information. Here we derive a set of requirements for our
approach:

Lightweight. We would like a recovery approach which does not require a high invest-
ment for the extraction of information from the code. We also want to be able to quickly
obtain information which guides a developer in the recovery process. We therefore want
an approach based on alightweight information model– an information model which is
easy to populate for any object-oriented language, and one withsimple view specification
with which a developer can quickly obtain an initial useful view of this information.

Succinct views.We do not want to present the developer with lots of low-level informa-
tion which requires visualization or navigation techniques to answer questions. Rather, we
would like compact views which enable a developer to focus on interesting information
at the appropriate level.

We want, of course, to extract views that really aid in program maintenance tasks.
Demonstrating that our approach indeed aids developers in carrying out a variety of soft-
ware maintenance tasks would require industrial strength tools and a set of controlled field
trials. Instead, we will evaluate the usefulness of our approach in a different way. We aim
to support a design recovery process which is consistent with the research hypothesis we
stated in Chapter 1. We then evaluate our approach and case studies with respect to how
they meet these criteria.

As discussed in Chapter 1, our hypothesis about the nature of design recovery process
is that it is iterative and task-specific. This means that we want to put the developer in
charge of the process. Also, since we cannot foresee all the maintenance tasks a developer
might be faced with, we want to support the recovery of a large range of views.

Developer is in charge. We want the developer to be in charge of the recovery. First

2.4. CONCLUSIONS 29

the developer should be guiding the process, rather than the recovery tool determining the
process –developer guides the process. Second, we wantextensible view specificationso
that the developer can specify the kinds of views that he or she is interested in, rather than
be restricted to a limited set of views dictated by the tool.

Supports a range of views.To answer thebehavioral questionswe have listed above
we want to be able to generatehigh-level viewswhere the developer can create high-level
abstractions, while not loosing the possibility of obtainingfiner-grained viewswhich show
what is happening at the level of object interactions.

2.4 Conclusions

In this chapter we analyzed the problems of design recovery in general and of design
recovery for object-oriented systems in particular. We surveyed current approaches and
techniques and looked in depth at approaches for using dynamic information to under-
stand program behavior.

We then circumscribed the scope of our work on using dynamic information in design
recovery. Finally, we derived a set of eight requirements against which we will evaluate
our work:

1. Lightweight information model
2. Simple view specification
3. Succinct views
4. Developer guides the process
5. Extensible view specification
6. Behavioral views
7. High-level views
8. Low-level views

30 2. DESIGN RECOVERY FOR OBJECT-ORIENTED SYSTEMS: A SURVEY

3

The Iterative Query-Based Approach

This dissertation presents an iterative, query-based approach for the design recovery of
behavioral models from dynamic and static information. The goal of this chapter is to
introduce the basic elements of the approach, and to describe briefly the two applica-
tions developed: concept view recovery and collaboration view recovery. The approach
is based on aniterative recovery processwhich allows a user toquerya source model
representing information about a software system.

The iterative nature of the design recovery process is presented in Section 3.1, along
with preliminary concepts and terminology. In Section 3.2 we describe how the source
model is represented using a meta-model for static and for dynamic information. In Sec-
tion 3.3 we then gives an overview of the two applications of our approach.

3.1 The Iterative Process of Design Recovery

Software
Work
Product

Parser,
Semantic
Analyzer

Information
Base

New view(s)
of software

1

2 3

4
View

Composer

Figure 3.1: Basic tool architecture (after [CC90])

Chikofsky and Cross [CC90] observe that most tools for reverse engineering, restruc-
turing and reengineering use the same basic architecture. Figure 3.1 shows this basic
architecture with the arrows representing the flow of data. Though this basic architec-
ture is indeed satisfied by most reverse engineering tools, what is not illustrated in such
a schema is the actual design recovery process of a user interacting with a tool. Whereas

32 3. THE ITERATIVE QUERY-BASED APPROACH

the steps illustrated by arrows 1 and 2 are typically only done once for a particular soft-
ware product, the steps shown by arrows 3 and 4 may be repeated several times until an
appropriate view is arrived at, or until the views generated so far answer the question of
the user. Figure 3.2 adds this iterative cycle to the basic process shown in Figure 3.1.

The user. Typically, the user of the tool is a developer or maintainer of the code who
must answer some questions about the code in order to carry out a maintenance task. The
maintenance task might involve, for example, adding functionality to the software system,
refactoring it to remove code duplication, or making changes to allow the system to run
in a distributed environment. The developer interacts with the tool by querying, focusing
on the parts of the code that must be better understood. As a function of the response to
the query the developer launches a new query, obtaining a new response and so on. This
enables the developer to steer the recovery process using the tool rather than let the tool
dictate the kinds of views which will be extracted.

Information
Base

View
Composer

Query:

a Perspective

Response:

a View

Aha! Let’ s ask
if...

Figure 3.2: The iterative process of using a reverse engineering tool

The iterative process.It has been observed that without human guidance the process of
design recovery gives poor results [MN97], and that automatic techniques often result in
models whose abstractions are not recognized by the developers [WTMS95]. Our own
experience with reverse engineering tools corroborates this observation. It is important
that developers be able to steer the process by specifying abstractions which match their
ownmental modelof the software.

We do not believe, therefore, in a purely automatic extraction of design artifacts, but
rather a process guided by the developer or maintainer of the software. Typically, a devel-
oper approaching the code has a specific question in mind – asking something like “How
is this task achieved?” rather than “how does everything work in this application?” – and
this question steers the recovery process.

3.1. THE ITERATIVE PROCESS OF DESIGN RECOVERY 33

Since the maintenance questions a developer has determine the kinds of views that
will be recovered there is no unique path in navigating through this iterative process using
a tool. Guidelines, however, can be elaborated on the kind of queries which are useful for
obtaining information as a function of the goal of the recovery. This kind of methodology
can, for example, be described by a system of patterns [DDN02].

The iterative cycle we describe here is characteristic of the use of many design recov-
ery tools. Note that a query can take many forms, depending on the tool. In CodeCrawler
[DDL99], for example, a tool which combines metrics and visualization, a query corre-
sponds to the user requesting a certain kind of graph for displaying specific metrics. The
resulting display is the response to the query. The information obtained from the display
is then used to decide about the next graph to request [DL01]. For the Reflexion Model
tool [MN97] all queries take the form: “how close does my high-level model come to
representing the source code?”. Information about deviations from the model is used to
alter the source-to-model mapping, and the query is then repeated.

3.1.1 Concepts and Terminology

Here we introduce some of the terms used throughout the dissertation and relate them to
their role in the iterative process illustrated in Figure 3.2.

Source model.The source model is the base of information about the software system
we are reverse engineering.

Perspective.A perspective is a specification of the aspects of the source model that we
are interested in. A perspective is given as a declarative specification in terms of the
software meta-model, or in terms of the source model itself. In the recovery process
a perspective is the query of the developer.

View. A view of the source model consists of the elements of the source model which
meet the declarative specification of a given perspective. In the recovery process a
view is the response to a query.

A perspective is anintension– a definition of the characteristics or properties of the
information we are interested in, whereas a view is itsextension– the set of elements in
the source model which satisfy these characteristics or properties.

The source model we use includes both static and dynamic information about the
software system. The meta-model for our source model is presented in Section 3.2. The
view composer shown in Figure 3.2 corresponds to a reverse engineering tool. The view
composer creates aview of the source model by applying aperspectiveto the source
model.

We use the analogy of photographing a scene to explain the notion of perspective and
view and their relationship. The reverse engineering tool can be thought of as a camera,
a perspective as a camera lens, a view as a photograph, and a source model as a scene in
front of us. We mount a lens on the camera because we want a photograph of the scene

34 3. THE ITERATIVE QUERY-BASED APPROACH

with a certain kind of effect. When we press the camera button we ‘apply’ the lens to the
scene in front of us, and obtain a photograph.

Figure 3.3 illustrates this schematically. For example, perspective 1 is “inheritance
relationship between classes” – view 1 shows this information for the classes in the source
model. Perspective 2 is “calling relationship between inheritance hierarchies” – view 2
shows five bubbles, each corresponding to a grouping of classes belonging to the same in-
heritance hierarchy; the arrows between the bubbles correspond to the calling relationship
between these inheritance hierarchies.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������

View 2

View 1

Perspective 1

 Perspective 2

Source Model

Figure 3.3: Aview is the source model as seen through aperspective

The next sections of this chapter explain each of the elements illustrated in Fig-
ure 3.2. Section 3.2 presents the meta-model used to represent the source model (infor-
mation base). Section 3.3 then makes more concrete the notions of perspective and view
and introduces the two applications (view composers) we have developed.

3.2 The Source Model

The source model on which the approach operates is the base of information about the par-
ticular software system being studied. The source model includes both static and dynamic
information about a software system. The static information models the static elements
and relations in the object-oriented program, while the dynamic information models an
actual execution of a program.

This section present the meta-models for representing this static and dynamic infor-
mation. Since many design recovery techniques rely only on static information, we first
argue for the use of dynamic information. Section 3.2.2 and Section 3.2.3 then present the
modeling of static and dynamic information, respectively.

3.2. THE SOURCE MODEL 35

3.2.1 Why Dynamic Information?

In Section 2.2.3 we argued that static information is not sufficient for recovering behav-
ioral models. While the volume of dynamic information generated through program exe-
cution is a challenge to design recovery, dynamic information presents several advantages
for the recovery of behavioral models:

� It acts like a program slice with respect to control flow, since it limits the scope
of our investigation to the particular scenario executed and so provides focus in the
investigation.

� It is always precise with respect to the executed scenariosince we know exactly
which method has been invoked on which object.

� It is easy to obtain compared to static control flow analysiswhich proves difficult
for large programs [WMH93].

� It provides information not obtainable from any static analysissuch as the num-
ber of instances and the multiplicity of relationships between objects.

The main argument against the use of dynamic information is its incomplete coverage
of the code. But this very property is also its advantage [Bal99]. In the context of reverse
engineering and program understanding we do not always need complete information: we
need information that helps us to form concepts about the software structure and helps us
to formulate new hypotheses and questions. A program trace provides information about
the behavior of the system in a scenario exercising a certain functionality, and so helps us
to tie functionality to behavior.

3.2.2 Modeling Static Information

We model static information using FAMIX [DTD01][Tic01], a meta-model developed in
the context of the FAMOOS1 project. FAMIX provides for a language-independent ex-
tensible representation of object-oriented code and contains the required information for
the reengineering tasks performed by a variety of tools. Since it is language indepen-
dent it can be used to represent software systems in different implementation languages
(C++, JAVA , Smalltalk, ADA). Its extensibility means that it can be extended to represent
information that might be needed in future tools. The model can also be extended with
language-specific features using language plug-ins.

The core FAMIX model is shown in Figure 3.4 and specifies the entities and relations
that are extracted from source code. The model consists of the main object-oriented enti-
ties, namely Class, Method, Attribute and InheritanceDefinition. In addition there are two
associations: Invocation and Access. An Invocation represents the definition of a method
calling another method and an Access represents a method accessing an attribute. These

1The FAMOOS ESPRIT project investigated tools and techniques for transforming object-oriented
legacy systems into frameworks.

36 3. THE ITERATIVE QUERY-BASED APPROACH

Figure 3.4: Core model of the static information

abstractions are needed for several reverse engineering and reengineering tasks. These
associations are different than class associations in UML. The question as to why a new
model has been defined instead of extending the UML model is discussed in [DDT99].

Table 3.1 shows the entities and associations of the core model and explains their
attributes. Note that though the model is language-independent, how certain attributes
are recognized in the source code is a language dependent issue. For example, in JAVA

and C++ methods that have ahasClassScope attribute set to true are static methods - in
Smalltalk these correspond to class methods, which are not exactly the same.

The two associations merit some further comments. TheAccess association repre-
sents the definition in source code of a behavioral entity (method or function) accessing a
structural entity (an attribute, a local variable, an argument, a global variable). A separate
access association is used to represent each access which occurs in the source code, even
if the same structural entity is accessed several times in the body of the same method.
The Invocation association represents the definition in source code of a behavioral entity
(method or function) invoking another behavioral entity. As for theAccess association,
a separateInvocation association is used to represent each invocation in the source code.
Note also that due to polymorphism, there exists at parse time a one-to-many relationship
between the invocation and the actual entity invoked: a method, for instance, might be
defined on a certain class, but at run-time be invoked on an instance of another class. This
explains the presence of the base and the candidates attributes.

In the next section we describe the meta-model for representing dynamic information
obtained from program execution.

3.2.3 Modeling Program Execution

The model for representing program execution is shown in Table 3.2. Program execution
is modeled through an ordered list of entities which represent run-time events, of which
there are basically two kinds:

3.2. THE SOURCE MODEL 37

Class
name the name of the class.
isAbstract a predicate specifying whether the class is declared abstract.
belongsToPackage the name of the package defining the scope of the class.
sourceAnchor a reference to the location in source code.

Method
name the name of the method.
belongsToClass a name referring to the class owning the method.
hasClassScope a predicate telling whether the method has class scope or instance scope.
isAbstract a predicate telling whether the method is declared abstract.
isConstructor a predicate telling whether the method is a constructor.
sourceAnchor a reference to the location in source code.

Attribute
name the name of the attribute.
belongsToClass a name referring to the class owning the attribute.
accessControlQualifiera string with a language dependent interpretation, that defines who is allowed

to access the attribute.
hasClassScope a predicate telling whether the attribute has class scope or instance scope.

InheritanceDefinition
subclass a name referring to the class that inherits.
superclass a name referring to the class that is inherited from.
accessControlQualifiera string with a language dependent interpretation, that defines how subclasses

access their superclasses.
index In languages with multiple inheritance, this is the position of the superclass in

the list of superclasses.

Access
accesses a name referring to the variable being accessed.
accessedIn a name referring to the method doing the access.
isAccessLValue a predicate telling whether the value was accessed as a location value or a value

on the left side of an assignment.

Invocation
invokedBy a name referring to the method doing the invocation.
invokes a qualifier holding the signature of the method invoked.
base the unique name of the class where the method is defined.
candidates a multi-valued attribute holding a number of names of classes. Each name

refers to a class that may be the actual one invoked at run-time.

Table 3.1: Attributes of the core FAMIX entities and associations. Attributes in bold font
are mandatory, attributes in normal font are optional.

38 3. THE ITERATIVE QUERY-BASED APPROACH

� Send Event. A send event represents the invocation of a method on an object by
another object.

� Return Event. A return event represents the exit from an invocation.

InvocationTrace
events an ordered list of events. Each event is one of a Send, an Indirect-

Send or a Return.

Sendor IndirectSend
time global time.
sequenceNumber integer giving the sequence number of the event.
senderClass the name of the class of the sender object.
senderId the identity of the sender object.
receiverClass the name of the class of the receiver object.
receiverId the identity of the receiver object.
invokedMethod the name of the method invoked.
invokingMethod (for Indirect-
Send)

the name of the method invoked by the sender object .

Return
time global time.
sequenceNumber integer giving the sequence number of the event.

Table 3.2: The basic model of dynamic information

Direct and indirect sends. Since in collecting trace information not all methods are
instrumented, there are two kinds of send events: direct sends and indirect sends. A
direct send corresponds to the invocation of an instrumented method from within an in-
strumented method. An indirect send corresponds to the invocation of an instrumented
method from within anuninstrumentedmethod. (In the two cases of an uninstrumented
method being invoked from within an instrumented or uninstrumented one no send event
is recorded.)

Figure 3.5 illustrates the distinction between direct and indirect sends. The sequence
diagram to the right shows a sequence of method invocations, with returns from invoca-
tions denoted as dashed arrows. The two traces to the left each show a trace corresponding
to these events: Trace 1 corresponds to the case where all the methods were instrumented,
and Trace 2 corresponds to the case where methodm2 was not instrumented. The re-
sulting indirect sendindirectsend(a,m2,c,m3) is interpreted as follows: objecta invoked
methodm2 on an unknown object and this resulted in the invocation of methodm3 on
objectc.

Discussion.The model presented above treats an instance creation event as just another
method invocation event. In Smalltalk classes are also run-time objects – each class being
the sole instance of its metaclass. The creation of an instance of a class then corresponds
to the invocation of a creation method on the class. However, the model can be extended
to treat object creations as distinct from method invocations, when the instrumentation
technique allows us to distinguish between the two kinds of events [Duc99].

3.3. USING PERSPECTIVES TO RECOVER DESIGN VIEWS 39

Trace 1:
all methods instrumented

send(u,a,m1).
send(a,b,m2).
send(b,c,m3).
return.
return.
send(a,c,m4).
return.
return.

Trace 2:
method m2 not instrumented

send(u,a,m1).
indirectsend(a,m2,c,m3).
return.
send(a,c,m4).
return.
return.

c

m2

m3

m4

m1

a b

Figure 3.5: Direct and indirect sends

In our approach we are not concerned with global time since we do not seek to an-
swer questions about performance and speed. The global time is required, however, by
the interaction diagram tool we use to display a collaboration instance [BFJR98]. Some
tools which display dynamic information also record events corresponding to a variable
access as well as the value of the variable [LN95a]. Though this information is useful
for debugging purposes, it was considered too fine-grained to help in building succinct
behavioral models.

3.3 Using Perspectives to Recover Design Views

In this dissertation we present two applications of the query-based approach which pro-
duce views of a software system from perspectives:Concept View RecoveryandCol-
laboration View Recovery. These two applications correspond to two different ways to
decompose a software system.

In the first application, concept view recovery [RD99], we view the software system
as a set ofcomponentsandconnectors. We name these views ‘concept views’ because
components represent a range of concepts, and connectors represent a range of relations
between these concepts. The perspectives we define, therefore, give semantics to the
components (groupings or clustering of source model elements) and to the connectors
(relations between the components). Since these components and relations can corre-
spond to many different concepts, the views which result range from high-level views of
the system, to views of fine granularity.

In the second application, collaboration view recovery [RD01], we view a software
system as a collection of class collaborations. Whereas in the first application we often
group together classes (usually corresponding to domain concepts), in the second applica-
tion we group together sets of methods or partial interfaces of classes, which conceptually
correspond to a collaboration to carry out a certain functionality. This kind of decompo-
sition is close to a feature view of the software.

40 3. THE ITERATIVE QUERY-BASED APPROACH

Why did we select these two kinds of decompositions as a basis for our perspectives?
We began our work with concept view recovery. Varying the semantics of components
and connectors allowed us to obtain a large repertoire of interesting perspectives and re-
cover several useful behavioral views (e.g., invocation relationship between groupings of
classes, multiplicity of creation relationships between classes). We also used component-
connector perspectives to see what was happening at the object level within a method
invocation, but the resulting views were not satisfactory. First, it was hard to display
all the method information on such a view, and second and more important, we could
not generalize from one specific method invocation to the more abstract collaboration of
which this invocation was just one instance. We therefore developed collaboration view
recovery. Collaboration views span two kinds of levels: one level is the decomposition of
the trace into coarse units (the collaborations), the lower level is the one which describes
the contents of the collaboration (how objects interact to ensure a certain functionality).

D

E

A

B

C
D

E

F

Component

Component

Component
F

BA

Collaboration CollaborationCollaboration
ABC E EC FD

The Source Model
classes and methods, dynamic method invocations

dynamic method invocation relationships between componentscollaborating sets of class methods

C

A
B
C

E
D

F

Static Information Dynamic Information

a--->b.m1
a--->c.m2
c--->a.m3
a--->b.m4

m1 m4

m3

m2 m5 m6

.......

...
c ---> e.m7
e--->c.m5
e--->c.m6

m7
a--->c.m2

Concept View: components and connectorsCollaboration View: class collaborations

Figure 3.6: Concept views and collaboration views as a two different decompositions of
a software system

Figure 3.6 illustrates the two kinds of decompositions schematically. It shows the
static source model as information about classes in the system and their corresponding
methods. Dynamic information is represented as a sequence of method invocations. The
decomposition on the right hand side shows a concept view: classes are grouped into com-
ponents and connectors represent method invocation relationships between these compo-
nents. On the left is the collaboration view: it shows how partial interfaces (illustrated as a

3.3. USING PERSPECTIVES TO RECOVER DESIGN VIEWS 41

composedView(sendsCreate,component).

connectors: sendsCreate(Class1,Class2).

components: component(ComponentName,ListOfClasses).

Figure 3.7: A perspective for creation invocations between components

black circle inside the class construct) are grouped together to represent a logical method
invocation sequence.

For both views we make use of the same source model of static and dynamic infor-
mation. Static information is used to create components for the component-connector
perspective, and to express similarity using pattern matching for the collaboration per-
spective. The semantics of the connectors is specified using the meta-model of dynamic
information. Finally, dynamic information is shown through these perspectives to create
a concept view and a collaboration view. Thus concept view recovery and collaboration
view recovery are part of the same approach, and as such we will evaluate them together.
In the next sections we give an overview of each of the applications, then briefly consider
their integration into one tool.

3.3.1 Concept View Recovery

Concept view recovery proposes an extensible framework for defining perspectives in
terms of components and connectors to obtain a range of views of an application. It
enables the developer to specify perspectives which result in high-level views of the ap-
plication as well as perspectives which result in views of finer granularity. The framework
is supported by the Gaudi tool, described in Section 4.3. Here we provide only a short
introduction to the application which will be presented in greater detail in Chapter 4 and
Chapter 5.

Perspectives and views.A perspective is defined by specifying two elements:compo-
nentsandconnectors. These are defined declaratively using a logic-programming lan-
guage. A view is the result of applying a perspective to a source model.

Example: Figure 3.7 shows the specification of a perspective. The perspectivecom-
posedView(sendsCreate,component) is a second-order logic predicate which takes two
arguments. The first argument is a logic predicate which specifies a dynamic relation,
and gives the semantics of the connectors between the components. The second argument
is a logic predicate which clusters together static elements, giving the semantics of the
components.

42 3. THE ITERATIVE QUERY-BASED APPROACH

sendsCreate(Class1,Class2) :-
sendsToMethod(Class1,MetaClass,Method),
metaclassOf(MetaClass,Class2),
methodCategory(MetaClass,Method,’instance creation’).

sendsCreate(Class1,Class2) :-
indirectsend(, ,Class1, ,’new’,Class2, ,).

The rulesendsCreate above defines a creation relation between two classes which
holds true if an instance ofClass1 creates an instance ofClass2. The rulecomponent be-
low defines a partitioning of classes in the HotDraw framework into several components.
Classes which are not assigned to a component with this rule, constitute a component in
themselves (here, for example,DrawingEditor, Drawing, DrawingController andCompos-
iteFigure).

component(’Figure’,L]) :- allInCategory(’HotDraw-Figures’,L).
component(’Handle’,L) :- allInCategory(’HotDraw-Handles’,L).
component(’Constraint’,L) :- allInCategory(’HotDraw-Constraints’,L).
component(’Toolbar’,L) :- allInCategory(’HotDraw-Toolbar’,L).
component(’Tool’,L) :- allInCategory(’HotDraw-Tools’,L).

When the perspective described above is applied to the source model of the Hot-
Draw framework, a view is obtained as shown in Figure 3.8. This view shows a graph
where each component is seen as a node, and each connector as a directed edge. A di-
rected edge from componentTool to componentFigure means that the relationsendsCre-
ate(Class1,Class2) holds for at least one pair of classes, (Class1,Class2), where Class1 is
in componentTool and Class2 is in componentFigure.

Figure

Handle

ToolConstraint

CompositeFigure

Drawing

DrawingController

DrawingEditor

Toolbar

Figure 3.8: Creation invocations between components in the HotDraw framework

3.3. USING PERSPECTIVES TO RECOVER DESIGN VIEWS 43

3.3.2 Collaboration View Recovery

While the extensible framework for concept view recovery proved flexible for answering
a large range of questions, it was not satisfactory when we wanted to know which methods
are used in which context and how classes collaborate in an interaction, and to generalize
from specific object interactions to patterns of class collaborations. We therefore devel-
oped a new application of the approach which lets us recover a model which cross-cuts the
system classes, and looks at groups of methods. Collaboration view recovery is supported
by the Collaboration Browser tool, and is presented in detail in Chapter 6.

Figure 3.9: The Collaboration Browser

Perspectives and views.In collaboration view recovery perspectives have a more re-
strictive meaning than in concept view recovery. Whereas in concept view recovery we
can recover views displaying different kinds of static components and dynamic relations,
in collaboration view recovery our view – our window on the dynamic information –
is always represented in terms of four basic elements: sender classes, receiver classes,
invoked methods and collaboration patterns. In collaboration view recovery we group
together similar sequences of object interactions in the trace intocollaboration patterns.
Perspectives determine what information we see about sender classes, receiver classes,

44 3. THE ITERATIVE QUERY-BASED APPROACH

invoked methods and collaboration patterns. We specify perspectives through two opera-
tions: pattern matching and querying. Setting pattern matching options determines which
execution sequences will be considered similar, so it gives the semantics of a collabora-
tion. Querying allows us to find the relevant and important collaborations by choosing
collaborations in which certain classes participate and by querying about the roles these
classes play in the collaborations.

Example: a screen shot of the Collaboration Browser tool is shown in Figure 3.9. The
Collaboration Browser window is divided into four sections, listing (clockwise from the
top left corner) sender classes, receiver classes, collaboration patterns and invoked meth-
ods. Figure 3.9 shows this information for a scenario of CodeCrawler [DDL99]. Pattern
matching has already been performed, so the execution trace is seen as a collection of
collaboration patternswhich can be queried. Two receiver classes have been selected:
EdgeFigureModel andNodeFigureModel in the top right hand panel of the window. A
query was then launched to discover which collaboration patterns these two classes en-
gage in together. The response appears in the lower right hand panel of the window, and
shows a list of three collaboration patterns. One of these collaboration patterns has been
selected and an instance of the pattern displayed as an interaction diagram.

3.3.3 Combining Concept and Collaboration View Recovery

The two applications we present in the dissertation use basically the same approach. Both
support an iterative process of design recovery in which perspectives are declaratively
defined to extract views of the software. Both operate on the same meta-model of static
and dynamic information. Both create abstractions by viewing the dynamic information
stripped of its time dimension.

They are also complementary: concept view recovery extracts views showing binary
relations between (mostly high-level) components, collaboration view recovery extracts
finer-grained views of collaborations and the roles classes play in them.

We have implemented each of these as a separate tool and also present each of them
separately in the dissertation. But because of they are similar and they complement each
other we can easily see them being integrated into one tool which supports the two kinds
of perspectives and view composer mechanisms (grouping as in concept view recovery,
pattern matching as in collaboration view recovery). In particular, such a tool would
support the recovery of collaborations in the context of a specific concept view. The
question of integrating the two applications into one tool is discussed again in Section 7.3.

3.4 Conclusions

In this chapter we introduced the elements of our approach. We argued for the need for an
iterative recovery process and discussed how a reverse engineering tool is embedded in
this process. We introduced the notion ofperspectiveas a query on the source model, and
viewas a response to the query. The meta-model used to represent the static and dynamic

3.4. CONCLUSIONS 45

information of thesource modelwas presented and discussed. Finally, we introduced
the two applications we have developed, concept view recovery and collaboration view
recovery. For each of these we briefly described how perspectives are defined and how
views are extracted.

The meta-model we use to represent static information represents a software applica-
tion in terms of program entities and their relationships rather than at the detailed level
of abstract syntax trees (AST). This information is thus relatively easy to extract from
applications written in any class-based object-oriented language. The meta-model we use
to represent program execution is a simple one, representing method invocation events in
terms of sender class and identity, receiver class and identity and invoked method. This
kind of information is also easily obtained from an instrumented program. We thus satisfy
the requirement we set for ourselves in Section 2.3 of having alightweight information
model. In fact, as will be seen later from the case studies performed, a reduced meta-
model of static information about classes, methods and inheritance definitions suffices to
obtain a rich repertoire of perspectives.

Though we have not yet demonstrated the process of design recovery that our ap-
proach supports, we argued again for an iterative process which puts the developer in
charge of the process and in charge of specifying the kinds of views that he or she is
interested in.

In Section 3.3 we have given a preview of how perspectives declaratively specify
views in each of the applications we present. We argued that concept view recovery and
collaboration view recovery are part of the same approach, that they complement each
other in design recovery, and that they can be thought of as being integrated into one
design recovery tool.

In the next chapter we present the first of these two applications: concept view recov-
ery.

46 3. THE ITERATIVE QUERY-BASED APPROACH

4

Concept View Recovery: the
Declarative Framework

In the next two chapters we present concept view recovery. The approach is presented in
two parts: this chapter introduces a declarative framework which supports the definition of
component-connector perspectives using a logic-programming language. It also describes
a tool which implements the framework. In the following chapter we present two case
studies to demonstrate how this framework is applied to real software applications.

We show how a logic programming language is used to describe the source model
and to derive properties of this source model using layers of predicates. Perspectives
are second-order predicates which combine two predicates: one to specify the clustering
of static elements into a component and one to specify the semantics of the connectors.
The semantics of the components and connectors is not fixed, but can be specified by the
developer or maintainer of the software.

This chapter is structured as follows: in Section 4.1 we introduce the framework as
a set of layers, and show how logic predicates in each layer are used to define static
and dynamic relations of software artifacts. Section 4.2 presents the topmost layer of the
framework – the perspective layer – whose predicates support the extraction of views. Sec-
tion 4.3 describes Gaudi, a prototype tool developed to support the declarative framework.
Finally, we discuss the framework in Section 4.4 and conclude the chapter with Sec-
tion 4.5.

4.1 A Declarative Framework for Perspectives

We use a logic-programming language to define a declarative framework which supports
the specification of perspectives. Figure 4.1 illustrates this framework schematically. The
declarative framework is a set of rules, conceptually organized in layers, where each layer
makes use of the layers below it [Wuy01].

The bottommost layer is called therepresentation layersince it consists of predicates
which most directly represent the software – those found in the source model. The next
highest layer is thebase layer, consisting of predicates which describe relations derived

48 4. CONCEPT VIEW RECOVERY: THE DECLARATIVE FRAMEWORK

representation layer

base layer

perspective layer

auxiliary layer

predicates for basic static and dynamic facts: class, inheritance, invocation, etc.

higher-level predicates: instance creation, metaclass, public interface, etc.

still more abstraction: design patterns, application specific predicates

predicates for generating views

Figure 4.1: The declarative framework as layers of predicates

from the representation layer. Both the representation layer and the base layer are prede-
fined in the framework. By contrast, theauxiliary layer consists of rules defined by the
developer. These may be rules which are specific to the application being investigated, or
rules which codify design abstractions not found in the base or representation layer. The
auxiliary layer is not essential to the declarative framework – it may be empty. Theper-
spective layerconsists of rules which specify component-connector perspectives. Several
types of perspectives are predefined – but this layer may be augmented by the developer.

Figure 4.2 illustrates how this declarative framework is used in a query-based ap-
proach. The source model is represented by static and dynamic facts about the software
application to be analyzed. Using the predicates of the declarative framework a developer
makes queries about this source model. More specifically, the developer requests to view
the source model through a particular perspective. A perspective is specified by two pred-
icates from the declarative framework,r andC. The predicateC specifies clustering to be
applied to static elements in the source model to createcomponents, whereas the predicate
r specifies a relationship between static elements – theconnectors. The response to such
a query is a view of the software as seen through the perspective.

The notion of perspectives and their use in querying will be clarified in more detail
in Section 4.2. In the next sections we first describe each of the layers of the declarative
framework, starting from the lowest one.

4.1.1 The Representation Layer

The representation layer consists of predicates which represent the source model extracted
from the software. Both the static model and the dynamic model described in the previous
chapter (Section 3.2) are represented in terms of logic facts.

Static Relations. Static information is represented as facts in a logic-programming lan-
guage [SS86]. Table 4.1 below shows the representation of the six FAMIX core entities
and associations as logic facts.

Note that the parameterCandidates of predicateinvocation gives the potential re-

4.1. A DECLARATIVE FRAMEWORK FOR PERSPECTIVES 49

dynamic facts

static facts

source model
perspective

base

representation

auxiliary

perspective(r,C)?

Perspective View

view composer

Figure 4.2: The framework as used in an iterative query cycle

ceivers of the invocation; an empty list means that no candidates were found within the
classes of the application.TheSourceAnchor parameter of the predicateclass is language-
dependent. In the case of Smalltalk it is taken to be the class category in which the class
is defined.

As an example of how these predicates are used to represent static information we
present below a sample which provides information about the classEllipseFigure of the
HotDraw framework [BJ94]. Figure 4.3 illustrates this information in a class diagram.

(1) class(’EllipseFigure’,’HotDraw-Figures’).
(2) superclass(’Figure’,’EllipseFigure’).
(3) method(’EllipseFigure’,’displayFilledOn:’,false,’displaying’).
(4) access(’EllipseFigure’,’self’,’EllipseFigure’,’displayFilledOn:’).
(5) invocation(’EllipseFigure’,’displayFilledOn:’,’fillColor’,[’Figure’]).

self fillColor
.

EllipseFigure

Figure

...

...

......
displayFilledOn:

fillColor

Figure 4.3: Class diagram for the static information above

Dynamic Execution. Dynamic information is represented as facts about method invoca-
tions in a program’s execution (Table 4.2). Only two kinds of facts are represented:send
andindirectsend. These are numbered according to sequence order (SN) and stack level
(SL). Return events are not directly represented as facts: they can be deduced from the

50 4. CONCEPT VIEW RECOVERY: THE DECLARATIVE FRAMEWORK

stack level numbers of the send events. Eachsend or indirectsend fact corresponds to the
invocation of an observed method on an instance of a class.

As an example, the send facts listed below record the method invocations that fol-
low the invocation ofEllipseFigure(instance#39).fillColor. This sequence corresponds to
one execution of the invocation described in line 5 of the static information above. Its
representation as a UML interaction diagram is shown in Figure 4.4.

send(49,7,’EllipseFigure’,139,’EllipseFigure’,139,’fillColor’).
send(50,8,’EllipseFigure’,139,’Drawing’,685,’fillColor’).
send(51,9,’Drawing’,685,’FigureAttributes’,4426,’fillColor’).
send(52,9,’Drawing’,685,’FigureAttributes’,4426,’fillColor’).
send(53,7,’EllipseFigure’,139,’Drawing’,685,’compositionBoundsFor:’).

fillColor

FigureAttributes 4426DrawingEllipseFigure 139 685

fillColor

fillColor

compositionBoundsFor:

fillColor

Figure 4.4: Sequence diagram for the sequence of method invocations above

class(ClassName, SourceAnchor)
a class and its source artifact

superclass(SuperClass, SubClass)
an inheritance relationship

attribute(Class, AttributeName, AttributeType)
class defines an attribute of a certain type

method(Class, MethodName, IsClassMethod, Category)
a class defines a method belonging to a Category

access(Class2, Attribute, Class1, Method)
an attribute of Class1 is accessed by Method of Class2

invocation(Sender, Method, ReceivedMethod, Candidates)
Method of Sender invokes ReceivedMethod on one of the Candidates

Table 4.1: Predicates of the representation layer: the static entities and associations

4.1. A DECLARATIVE FRAMEWORK FOR PERSPECTIVES 51

send(SequenceN, StackLevel, Class1, Instance1, Class2, Instance2, Method)
an instance Instance1 of Class1 invokes Method on instance Instance2 of Class2. SequenceN is the
sequence number of the event, and StackLevel is the stack level of the method call.

indirectsend(SequenceN, StackLevel, Class1, Instance1, Method1, Class2, Instance2,
Method2)
an instance Instance1 of Class1 sends the message Method1, which is unobserved. The next observed
invocation is the execution of method Method2 on instance Instance2 of Class2.

Table 4.2: Predicates of the representation layer: dynamic relations

4.1.2 The Base Layer

The predicates of the representation layer are used to represent the source code and its
execution – thesource modelon which a reverse engineering tool operates. This section
presents the base layer: predicates which form a logic layer above the source model and
allow for more sophisticated reasoning about the structure and behavior of the application.
Some of these rules make use of static information only, some of dynamic information
only, while some of the rules combine static and dynamic information. We present exam-
ples of each of these kinds of rules.

Of the base layer predicates, two kinds of rules are of special interest since they form
the basis for the definition of perspectives. The first kind is a predicate which defines
a relation between two entities, for example, the inheritance relationship between two
classes, or the method invocation between two instances. This kind of predicate is used to
give semantics to theconnectorsin the perspective. The second kind is a predicate which
defines a relation between a component name and the set of entities in the component.
An example of the second kind is the association of a class category name to the set of
all classes in that category. This form of predicate is used to specify components in the
perspective, and is called acomponent clusteringrule.

Tables 4.3, 4.4, 4.5 and 4.6, summarize the predefined predicates of the base layer. Ta-
ble 4.3 lists the predicates which use static information only. Table 4.4 lists predicates
which are generally useful in querying, and Table 4.5 lists predefined component cluster-
ing predicates. Finally, Table 4.6 presents predicate for instance and class relations which
rely on dynamic information.

The basic static predicates are used to formulate rules expressing structural concepts
of object-oriented software, such as method overwriting, inheritance hierarchy and so on.
In the same vein, the basic dynamic predicates are used to express behavioral relationships
between instances and classes. We illustrate this below with some examples.

Rules using static information only. Rule 1 below specifies that a subclassSubclass
overrides a methodMethod defined in a classClass. It makes use of rule 2,common-
Method, which says thatClass1 andClass2 define a method with the same nameMethod,
and rule 3,inHierarchy, which defines what it means for a class to be in the inheritance
hierarchy of another class.

52 4. CONCEPT VIEW RECOVERY: THE DECLARATIVE FRAMEWORK

rule1 : overrides(Class, Subclass, Method) :-
commonMethod(Class, Subclass, Method),
inHierarchy(Class, Subclass).

rule2 : commonMethod(Class1, Class2, Method) :-
method(Class1, Method, IsClassMethod,),
method(Class2, Method, IsClassMethod,).

rule3 : inHierarchy(Class, Class).
inHierarchy(Class,Subclass) :-

superclass(Superclass,Subclass),
inHierarchy(Class,Superclass).

Rules using dynamic information only. Rule 4 below specifies that an instance of
Class1 invokes, either directly or indirectly, aMethod on an instance of a class,Class2.

rule4 : sendsToMethod(Class1,Class2,Method) :-
send(, ,Class1, ,Class2, ,Method).

sendsToMethod(Class1,Class2,Method) :-
indirectsend(, ,Class1, , ,Class2, ,Method).

Rules combining static and dynamic information. Dynamic and static predicates are
combined to express more complex relationships, such as a creation relationship between
classes. An example is presented below.

Rule 5 below defines acreaterelationship between two classes – an instance of class
Class1 creates an instance ofClass2. Its use for obtaining acreationview of an applica-
tion will be demonstrated in the case studies described in Chapter 5. The rule specifies that
an instance ofClass1 invokes aMethod on an instance of a metaclass ofClass2, where the
Smalltalk category ofMethod is instance creation (Smalltalk creation methods, defined
at the class level, appear as methods of a metaclass in the model. There is a Smalltalk
convention to group instance creation methods into a category namedinstance creation).
Rule 6 allows one to go up the inheritance hierarchy to find the Smalltalk category of the
Method, in case it is not defined byMetaClass.

rule5 : sendsCreate(Class1,Class2) :-
sendsToMethod(Class1,MetaClass,Method),
metaclassOf(MetaClass,Class2),
methodCategory(MetaClass,Method,’instance creation’).

rule6 : methodCategory(Class,Method,Category) :-
method(Class,Method, ,Category).

methodCategory(Class,Method,Category) :-
inHierarchy(Superclass,Class),
method(Superclass,Method, ,Category).

4.1. A DECLARATIVE FRAMEWORK FOR PERSPECTIVES 53

Rules for component clustering. As will be explained in Section 4.2, the definition
of perspectives allows us to declaratively define component clustering of the software
elements. This is done through logic predicates. The following rule, for example, groups
together all classes in the same inheritance hierarchy:

rule7 : allInRootHierarchy(RootClass,ListOfClasses) :-
setof(Class,inRootHierarchy(Class,RootClass),ListOfClasses).

inHierarchy(SuperClass,Class)

Class is in the inheritance hierarchy of SuperClass

rootClass(RootClass)

Class is a root class of an inheritance tree

inRootHierarchy(Class,RootClass)

Class is in the inheritance hierarchy of RootClass, which is a root class

commonMethod(Class1,Class2,Method)

Class1 and Class2 both define Method

overriddenMethod(Class1,Class2,Method)

Class1 overrides a Method defined in Class 2

overriddenMethodRoot(Class,Method,Root)

Root is the topmost class which defines Method overridden by Class

understands(Class,Method)

Class understands Method

rootMethod(Class,Method,Root)

Class understands Method, which is defined topmost at Root

classInterface(Class,ListOfMethods)

all the methods that Class understands

methodCategory(Class,Method,Category)

a Method understood by Class belongs to the method category Category

metaclass(Class)

Class is a metaclass

metaclassOf(MetaClass,Class)

Class is a metaclass of Class

Table 4.3: Predicates of the base layer: static relations.

numberOfInstances(Class,Number)

number of instances of a Class in the scenario

singleton(Class)

true if there is only one instance of Class in the scenario

publicInterface(Class,Methods)

Methods are all the methods invoked on class Class by other instances

Table 4.4: Predicates of the base layer: rules based on dynamic information.

54 4. CONCEPT VIEW RECOVERY: THE DECLARATIVE FRAMEWORK

allInRootHierarchy(RootClass,ListOfClasses)

associates to a component named RootClass all the classes in the inheritance hierarchy of RootClass

allInCategory(CategoryName,ListOfClasses)

associates to a component named CategoryName all the classes in the class category CategoryName

Table 4.5: Predicates of the base layer: component clustering rules.

Instance Relations
sendsToInstance(Class1,Instance1,Class2,Instance2)

true if Instance1 of Class1 invokes a method on Instance2 of Class2

createInstance(Class1,Instance1,Class2,Instance2)

true if Instance1 of Class1 creates Instance2 of Class2

sendInstanceInStack(Class1/Inst1,Class2/Inst2,N,Start)

true if Inst1 of Class1 invokes a method on Inst2 of Class2, within the call stack starting at send event

numbered Start. N is the sequence number of the particular send event. This relation is used to show

ordering of invocations within a call stack.

sendInstanceInStackMethod(Class1/Inst1,Class2/Inst2,Method,N,Start)

true if Inst1 of Class1 invokes Method on Inst2 of Class2, within the call stack starting at send event

numbered Start. N is the sequence number of the particular send event. This relation is used to show

ordering of method invocation within a call stack.

Class Relations
sendsTo(Class1,Class2)

true if an instance of Class1 invokes a method on an instance of Class2 (directly or indirectly)

sendsToMethod(Class1,Class2,Method)

true if an instance of Class1 invokes Method on an instance of Class2 (directly or indirectly)

sendsToNotSameClass, sendsToNotSameInstance, sendsToMethodDirect, etc.

variations of the method invocation relationship between classes

sendsCreate(Class1,Class2)

true if an instance of Class1 creates on an instance of Class2 (directly or indirectly)

oneToOneSend(InstanceRelation,SenderClass,ReceiverClass)

true if the Instance Relation is one-to-one for classes SendeClass and ReceiverClass

oneToManySend(InstanceRelation,SenderClass,ReceiverClass)

true if the Instance Relation is one-to-many for classes SendeClass and ReceiverClass

manyToOneSend(InstanceRelation,SenderClass,ReceiverClass)

true if the Instance Relation is many-to-one for classes SenderClass and ReceiverClass

manyToManySend(InstanceRelation,SenderClass,ReceiverClass)

true if the Instance Relationis many to many for classes SendeClass and ReceiverClass

Table 4.6: Predicates of the base layer: dynamic relations of instances and classes.

4.1. A DECLARATIVE FRAMEWORK FOR PERSPECTIVES 55

4.1.3 The Auxiliary Layer

Whereas predicates in the representation and base layer are predefined in the framework,
the auxiliary layer is a placeholder for predicates which are defined by a developer who
uses the framework. Figure 4.5 illustrates this: shaded areas correspond to predefined
predicates, white areas to places where a user of the tool can add predicates.

static only combining static and dynamic

static information

dynamic only

representation layer

base layer

perspective layer

auxiliary layer
general application specific

dynamic information

Figure 4.5: The declarative framework: shaded areas correspond to predefined predicates

The auxiliary layer consists of two kinds of predicate: those which represent gen-
eral relations independent of the particular software application being investigated, and
those relations which are application specific. General high-level predicates are design
patterns, design conventions, idioms [Cop92] and best practice patterns [Bec97]. For ex-
ample, [Wuy01, Men00] use a logic programming language to check conformance to such
conventions and guidelines.

General predicates.Below we give an example of a general high-level predicate, adapted
from [Wuy01]. It is a logic predicateaccessingViolator which checks for the violation
of the coding conventionaccessor methods. This convention states:never access in-
stance variables directly, but always through accessor methods.The rule below states
that this convention is violated if a method which is not anaccessoraccesses one of the
class’s instance variables directly. An accessor method is specified using the ruleacces-
sor(Class,Method) and identifies a method as an accessor method if it is in the Smalltalk
method categoryaccessing. The direct access of an instance variable is specified using
the ruleaccesses(Class,Variable,Method) which checks if the method accesses any of its
instance variables (also inherited ones). These rules make use of static relations of the
representation and base layers.

56 4. CONCEPT VIEW RECOVERY: THE DECLARATIVE FRAMEWORK

accessingViolator(Class,Method,Variable) :-
accesses(Class,Variable,Method) ,
not(accessor(Class,Method)).

accessor(Class,Method):-
method(Class,Method, ,’accessing’).

accesses(Class,Variable,Method) :-
access(Class,Variable,Class,Method).

accesses(Class,Variable,Method) :-
access(Superclass,Variable,Class,Method),
inHierarchy(Superclass,Class).

Design patterns also represent application independent rules and conventions. An
example of a predicate which codes for the structure of the Composite design pattern is
given in Section 4.4.1.

Application specific predicates.Application specific predicates are rules which use in-
formation specific to the software application being investigated. Below we present two
examples of such rules. The first predicate, given below, defines an invocation relation be-
tween two classes, where either the sender class or the receiver class (or both) is the class
RefactoringManager. This predicate is used in the case study presented in the next chapter
to obtain a view of all classes which communicate with instances ofRefactoringManager
and the messages received or sent by instances ofRefactoringManager.

sendsToFromRefactoringManager(C1,C2,M) :-
sendsToMethod(C1,’RefactoringManager’,M);
sendsToMethod(’RefactoringManager’,C2,M).

The second example, presented below, is a set of component clustering predicates.
These rules are used to cluster some of the classes of the Refactoring Browser into three
components:Parser, Conditions, andBrowser+Stuff. Classes which are not clustered with
these rules represent components on their own.

inComponent(’Browser+Stuff’,Class) :- class(Class,’Refactory-Environments’).
inComponent(’Browser+Stuff’,Class) :- class(Class,’Refactory-Browser’).
inComponent(’Browser+Stuff’,Class) :- class(Class,’Refactory-Code Tools’).

component(’Parser’,L) :- allinCategory(’Refactory-Parser’, L).
component(’Conditions’,L) :- allinCategory(’Refactory-Conditions’,L).
component(’Browser+Stuff’,L) :- setof(Class,inComponent(’Browser+Stuff’,Class),L).

4.2 The Perspective Layer

We have defined a perspective as ‘a specification of the aspects of the source model that
we are interested in’ (Section 3.1.1) and explained that a perspective is given as a declar-
ative specification in terms of the software meta-model, or in terms of the source model

4.2. THE PERSPECTIVE LAYER 57

itself. In this sense, any query of the source model is a perspective. Querying the source
model, for example, with the predicateaccessingViolator(Class,Method,Variable) speci-
fies that we are interested in seeing all the triples(Class,Method,Variable) which violate
the accessor methods coding convention.

Though the use of simple queries as perspectives also relates interesting information
about the software system, we want to extract views which give us a more global under-
standing of the system. To this end, we introduce component-connector perspectives. The
logic predicates for expressing component-connector perspectives form the topmost layer
of the declarative framework. These predicates are used to generate concept views of a
software application.

A concept view of the source model is a directed graph which displayscomponents
and a relationship between these components, theconnectors. Below we define views,
then go on to explain how perspectives are specified.

4.2.1 Views

A view V = fC;Rg is defined as a set of componentsC and a set of connectorsR
between these components. It corresponds to a directed graph: each node in the graph is
a componentCi, and each directed edge between componentsCi andCj represents the
presence of the relationshipR between these components.

More precisely, let:

� E = fe1; e2; :::; eng be a set of elements in the source model.

For example,E can be the set of all classes, all methods, or all object instances in
the source model, or a set of classes and methods.

� r � ExE be a relation over two elements ofE, or

r � ExExL is a relation over two elements ofE and an element ofL, whereL is
a set of labels.

Sor is a binary relationship between elements in the source model or a relationship
between two elements and a label, or value. For example,r can be the inheritance
relationship between classes, the overriding relationship between methods or the
method relationship between classes and methods. It can also be the message send
relationship between two instances and a method, where the method name is the
label associated to the relationship.

� c � ExE is an equivalence relation over elements ofE.

That is,c induces a partition onE. For example,c can be the relationship ‘in the
same method category’ between methods, or ‘in the same inheritance hierarchy’ be-
tween classes. These relations partition the elements ofE into equivalence classes
of all methods classified under the same method category, or all classes in the same
inheritance hierarchy, respectively.

58 4. CONCEPT VIEW RECOVERY: THE DECLARATIVE FRAMEWORK

� we derive a setEr � E which includes all the elements in the domain and range of
r:

Er = fx 2 Ej9y 2 E; (x; y) 2 r _ (y; x) 2 rg, or

Er = fx 2 Ej9y 2 E; 9l 2 L; (x; y; l) 2 r _ (y; x; l) 2 rg

For example, ifr is a message send relation between classes from the dynamic
information, andE is the set of all classes, thenEr is the set of all classes which
are related through this send relation to other classes. Classes for which no instances
send or receive messages will not be included inEr.

Then a viewV = fC;Rg where:

� C = Er=c = fC1; C2; :::; Cmg, a partition ofEr induced byc.

� R � CxC, whereR = r=c = f(Ci; Cj)j9ei 2 Ci; 9ej 2 Cj; (ei; ej) 2 rg, or

R � CxCxL, whereR = r=c = f(Ci; Cj; l)j9ei 2 Ci; 9ej 2 Cj; (ei; ej; l) 2 rg

What does this mean? A view is a set of components and connectors:C is the set of
components in the view, andR is the set of connectors. In order to specify a view, we need
a relationr, and an equivalence relationcwhich will induce a partition onEr, the elements
in the range and domain ofr. The view will then show a set of components. It will show
a directed edge from componentC1 to componentC2 if there is at least one elemente1
in C1 and one elemente2 in C2 for which relationr holds. It will show a directed edge
labeledl from componentC1 to componentC2 if there is at least one elemente1 in C1

and one elemente2 in C2 for which (e1; e2; l) is in relationr. Each component will be
attached by an edge to at least one other component, since all the elements inEr are either
in the domain or range ofr.

For example, ifr is a message send relation between classes from the dynamic infor-
mation, andc is an equivalence relation which partitions classes into separate inheritance
hierarchies, then the view we obtain will show the message send relation between inheri-
tance hierarchies. An inheritance hierarchy which does not ‘send’ or ‘receive’ a message
will not appear in the view.

4.2.2 Perspectives

From the discussion above we see that a perspective must be expressed by specifyingr

andc as defined above. This declarative specification is then used to generate a view by
usingc to partition the set of elements into a set of componentsC and usingr to derive
the relationR between these components.

We specify perspectives as second-order logic predicates of the formperspec-
tive(relation,component) whererelation andcomponent are also logic predicates. Speci-
fying relation corresponds to specifyingr. In order to specify the equivalence relationc,
we directly partition the elements ofE using the predicatecomponent. This is explained
below.

4.2. THE PERSPECTIVE LAYER 59

1. relation(Element1,Element2) or relation(Element1,Element2,Value) is a relation be-
tween two elements ofE, which may or may not associate a value to the relation,
and corresponds to specifying the relationr for the view.

For example, the predicatesendsTo(Class1,Class2) specifies the invocation re-
lationship between classes, based on the dynamic information. The predicate
sendsToMethod(Class1,Class2,MethodName) specifies the invocation relationship
between classes and the name of the method invoked. The predicatesuper-
class(Class1,Class2) specifies the inheritance relationship between classes, the
predicatemethodOf(Class,Methodname) specifies that a method is defined in a
class.

2. component(ComponentName,ComponentElements) is a rule which clusters a set
of elementsComponentElements into a componentComponentName. This rule
must induce a partition on the elements ofE.

For example, the ruleallInCategory(Category,ListOfClasses) partitions the classes
in the source model into their respective Smalltalk class categories. The name
of each component is the name of the class category. The predicateallInHierar-
chy(RootClass,ListofClasses) partitions the classes according to the inheritance hi-
erarchy, where the name of each component is the name of the root class of the
hierarchy.

perspective layer

auxiliary layer

base layer

representation layer

componentrelation

Figure 4.6: Perspective predicates are based on logic predicates from the lower layers

The perspective layer consists of predicates which specify different kinds of perspec-
tives, discussed in the next section. These userelation andcomponent predicates from the
lower layers, as shown in Figure 4.6.

Using perspectives. We have described components as groupings of static elements,
and connectors as relations derived from dynamic information. This is not inherent to
perspectives themselves, but is due to our use of perspectives. We use them to view
dynamic information in order to answer behavioral questions.

Connectors can represent static relationships, such as the inheritance relationship be-
tween classes or the access relationship between methods and attributes. As these rela-
tionships are extractable with many tools which perform only static analysis, we are not
interested in them here. Components can also be expressed using dynamic information,

60 4. CONCEPT VIEW RECOVERY: THE DECLARATIVE FRAMEWORK

for example, to group together all classes whose instances send messages to instances of
a specific class – in this case we use dynamic information to group together static enti-
ties. Finally, components could also be used to group together several method invocation
events. It is not clear then what interesting relations can be defined between method in-
vocations. Using dynamic information to create abstractions from sequences of method
invocations is addressed by collaboration view recovery.

An example. In the next chapter we illustrate the use of perspectives through case studies.
Throughout that chapter we present perspectives in a format illustrated in Perspective 1
below. The name of the perspective is presented at the top – here it iscomposedView.
The relation predicate used in denoted byr, and thecomponent predicate is denoted by
C.

In the example below rules 8 and 9 define a relationr and a clusteringC respectively.
In this caseE is the set of all classes and is defined implicitly by rule 8. Rule 8 defines
a predicatesendsTo(Class1,Class2) which holds true if an instance ofClass1 invokes
any method on an instance ofClass2. Rule 9 defines a clustering predicate,allInCate-
gory(Category,ListOfClasses). This predicate is true when each class inListOfClasses is
in the Smalltalk class categoryCategory. The predicatecomposedView combines rules
8 and 9 to specify a view in which components are Smalltalk class categories and the
relation between them is the message send relationship between classes.

composedView(sendsTo,allInCategory).

r rule8 : sendsTo(Class1,Class2).

C rule9 : allInCategory(Category,ListOfClasses) :-
setof(Class,class(Class,Category),ListOfClasses).

Perspective 1: Dynamic invocations between class categories

We then invokecomposedView(sendsTo,allInCategory) as a query to generate a view
of the source model. The view is generated automatically: the second argument,allInCat-
egory, is used to partition the classes into components according to their class categories,
the first argument,sendsTo, is used to derive the relation between these components. The
generated view is displayed as a directed graph (using the dot tool [KN]). As an example,
the application of this perspective to the source model of HotDraw results in the view
displayed in Figure 4.7. Each node in the graph corresponds to a HotDraw class category
and each directed edgeA!B means that at least one instance of a class in categoryA

invokes a method on an instance of a class in categoryB.

4.2.3 Specifying Perspectives

Conceptually, a perspective combines a relation predicate and a clustering rule to generate
a view. Practically, there are some variations on the form of a perspective, induced by two
factors:

4.2. THE PERSPECTIVE LAYER 61

HotDraw-Figures

HotDraw-Framework

HotDraw-Constraints

HotDraw-Handles

HotDraw-Toolbar

HotDraw-Tools

Figure 4.7: View 1: Invocations between class categories for the HotDraw sample editor

Presence or absence of component clustering:when a clustering predicate is missing
then the equivalence relationc is the identity relationshipI – that is, each element
in Er is itself a component. This is asimple perspective, in contrast to acomposite
perspective. Perspective 1 above is acompositeperspective since it combines two
rules to create a view.

The form of the relation: The relationr may be of the formr � ExE or r � ExExL.
The second form has the effect of associating a label to each edge in the view. We
often want a view of an application in which the directed edges of the graph are
labeled with a value, for example, with the name of a method in the case of an
invocation relationship.

Below we give some examples of different relation predicates derived from the meta-
model for dynamic information. Note that these are just examples – the perspective frame-
work is built to accommodate user-defined relations to tailor the views generated to the
maintenance question guiding the investigation. More examples and their use in the re-
covery process will be provided in the presentation of the case studies in Chapter 5.

r(e1; e2) : sendsTo(C1,C2) defines the invocation relationship between classes.

r(e1; e2; label) : sendsToMethod(C1,C2,Method) defines the invocation relationship be-
tween classes, giving the name of the method invoked.

sendsToFrequency(C1,C2,Frequency) defines the invocation relationship, associ-
ating an integer to the relationship representing the frequency (from the dynamic
information) with which instances of class C1 invoke methods on an instance of
class C2.

r(e1; e2; sequenceN) : sendsToInstance(C1/I1,C2/I2,SequenceN) defined the invoca-
tion relationship between instance I1 of class C1 and instance I2 of Class C2. Se-
quenceN gives the sequence number of the send event. This relation can be defined

62 4. CONCEPT VIEW RECOVERY: THE DECLARATIVE FRAMEWORK

to recover all events within a call stack, for example, and to produce a view which
shows the control flow between instances within a method invocation event. Edges
are labeled with integers to indicate the control flow.

r(e1; e2; label; sequenceN) : sendsToInstanceMethod(C1/I1,C2/I2,Method,SequenceN)
The same relationship as above, adding the method name as a labeling value. The
resulting view is similar to a UML collaboration diagram: nodes correspond to
instances and edges are labeled with a method name and are also ordered to show
the sequence of method calls.

Table 4.7 lists the eight variations on perspectives predefined in the declarative frame-
work, each as a function of the type of relationr given, and of the presence or absence of a
clustering predicateC. The first column lists the simple perspectives, whereas the second
column lists the composite perspectives. Both simple and composite perspectives can be
of different types depending on whether or not the relationr includes a label and/or an
ordering.

C not specified C(Name;ListOfElements)

r(e1; e2) view(r) composedView(r,C)

r(e1; e2; label) labelledView(r) composedLabelledView(r,C)

r(e1; e2; sequenceN) orderedView(r) composedOrderedView(r,C)

r(e1; e2; label; sequenceN) labelledOrderedView(r) composedLabelledOrderedView(r,C)

Table 4.7: Perspective types as a function ofr andC

In contrast to the representation layer and the base layer, for which we listed the
predefined predicates, the predicates of the perspective layer combine predicates from the
lower layers, so they cannot be listed exhaustively. The framework is extensible: new
perspectives can be obtained by combining new connector relationships and component
clusterings; new perspective types can also be defined.

4.3 Tool Support: Gaudi

We have developed a prototype tool, Gaudi1, to support the perspective framework. The
Gaudi environment for query and view recovery has been implemented as an integration
of tools for extraction, analysis and visualization. This is illustrated in Figure 4.8, which
is explained below.

1named after the Spanish architect Antonio Gaudi (1852-1926).

4.3. TOOL SUPPORT: GAUDI 63

run application
instrument code

5.4.

3.
2.

1.

display viewquery

perspective(r,C)?

Prolog engine

representational layer base layer

static facts

application
dynamic facts

parse code perspective layer

auxiliary layer

Smalltalk

Figure 4.8: Implementation of Gaudi

To build up the source model on which the declarative framework operates, we ex-
tract static and dynamic information from the software application to be analyzed. The
MOOSE tool [DLT00] is used to parse the code and represent it in the FAMIX model (1
in Figure 4.8). This information is then written to a file as Prolog facts. The Smalltalk
applications are instrumented using Method Wrappers [BFJR98] (2), which allow instru-
mentation at the level of individual methods. The application is then run (3) and the
tracing information obtained from the execution is written to a file as Prolog facts.

The declarative framework is written in SICTUS Prolog [Pro95]. Queries are posed
directly in the Prolog application (4). The view resulting from a perspective query is
automatically written as a file in a format for the dot tool [KN], which is used to display
the view (5).

Figure 4.9 shows a screen shot of Gaudi, in which the user has requested to see a
creation relationship between components, for the HotDraw graphics editor framework.
The window on the right is theemacs Prolog environment. The window on the left is the
display of the dot tool.

4.3.1 Discussion of Gaudi

Here we discuss some of the choices we made in implementing Gaudi, the advantages
they present and limitations they impose. We also consider possible extensions to the
tool.

Prolog as a query language.Logic-programming languages are well suited for repre-
senting knowledge and for formulating declarative queries. The expressive power of a
logic-programming language is also an advantage: multi-way queries can be succinctly

64 4. CONCEPT VIEW RECOVERY: THE DECLARATIVE FRAMEWORK

Figure 4.9: The Gaudi tool

expressed, and recursion is supported. We have chosen to use a logic programming lan-
guage mainly for its simplicity and convenience as a query language for prototyping our
tool. Could a database query language be used instead of a logic-programming language?
Earlier database query languages provided little support for general recursive queries.
They were also algorithmic in nature and required knowledge of the schema and its navi-
gation. However, recent database query languages are more declarative in nature, and also
support recursive queries to some degree. Further experiments are required to determine
if database languages are suited to our approach.

In Gaudi, many useful queries are already defined as rules. However, an engineer also
defines new Prolog rules in order to formulate queries tailored to the specific task or ques-
tion. As our tool is a prototype meant to demonstrate the feasibility of the approach, we
decided to use Prolog as the query language rather than defining a special query language.
However, Prolog could be used as a back-end to a query language which is tailored more
to the specific information model we are querying. This can be done by defining a domain
specific language with Prolog’s support for Definite Clause Grammars [SS86].

Display and Handling of Views.Our approach and tool relies on a simple display, rather
than sophisticated visualization techniques. As implemented, the current prototype does
not allow the manipulation of the source model through the visual display. The dot tool
[KN] allows the editing of the resulting view, but the layout is done automatically, and so
cannot be specified by the user.

Filtering. Currently elements in the source model are filtered out from a view if they do
not enter in any relationr defined by the perspective. For example, for a perspective of

4.4. DISCUSSION OF THE DECLARATIVE FRAMEWORK 65

class invocations, a class will not appear in a view if none of its instances send or receive
a message. In order to filter out some elements which do enter in the relationr we can
group them together in a component. Information about the software can also be filtered
out by instrumenting more selectively so as to capture the behavior of only the elements
of interest.

4.4 Discussion of the Declarative Framework

Here we first discuss some work related to our declarative framework, then make an ex-
cursion into the issue of design pattern detection.

Wuyts [Wuy01] presents a declarative framework used to express programming con-
ventions, design pattern structures and UML class diagrams. Though our declarative
framework is similar to that of Wuyts in that it is a layered structure of logic predicates,
the two are very different in scope and intent. First, our framework makes use of static in-
formation but relies most heavily on dynamic information for the extraction of behavioral
views, whereas the SOUL Synchronization Framework uses only static information. Sec-
ond, our framework is intended principally to support view recovery whereas the SOUL
Synchronization Framework [Wuy01] is integrated in the development environment in
a way which permits the synchronization of design and implementation. Design docu-
mentation over static information is expressed in the form of a logical predicate. Such
documentation can be derived from the implementation, and implementation can be con-
strained by the design documentation.

Mens [Men00] chooses logic programming as a formalism for architectural confor-
mance checking using static information only. Similar to the work on the declarative
framework using SOUL [Wuy01], this approach uses a logic programming language to
express the architecture of a software system and then to check the conformance of the
software to the postulated architecture. In order to arrive at the description of the archi-
tecture in the first place, however, the code must be reverse engineered. This is a labor
intensive work even with architectures that are well understood (mapping of architectural
concepts to the code artifacts) but is very difficult for applications which are not well un-
derstood. This conformance checking approach does not address the reverse engineering
step.

Prolog has also been used to query static program information in order to find struc-
tural design patterns [KP96] and to detect violations of programming conventions and
rules [Sef96][Wuy98][Men00][Ciu99]. Our declarative framework also supports query-
ing of the source model in terms of any logic relation which can be expressed over the
representation and base layers. Though this kind of querying is useful when a user has
a very specific question which can be precisely formulated, it is limited in conveying a
more general understanding of an application, or in answering questions which cannot
be easily formulated in a logic-programming language. In the next section we make a
short excursion to illustrate the limits of such punctual querying for design extraction and
program understanding.

66 4. CONCEPT VIEW RECOVERY: THE DECLARATIVE FRAMEWORK

4.4.1 Queries vs. Views: the Example of Design Pattern Detection

In this chapter we presented an approach to extracting design views of a software system
using logic predicates. The source model can also be simply queried using the predicates
described so far, for example to look for singleton classes in an application or to find out
which classes create instances of another class. It is natural to ask about using such a
querying approach for the detection of design patterns. In this section we demonstrate
how this can be done and discuss the problems and limitations of this kind of querying.
We argue that the iterative recovery of design views contributes more to our understanding
of a software system than does punctual querying about the presence of a design pattern.

Using predicates in the representation and base layers, queries can be formulated to
describe a design pattern structure and behavior. As an example, the structure of the Com-
posite pattern in shown in Figure 4.10, and Rule 10 below shows one possible formulation
for the Composite pattern.

Component

Leaf Composite

operation

operation operation
addChild: aComponent
removeChild: aComponent
getChildAt: anInteger

for each child:
 child operation

Client

Figure 4.10: Structure of Composite Design Pattern

Rule 10 consists of two clauses: The first specifies that aComposite class must over-
ride Operation from aComponent class, while the second models the delegation ofOp-
eration to the Composite’s children using rule 11. Rule 10 makes use of static infor-
mation only, whereas rule 11 makes use of dynamic information in the two predicates
sendsToMethodSequence andsendToMethodInStack. Rule 11 specifies that there is an
invocation ofOperation on an instance ofComposite which results in an instance ofCom-
posite invokingOperation on an instance ofLeaf.

rule10 : compositePattern(Component,Composite,Operation) :-
overriddenMethod(Composite,Component,Operation),
compositeDelegation(Component,Composite,Operation).

rule11 : compositeDelegation(Component,Composite,Operation) :-
sendsToMethodSequence(,Composite,Operation,Start),
sendToMethodInStack(Composite,Leaf,Operation,Start),
inHierarchy(Leaf,Component),
not(equal(Component,Leaf)),
not(equal(Composite,Leaf)).

4.5. CONCLUSIONS 67

Rule 11 above looks for a delegation structure in the dynamic information where there
is delegation to at least one instance of someLeaf subclass, rather than to several instances
of Leaf, or to instances of differentLeaf classes. An alternative formulation would be
to look for delegation to several children or to check that operations corresponding to
addChild, removeChild and so on are also present in the structure, either statically or
from dynamic information.

Problems and limitations. As discussed in Section 2.2.4 on design pattern detection,
formulating distinctive and non-ambiguous criteria for the presence of a design pattern
is difficult. In particular, the formulation of the rule as given here would also detect an
instance of the Proxy pattern, since in the Proxy pattern (Figure 4.11) a received request
is also forwarded to an instance of a class of the same type.

Subject

RealSubject Proxy

request

request request
realSubject request

Client

Figure 4.11: Structure of Proxy Design Pattern

It is, then, possible to detect the presence of design patterns using this approach, by
encoding a heuristic as a logic rule. But that the inherent limitations of design pattern
detection as discussed in Section 2.2.4 still remain. Whereas the detection of a design
pattern rarely contributes to our global understanding of the structure and behavior of the
software, it can help us to understand the role of a particular class or the interaction of a
set of classes.

4.5 Conclusions

In this chapter we described a way to express component-connector perspectives for the
recovery of concept views using a logic programming language.

To support component-connector perspectives, we developed a declarative framework
of logic programming rules which consists of several layers. The lowest layer, the repre-
sentational layer, contains predicates which express static and dynamic relations extracted
directly from the code and its execution. The extracted information is thus represented
as facts which constitute the source model. The base layer consists of predicates which
express relations derived from those in the representational layer. Whereas the represen-
tational and base layer are predefined in the framework, the auxiliary layer is defined by

68 4. CONCEPT VIEW RECOVERY: THE DECLARATIVE FRAMEWORK

the engineer, and contains higher level relations and application-specific predicates. Fi-
nally, we presented the perspective layer: this layer defines predicates which are used to
generate concept views.

We showed how component abstractions are defined by using a logic predicate to
group together static entities of the software, and demonstrated how the semantics of a
connector is given by defining a logic predicate in terms of message send events. Finally
we presented the main types of perspectives. Perspectives are second-order predicates
which take a component predicate and a connector predicate as arguments.

Perspectives specify concept views in a simple declarative way. The framework we
present is extensible: new component clustering rules and connector relations can be
defined by the developer and new perspectives can be obtained by new combinations of
these. Though we have not yet seen the recovery process in action we have made a step
towards showing that the view specification issimpleandextensible– two requirements
we have set for our approach in Section 2.3.

We also presented Gaudi, the tool we developed to implement the declarative frame-
work, and discussed some of the design choices related to the tool. In the next chapter
we describe two case studies which show how Gaudi supports reverse engineering and
program understanding, and thus demonstrate the validity of our approach.

5

Concept View Recovery: Case Studies

To evaluate component-connector perspectives, as supported by the declarative frame-
work described in the previous chapter, we applied the Gaudi tool on two case studies.
Our claim is that the use of these perspectives in design recovery meets the requirements
we have set for our approach, as outlined in Section 2.3. The goal of these case stud-
ies is is to lend support to this claim. The two case studies therefore ‘walk’ the reader
through an iterative process of view recovery. We show how we obtain both high-level
and low-level succinct behavioral views, and demonstrate the simplicity and extensibility
of the view specification. At the end of the chapter we discuss and evaluate concept view
recovery as a whole.

Each case study is presented as follows: we first briefly describe the software appli-
cation to be investigated – information gleaned from existing documentation and from
browsing the code. We then posit a question about the software. Next we walk the reader
through the process we followed in seeking an answer to this question: extracting the
source model, defining perspectives and analyzing the views which result from applying
these perspectives.

This chapter is structured as follows: in Section 5.1 we present the first case study, in
which we apply the approach to HotDraw in order to understand how theTool metaphor
works. The second case study is presented in Section 5.2, where we apply the approach
to the Refactoring Browser to look for a facade. In Section 5.3 we summarize the lessons
learned, sketch a methodology, discuss usability issues and present related work. In Sec-
tion 5.4 we revisit the requirements and evaluate our approach. Conclusions are presented
in Section 5.5.

5.1 Understanding Tools in HotDraw

In the first case study we investigate the HotDraw framework. HotDraw [BJ94] is a frame-
work for semantic graphic editors. It allows for the creation of graphical editors which
associate the picture with a data structure – that is, changing the picture also changes the
data structure. The HotDraw framework consists of 114 Smalltalk classes and comes with
several sample editors.

70 5. CONCEPT VIEW RECOVERY: CASE STUDIES

From the documentation we learn that HotDraw is based on the Model-View-
Controller triad [KP88]; these roles are played by the classesDrawing, DrawingEditor
andDrawingController respectively. Furthermore, it has a few other basic elements:tools
are used to manipulate the drawing which consists offiguresaccessed throughhandles.
Constraintsare used to ensure that certain invariants are met, for example, that two figures
connected with a line remain connected if one of the figures is moved.

Though HotDraw has been documented in several publications, including patterns for
customizing the framework [Joh92], the overall view of the framework is never described.
Moreover, several changes have been made to the framework over the years, in particular
to the implementation of tools and of constraints, and most of the documentation is out of
date with respect to the version 3.0 we were using.

Tools are used to manipulate the drawing: create new figures or manipulate the ex-
isting figures. On the drawing editor tools are represented by icons on the top panel (see
Figure 5.1). Browsing version 2.5 and version 3.0 of the code shows us that the imple-
mentation of tools has changed considerably. In the earlier version tool responsibilities
were handled by the classesReader, Command andTool, whereas in the current version
(3.0) different tools are implemented through states. We seek to understand how tools are
implemented in the current version.

Figure 5.1: HotDraw sample editor

5.1.1 Extracting the Source Model

The logic database was first filled with static and dynamic information for the HotDraw
framework. Static information was obtained by parsing, whereas dynamic information
was obtained by instrumenting all the methods and running a scenario on one of the
sample applications, DrawingEditor, to generate an execution trace. Section 4.3 discusses
the process of creating the source model in more detail.

5.1. UNDERSTANDING TOOLS IN HOTDRAW 71

The scenario we ran on the DrawingEditor application to obtain an execution trace
consisted of the creation of several kinds of figures (rectangle, rounded rectangle, bezier,
text and image), deletion of a figure, grouping and ungrouping of two figures (rectangle
and rounded rectangle), cutting and pasting one of the figures, moving a simple figure and
a grouped figure, changing fill and line color of some of the figures and finally quitting
the application. Running this scenario generated 59,277 method invocation events.

5.1.2 Understanding Tools

1. An initial view. The starting point is the first view generated, shown in Figure 5.2.
This view was generated using Perspective 1, as given in Section 4.2.2. It shows all
traced communication between instances, grouped by the Smalltalk category to which the
class belongs.

HotDraw-Figures

HotDraw-Framework

HotDraw-Constraints

HotDraw-Handles

HotDraw-Toolbar

HotDraw-Tools

Figure 5.2: View 1: Invocations between class categories for the HotDraw sample editor

Analysis. This view gives some rough idea of the relationships of the main parts of
HotDraw. In particular, we see that theHotDraw-Tools component communicates with
the HotDraw-Framework, and theHotDraw-Handles components. We also see that the
HotDraw-Toolbar component communicates only with theHotDraw-Framework com-
ponent, thatHotDraw-Constraints communicates withHotDraw-Figures and HotDraw-
Handles as would be expected.

We make, however, two observations with respect to this initial view. First, since the
HotDraw-Framework category contains several of the main HotDraw classes, in particular
DrawingEditor, Drawing andDrawingController, we want to view these separately. Second,
we do not necessarily want to see all the invocations in one view. In particular, we want
to distinguish between invocations which create instances, and those in which instances
just invoke methods on each other.

2. Clustering. We therefore first define a new component breakdown as shown below.
This clustering creates five components:Figure, Handle, Constraint, Toolbar andTool.

72 5. CONCEPT VIEW RECOVERY: CASE STUDIES

Classes which are not mapped into components are considered themselves components.
This clustering is used to view invocations and creation relationships (see Figure 5.3 and
Figure 5.4).

component(’Figure’,L) :- allInCategory(’HotDraw-Figures’,L).
component(’Handle’,L) :- allInCategory(’HotDraw-Handles’,L).
component(’Constraint’,L) :- allInCategory(’HotDraw-Constraints’,L).
component(’Toolbar’,L) :- allInCategory(’HotDraw-Toolbar’,L).
component(’Tool’,L) :- allInCategory(’HotDraw-Tools’,L).

3. Invocations between components.To obtain a view of the invocations between com-
ponents as defined above, we specify Perspective 2. The rulesendsTo(Class1,Class2)
evaluates to true if an instance ofClass1 invokes a method on an instance ofClass2. This
perspective is used to obtain the view in Figure 5.3.

composedView(sendsTo,component).

r sendsTo(Class1,Class2).

C component(ComponentName,ListOfClasses).

Perspective 2: Invocations between components

Drawing

Figure

FigureAttributes

Handle

CompositeFigure

DrawingController

ToolsConstraint

Toolbar

DrawingEditor

DrawingEditor_class

Figure 5.3: View 2: Invocations between components

5.1. UNDERSTANDING TOOLS IN HOTDRAW 73

Analysis. From Figure 5.3 we see thatDrawing is central to the application – it communi-
cates withFigure, Tool, Handle, DrawingEditor andDrawingController. FigureAttributes is
invoked only byDrawing andFigure, and as the name suggests, probably stores attributes
like line width and color which are relevant for all figures in the drawing. TheToolbar
component is relatively independent of the other components and invokes only methods
on DrawingController.

TheTools component receives invocations from the following components:Drawing-
Controller, Handle, Drawing and DrawingEditor. It sends invocations to the following:
DrawingController, Drawing, Figure andCompositeFigure.

4. Creation Invocations.To distinguish between invocations which create instances and
other kinds of invocations, we define a rule which specifies acreaterelationship between
classes.

rule12 : sendsCreate(Class1,Class2) :-
sendsToMethod(Class1,MetaClass,Method),
metaclassOf(MetaClass,Class2),
methodCategory(MetaClass,Method,’instance creation’).

sendsCreate(Class1,Class2) :-
indirectsend(, ,Class1, ,’new’,Class2, ,).

The first part of rule 11 – the same as rule 5 in Section 4.1.2 – captures the events in
which a method belonging to theinstance creation Smalltalk method category is invoked
on a metaclass. The second part of rule 11 captures the events in whichClass1 sends an
unobserved (not instrumented) methodnew, resulting in an invocation of some method
on Class2. Perspective 3 below is then used to generate a createcreationview in which
these components appear, as shown in Figure 5.4.

composedView(sendsCreate,component).

r sendsCreate(Class1,Class2).

C component(ComponentName,ListOfClasses).

Perspective 3: Creation invocations between components

Analysis. This view (Figure 5.4) tells us thatDrawingEditor createsDrawing, which cre-
atesDrawingController, as expected from the Model-View-Controller pattern. In contrast
to the other figures which are created byTool, CompositeFigure is created byDrawing.
As the componentsHandle, DrawingEditor andDrawingController all point toTool, there
is some ambiguity about the creation of this component. To find more about the creation
responsibilities there we must split theTool component into its constituent parts to get a
closer look.

74 5. CONCEPT VIEW RECOVERY: CASE STUDIES

Figure

Handle

ToolConstraint

CompositeFigure

Drawing

DrawingController

DrawingEditor

Toolbar

Figure 5.4: View 3: Creation invocations between components

5. Multiplicity of Creation Invocations. We want to get a better understanding of how
tools are implemented. For this we generate a new view which gives us the creation
relationships between the classes, rather than the components. Furthermore, we want to
know the multiplicity of these relationships, that is, whether each instance of a figure
creates only one or several instances of a tool. To do this we define Perspective 4, used
to generate the view in Figure 5.5. In this view a filled edgeA!B means that there is
an instance of class A which creates only one instance of class B. A dotted edgeA!B

means that there is an instance of ClassA which creates several instances of classB.

view(oneToOneCreate), addView(oneToManyCreate).

r1 oneToOneCreate(Sender,Receiver).
r2 oneToManyCreate(Sender,Receiver).

C components are classes

Perspective 4: Multiplicity of creation invocations between classes

Analysis. From this view (Figure 5.5) we see that instances of the classTool are cre-
ated byDrawingEditor, and that oneDrawingEditor creates several instances. The class
DrawingController also seems to create one instance ofTool; looking more closely at this,
through querying about this creation event, we discover that when the application starts up
andDrawingController is initialized, it invokesselectionTool on an instance ofTool class.
The other tools are created later when theDrawingEditor creates a tool for each icon in
the toolbar.

In Figure 5.5 we had expected to see a creation relationship betweenTool andTool-
State. To understand this singularity we browsed the code and found that theTool class
(Tool class in the source model) instantiatesToolState at load-time using class methods,

5.1. UNDERSTANDING TOOLS IN HOTDRAW 75

Drawing

CompositeFigure DrawingController

Handle Tool

DrawingEditor

ButtonDescription

EndToolState

ImageFigure

PositionConstraint

TextFigure

TrackHandle

ToolState

BezierFigure RectangleFigure RoundedRectangleFigure SplineFigure

Figure 5.5: View 4: Multiplicity of creation invocations between classes. Filled edges
shows a one-to-one creation relationship, dotted edges a one-to-many creation relation-
ship.

and so instances ofToolState were created before the instrumented application was run.
We also discovered by browsing thatTool class also creates an instance ofEndToolState
representing the last state of the tool state machine. Going back to the view in Figure 5.5
we wondered why instances ofHandle andTrackHandle were creating more instances of
EndToolState. Again, by browsing the code, we understood that aHandle contains a per
default action that is to return to the end state of the tool state machine.

6. Tool, ToolState, SimpleTransitionTable: a Collaboration. We now have an
inkling about the implementation of tools using state machines. To understand this
in greater depth we define Perspective 5 to generate a view showing the commu-
nication between instances. By querying we detect a creation invocation and iden-
tify a trace sequence corresponding to a mini-scenario around the creation of an in-
stance ofRectangleFigure. We then display the invocations between instances (Fig-
ure 5.6) in a form similar to a UML collaboration diagram [BRJ99]: invocations
are numbered sequentially in the order they occur. RulesendScenarioMethodforHot-
Draw(Class1/Inst1,Class2/Inst2,Method,Number) defines an invocation relationship be-
tween instances. The predicate holds true ifInst1 of Class1 invokes methodMethod on
Inst2 of Class2. Number represents the sequence number of the method invocation in the
mini-scenario.

labelledOrderedView(sendScenarioMethodforHotDraw).

r sendScenarioMethodforHotDraw(Class1/Inst1,Class2/Inst2,Method,Number) :-
sendInstanceInStackMethod(Class1/Inst1,Class2/Inst2,Method,Number,Start).

C components are instances

Perspective 5: Instance invocations around the creation of aRectangleFigure

76 5. CONCEPT VIEW RECOVERY: CASE STUDIES

Drawing/3372

DrawingController/3548

1/handleEvent:

RectangleFigure/11496

15/container: 16/preferredBounds

Tool/7620

2/handleEvent:

ToolState/5398

3/nextStateForEvent:tool:

ToolState/7253

18/isEndState 5/evaluateIn:event:

SimpleTransitionTable/5886

4/nextStateForTool:event:

14/add:

12/valueAt:put:13/drawing 17/valueAt:put: 6/cursor: 7/valueAt: 8/cursorPointFor:

RectangleFigure_class/2919

9/createAt:

11/rectangle: 10/initialize

Figure 5.6: View 5: Instance invocations around creation of aRectangleFigure

Analysis. The collaboration of Figure 5.6 is interpreted as follows: when a user event
occursDrawing tells theDrawingController to handle the event. TheDrawingController
then tells theTool to handle the event. TheTool consults with the current tool stateTool-
State/5398 (which in turn consults theSimpleTransitionTable) to get the next tool state
for the event. It then tells the appropriate stateToolState/7253 to handle the event.Tool-
State/7253 creates an instance ofRectangleFigure, and tells theDrawing to add this figure
to itself. Drawing then repairs itself by askingRectangleFigure about its bounds.

7. Summary. We began with a coarse-grained view showing us the general pattern of
communication between domain concepts in the HotDraw framework. This information
was used to get a new component clustering and to focus in more detail on the communi-
cation in which theTool elements engage. We learned about the creation of instances of
Tool, and about how an instance ofTool handles the creation of aRectangleFigure. We
see that we move from coarse grained views to finer grained views in which we finally
look at the collaboration of instances. In this case study we looked at one collaboration in
the program trace by querying to locate a creation event. In the next chapter we introduce
collaboration view recovery: an approach which enables us generalize from one particular
collaboration of instances to the notion of class collaboration.

5.2 Looking for a Facade in the Refactoring Browser

In this section we apply our approach to the Refactoring Browser [RBJ97]. Refactorings
are behavior preserving transformations of source code [Opd92] [FBB+99]. The Refac-
toring Browser [RBJ97] is a Smalltalk browser which offers refactoring support: it lets a
programmer make refactoring changes such as renaming a class, moving methods from
one class to another, pushing a method down the inheritance hierarchy,etc.and automat-
ically propagates these changes in the code so that it is in a consistent state again.

5.2. LOOKING FOR A FACADE IN THE REFACTORING BROWSER 77

This case study is motivated by the work of a colleague on defining refactorings on
the FAMIX meta-model [Tic01]. Sander wanted to use the Refactoring Browser as a back
end to his language-independent refactoring system, to carry out the actual refactoring
changes once a refactoring was deemed possible. So he wanted to know if there was a
facade in the Refactoring Browser: that is, a class or component (grouping of classes)
which presented an interface to which a description of a refactoring or of a series of
elementary refactorings could be sent and which would then implement the elementary
changes which together constitute a refactoring. Figure 5.7 illustrates this schematically.

elementary refactoring
changes

Browser

...
Parser

Language-Independent Refactoring

Figure 5.7: Looking for a facade in the Refactoring Browser

Though we hope to find a facade, if there is no such facade, then we want to know
how the Refactoring Browser performs refactoring changes so that we can figure out how
to write an application which can still make use of the Refactoring Browser.

5.2.1 The Refactoring Browser

In this case study we worked with version 3.0.1 of the Refactoring Browser. The Refac-
toring Browser consists of 151 Smalltalk classes arranged in 10 categories. Browsing
through the code showed that the main hierarchies correspond quite well to the Smalltalk
category arrangement.

� Browser: subclasses of the Smalltalk environment classApplicationModel which
handle the browser aspects.

� Parser: several hierarchies dealing with parsing of the code.

� Condition: a small hierarchy of conditions, to check if a refactoring can be carried
out.

� Refactorings: contains classes named with the kinds of refactorings possible. All
classes are subclasses of the root class,Refactoring.

78 5. CONCEPT VIEW RECOVERY: CASE STUDIES

� Support: contains classes named with more elementary kinds of refactorings. Most
classes inherit from a root classRefactoryChange.

� Navigator: different kinds of navigator classes, all inheriting fromNavigator, a
subclass ofBrowserApplicationModel.

� Environments, OMT-diagram, Lint, Code-Tools

We were interested only in the classes involved in the actual execution of a refactor-
ing, and we therefore ignore the categoriesBrowser, Environments, OMT-diagram, Lint
andCode-Tools. Our initial understanding of how a refactoring is carried out was as fol-
lows: the Refactoring Browser first parses the code (using classes in the categoryParser),
then checks that the refactoring can actually be carried out (using classes in the category
Condition), then carries out the refactoring. Since we were not interested in the parsing of
the code or the checking of conditions, the categories which remain and which look the
most promising for further investigation areRefactorings andSupport.

5.2.2 Extracting the Source Model

To create the source model we first parsed the code to obtain a static model of the Refac-
toring Browser. To obtain the dynamic information, a first scenario was run, as described
below. Later on in the case study the second scenario will be described. Though we
have an initial idea about the roles of the different categories and classes, we first trace all
classes in order to confirm our initial hypothesis about the application and to be able to
focus on the relevant classes.

Scenario 1. We instrument all classes of the Refactoring Browser, and run a sce-
nario which consists of the renaming of a class. This scenario generated 1,187 method
invocation events.

We start by analyzing this first scenario. We assume here, of course, that there is some
coherence to the system – that is, each refactoring is analyzed, handled and carried out
in a similar way. This assumption is tested later in the case study when we run a new
scenario with two different refactorings.

5.2.3 Looking for a Facade

1. Looking for a Facade pattern.Facade is a design pattern whose intent is to“provide
a unified interface to a set of interfaces in s subsystem. Facade defines a higher-level
interfaces that makes the subsystems classes easier to use”[GHJV95]. Since a Facade
class provides a single interface to the services offered by other classes, its role at runtime
is to forward requests to the appropriate objects. At runtime there is therefore usually
only one instance of the Facade at any moment – it is either a singleton (a unique instance
throughout the whole scenario), or it may be created and disposed of (in which case
several instances will occur in the scenario). There can, however, be multiple instances of
a Facade as well, each providing a facade to a different subsystem.

5.2. LOOKING FOR A FACADE IN THE REFACTORING BROWSER 79

Rule 14 below tests for the presence of a singleton: a class for which there is a unique
instance throughout the whole scenario. Rule 13 tests of the presence of a Facade. It says
a class fulfills the role of aFacade vis-a-visa Client class if:

1. it invokes methods on a set of classes, listed inSubSystemClasses.

2. theClient does not invoke any methods on any of the classes inSubSystemClasses

rule13 : facadePattern(Client,Facade,SubSystem) :-
sendsToNoMeta(Client,Facade),
setof(Class,(sendsToNoMeta(Facade,Class),not(equal(Class,Facade))),SubSystem),
findall(Cl,(sendsToNoMeta(Client,Cl),member(Cl,SubSystem)),[]).

rule14 : singleton(Class) :- numberofInstances(Class,1),
not(metaclass(Class)).

Although a declarative encoding for a Facade is quite straightforward, testing for the
presence of a facade without knowing where to look (i.e., which class could be a candidate
for Client or Facade) is very inefficient. Furthermore, if a facade is not detected then we
have learned nothing about how the application really works and can be modified to serve
our purpose. We therefore choose to first generate a high-level view of the application, to
get a better idea of where to look for a facade.

2. Obtaining a high-level view. We first generate a view which shows the communi-
cation going on in the execution of the first scenario. The objective here is to form a
first hypothesis as to the location of such a facade and to build components out of the
application elements which allow us to focus on some parts to the exclusion of others, by
grouping together parts which we do not consider relevant for our investigation. To do this
we first generate a view in which components correspond to Smalltalk class categories,
as in Perspective 1 in Section 5.1.

Refactory-Parser

Refactory-Browser

Refactory-Code Tools

Refactory-Navigator

Refactory-Refactorings Refactory-Environments

Refactory-Support Refactory-Conditions

Figure 5.8: View 1: invocations between categories

Analysis. This view (Figure 5.8) shows a tree structure with three main branches. We
know that we are interested more in what is happening in the middle branch, in which

80 5. CONCEPT VIEW RECOVERY: CASE STUDIES

Change andRefactoring classes participate. This view then confirms our suspicion that
Browser, Code Tools andEnvironments categories can be ignored in the investigation. We
want to open up the categories Navigator, Refactorings and Support, to see the communi-
cation between these.

3. Refining the high-level model.In order to get a better idea of what is going on we then
define a new component breakdown where theBrowser, Code Tools andEnvironment cat-
egories are grouped together;Parser andCondition are left as category groupings, whereas
theRefactorings andSupport categories are opened up to display the individual classes.
This component breakdown is then used to visualize invocations and create invocations,
as shown in Figure 5.9.

inComponent(’Browser+Stuff’,Class) :- class(Class,’Refactory-Environments’).
inComponent(’Browser+Stuff’,Class) :- class(Class,’Refactory-Browser’).
inComponent(’Browser+Stuff’,Class) :- class(Class,’Refactory-Code Tools’).

component(’Parser’,L) :- allinCategory(’Refactory-Parser’, L).
component(’Conditions’,L) :- allinCategory(’Refactory-Conditions’,L).
component(’Browser+Stuff’,L) :- setof(Class,inComponent(’Browser+Stuff’,Class),L).

composedView(sendsToNoMeta,component),addComposedView(sendsCreate,component).

r1 sendsToNoMeta(Class1,Class2).
r2 sendsCreate(Class1,Class2).

C component(ComponentName,ListOfClasses).

Perspective 2: Invocations and creation invocations between components

Parser

Browser+Stuff

NavigatorState

SystemNavigator

RenameClassRefactoring

CompositeRefactoryChange Conditions

RefactoringManager

RenameClassChange

Figure 5.9: View 2: invocations and creations between components: dashed lines are
create relationships.

Analysis. On the basis of its name,RefactoringManager shows some promise as our
facade. The names of the classesRenameClassRefactoring andRenameClassChanges
suggest that they handle changes particular for the rename class refactoring. The class

5.2. LOOKING FOR A FACADE IN THE REFACTORING BROWSER 81

CompositeRefactoryChange suggests more generic functionality, but it looks like a dead-
end, since it invokes no methods on other classes. We hypothesize that the job ofRename-
ClassRefactoring is to invokeParser to parse the code and to figure out if the refactoring
can be carried out (usingConditions). It then requestsRenameClassChange to carry out
the actual refactoring. The roles ofRefactoringManager andCompositeRefactoryChange
is still unclear.

4. Querying about a Facade pattern.Because being a singleton is one indication for a
facade, we query about the presence of singletons at this point, using Rule 14, and dis-
cover that two classes are singletons:RefactoringManager andRenameClassRefactoring.
The name ofRenameClassRefactoring does not suggest a class which would handle a
range of different refactorings. We query using Rule 13 about whether these two classes
play the role of a facade:

?— facadePattern(Client,’RefactoringManager’,SubSystem).

Client = ’RenameClassChange’,
SubSystem = [’RenameClassRefactoring’]

?— facadePattern(Client,’RenameClassRefactoring’,SubSystem).

Client = ’SystemNavigator’,
SubSystem = [’CompositeRefactoryChange’,’Condition’,’ConjunctiveCondition’,
’ParseTreeRewriter’,’RefactoringManager’,’RenameClassChange’]

Analysis. The result of the first query suggests thatRefactoringManager is a facade to
the subsystem composed ofRenameClassRefactoring, where the client class isRename-
ClassChange. Because we know from browsing the code thatChange classes carry out
elementary changes, whileRefactoring classes are responsible for a set of elementary
changes, it is unlikely that this is the facade we are looking for. We reformulate Rule
13 to check if a delegation occurs (An invocation of a method on the Facade results in a
method invocation to an instance of a class in the subsystem).

rule15 : facadePatternDelegation(Client,Facade,SubSystem) :-
facadePattern(Client,Facade,SubSystem),
sendsToMethodSequence(Client,Facade, ,Start),
member(Class,SubSystem),
sendToMethodInStack(Facade,Class, ,Start).

?— facadePatternDelegation(’RenameClassChange’,’RefactoringManager’,
[’RenameClassRefactoring’]).

no

82 5. CONCEPT VIEW RECOVERY: CASE STUDIES

Analysis. This second query confirms our suspicion thatRefactoringManager is not the
facade we are looking for. We learned from the previous query also thatRenameClass-
Refactoring is a Facade for the clientSystemNavigator. This structure is also seen from
Figure 5.9. Although we have not found a single class which plays the role of a facade,
we might find a class, or set of classes which could be used as a facade. We next execute
a second scenario in order to get a better understanding of how different refactorings are
carried out.

5. Comparing with a second scenario.We run a second scenario in order to compare
our view to the view given by another execution. This scenario differs from our first
scenario in two ways: first, this time we trace classes in only two categories, eliminating
some of the clutter we consider irrelevant for our investigation. Second, we run a scenario
where we perform two different refactorings, so as to be able to compare how different
refactorings are carried out.

Scenario 2.We instrument the classes in the two categoriesRefactory-Refactorings
andRefactory-Support, as well as the classSystemNavigator, and run a scenario which
consists of a refactoring to push a method down the inheritance hierarchy, then refactoring
to rename a method. This scenario generates 2,492 method invocation events.

view(sendsToNoMeta),addComposedView(sendsCreate).

r1 sendsToNoMeta(Class1,Class2).
r2 sendsCreate(Class1,Class2).

C components are classes

Perspective 3: invocations and creations between classes

We then obtain a view which shows the invocation and the creation relations between
classes, shown in Figure 5.10.
Analysis. The view of Figure 5.10 shows a structure parallel to the view of Figure 5.9.
Parallel to theRenameClassRefactoring class, there are now two classesRenameMetho-
dRefactoring andPushDownMethodRefactoring. SystemNavigator creates instances of
these classes, which in turn create instances ofCompositeRefactoryChange, which in
turn creates instances ofRemoveMethodChange andAddMethodChange. We hypoth-
esize thatCompositeRefactoryChange coordinates the elementary refactoring changes
involved in one conceptual refactoring.RemoveMethodChange andAddMethodChange
also create instances of each other, so this is a new puzzle. Further, as doesRenameClass-
Changes in Figure 5.9, they also invoke methods onRefactoringManager. The roles of
CompositeRefactoryChange and RefactoringManager are still not clear. Though Fig-
ure 5.10 suggests thatCompositeRefactoryChange could be a facade, information from
our first scenario casts doubts on this.

6. Asking about RefactoringManager and CompositeRefactoryChange. We now use
Scenario 2 to query about these two classes. We check to see if they are singletons:

5.2. LOOKING FOR A FACADE IN THE REFACTORING BROWSER 83

AddMethodChange

RefactoringManager

RemoveMethodChange

PushDownMethodRefactoring RenameMethodRefactoring

CompositeRefactoryChange

SystemNavigator

Figure 5.10: View 3: invocations and creations between classes. A filled edge corre-
sponds to an invocation relationship, a dotted edge to a creation relationship.

RefactoringManager is a singleton,CompositeRefactoryChange is not. We query first
about whetherCompositeRefactoryChange is a facade, then ask about its public interface,
and that ofRefactoringManager.

?— facadePatternDelegation(Client,’CompositeRefactoryChange’, SubSystem).

Client = ’PushDownMethodRefactoring’,
SubSystem = [’AddMethodChange’,’RemoveMethodChange’] ? ;

Client = ’RenameMethodRefactoring’,
SubSystem = [’AddMethodChange’,’RemoveMethodChange’]

?— publicInterface(’CompositeRefactoryChange’,L).

L = [’addChange:’,’addChangeFirst:’,’compile:in:classified:’,’execute’,
’executeWithMessage:’,’initialize’,’name:’,’removeMethod:from:’]

?— publicInterface(’RefactoringManager’,L).

L = [’addRefactoring:’,’ignoreChangesWhile:’,’update:with:from:’]

Analysis. We know thatCompositeRefactoryChange is not a singleton. However, it can
be a facade which is created and disposed of each time it is needed. We look at the in-
terface it presents to its client classes to determine if it is receiving a description of a
refactoring and executing it by carrying out elementary refactoring changes. Its public
interface suggests that it keeps a list of changes (addChange: method), and then executes
these changes (execute method). Browsing the code forCompositeRefactoryChange we

84 5. CONCEPT VIEW RECOVERY: CASE STUDIES

see that it presents an interface for different composite refactoring, and creates more el-
ementary refactoring changes to carry out the composite refactorings. We would like
to look at the run-time object structure to understand the role of different instances of
CompositeRefactoryChange.

7. Role of RefactoringManager. Here we make a detour to find out what the role of
RefactoringManager is. To see who sends what messages toRefactoringManager we
create the view in Figure 5.11:

labelledView(sendsToFromRefactoringManager)

r sendsToFromRefactoringManager(C1,C2,M) :-
sendsToMethod(C1,’RefactoringManager’,M);
sendsToMethod(’RefactoringManager’,C2,M).

C components are classes

Perspective 4: Senders and receivers ofRefactoringManager

AddMethodChange

RefactoringManager

update:with:from:

addUndo:

PushDownMethodRefactoring

primitiveExecute undoChanges

RenameMethodRefactoring

primitiveExecute undoChangesaddRefactoring: ignoreChangesWhile: ignoreChangesWhile: addRefactoring:

RemoveMethodChange

update:with:from:

SystemNavigator

update:with:from:

Figure 5.11: View 4: Senders and receivers ofRefactoringManager

Analysis. RefactoringManager is a singleton which seems to play the role of a transaction
manager with which elementary refactoring changes register so that they can be undone in
case that the refactoring cannot succeed. SoRefactoringManager is definitely not a facade
to carry out refactoring changes. We now look at the object structure of a refactoring.

8. Looking at the object structure. To understand better what is happening at the object
level, we query to locate an invocation ofPushDownMethodRefactoring and ask about
the invocations between objects within the call stack for this method.

?— direct(N, L, ’SystemNavigator’, , , ’PushDownMethodRefactoring’, , ’execute’).

L = 2,
N = 2135 ?

5.2. LOOKING FOR A FACADE IN THE REFACTORING BROWSER 85

view(sendScenarioforRefactoringNoLabelNoMeta)

r sendScenarioforRefactoringNoLabelNoMeta(Class1/Obj1,Class2/Obj2):-
sendObjectInStackNoSelfNoMeta(Class1/Obj1,Class2/Obj2, ,2135).

C components are instances

Perspective 5: Object invocations in the execution stack of a Push Down Method refactoring

AddMethodChange/6249

RefactoringManager/6728RemoveMethodChange/2936

PushDownMethodRefactoring/15635

AddMethodChange/10854

CompositeRefactoryChange/9562

CompositeRefactoryChange/4409

CompositeRefactoryChange/13614

CompositeRefactoryChange/9934 RemoveMethodChange/10301

CompositeRefactoryChange/5143CompositeRefactoryChange/8456

SystemNavigator/10956

Figure 5.12: View 5: Object invocations in the call stack of Push Down Method refac-
toring

Analysis. Figure 5.12 shows the pattern of object communication in the call stack re-
sulting from the invocation ofexecute on PushDownMethodRefactoring. Since we have
already identified the role of the singletonRefactoringManager, and since in the resulting
graph it acts as a central ‘sink’, we remove it from the graph through editing, and obtain
Figure 5.13. This figure shows a layered object structure, and elucidates the structure of
a refactoring. It shows that many objects are involved in carrying out a refactoring. In
particular, there are several instances ofCompositeRefactoryChange. We are puzzled by
the different roles these seem to play: some instances invoke methods on instances of ele-
mentary refactoring likeAddMethodChange andRemoveMethodChange, other instances
invoke methods on instances ofCompositeRefactoryChange, and several instances do not
invoke any methods. Again, we browse the code to understand better what is going on.
We understand that in this object structure there is in fact one object for each elementary
and composite change that must be carried out, and a parallel object for undoing these
changes. This suggests that we cannot really use the classCompositeRefactoryChange
as a facade to which we send elementary refactorings – in order to use the Refactoring-
Browser as a back end, we would have to create such an object structure to represent the
refactoring.

9. Summary and resolution. Browsing the code shows that the classRefactoring, the
root class of all the refactorings, relies on a methodexecute to carry out the refactor-

86 5. CONCEPT VIEW RECOVERY: CASE STUDIES

AddMethodChange/6249

RemoveMethodChange/2936 AddMethodChange/10854

CompositeRefactoryChange/9562

CompositeRefactoryChange/4409

CompositeRefactoryChange/13614

CompositeRefactoryChange/9934 RemoveMethodChange/10301

PushDownMethodRefactoring/15635

CompositeRefactoryChange/5143 CompositeRefactoryChange/8456

SystemNavigator/10956

Figure 5.13: View 5: Object invocations in the call stack of Push Down Method refac-
toring. This is the same view as in Figure 5.12, with the nodeRefactoringManager/6728
removed, in order to illustrate the hierarchical structure of the refactoring

ing. Each refactoring is executed by first checking the preconditions, then making the
necessary transformations, and finally by ‘registering’ the refactoring with theRefactor-
ingManager.

From the analysis above we see that each kind of refactoring necessitates the creation
of an object structure of composite and elementary changes. This poses a problem for
using the Refactoring Browser as a backend for elementary changes only. Sander solved
this problem as follows: he defined his own structure of refactoring classes parallel to the
Refactoring hierarchy of the Refactoring Browser. These classes delegated the checking
of preconditions to the language independent model of the code (instead of the parsed
model the Refactoring Browser creates). Then the body of theexecute method of each
of his refactoring classes invoked the execute method of the elementary refactorings of
the Refactoring Browser. These elementary refactorings then took over and created the
appropriate Refactoring Browser objects to handle the actual changes. The transactional
nature is still retained, since each elementary refactoring registers with theRefactoring
Manager [Tic01].

5.3 Evaluation and Discussion

5.3.1 Lessons Learned

Here we highlight some of the issues related to the use of the approach which came out
of the case studies we performed.

The role of an initial question. The approach worked best when we started with a well-
formulated question about the code. This allowed us to quickly formulate an appropriate
perspective in order to confirm or reject the hypothesis we had about the code, and to
move on to formulate a new hypothesis or question. We cannot yet evaluate how well the
approach works when the maintainer starts with a very general objective, for example,
“let’s see if there is anything strange in this code” – that is, how good it is at revealing
design anomalies or problems. As discussed in Chapter 4, we can query about violations

5.3. EVALUATION AND DISCUSSION 87

of design guidelines or rules, so these can also be formulated to be connectors which ap-
pear in a view, for example, to show all the methods of a class which violate theaccessor
methodsconvention.

Using the general querying facility. We used the logic programming predicates also
outside the context of connector-component perspectives, to query the static or dynamic
information. Examples are queries for the presence of a design pattern, such as the Facade
Pattern, detecting singletons or asking about the public interface of a class.

Code browsing. In performing the case studies we occasionally resorted to browsing
the code to get more insight into the function a particular method plays. So recovered
views do not replace other ways of obtaining information about the software, but rather
complement them. Views, however, allow us to quickly find out where in the code we
might be interested in looking.

Partial information. The second case study in particular showed us that partial infor-
mation is sufficient to effect changes in code – we do not need to understand everything
in order to carry out a maintenance task. In looking for a facade it was possible to ig-
nore many of the classes of the Refactoring Browser, either by clustering all the irrelevant
classes into a component, or by not instrumenting them.

Using static relations to recover views.We performed several experiments using Gaudi
with static information only. In these experiments we recovered views in which con-
nectors were specified using the static invocation relationship between classes, using the
invocation(Sender, Method, ReceivedMethod, Candidates) predicate of the representa-
tion level. As the number of classes which are candidate receivers can be quite large, the
resulting views were very crowded and difficult to interpret. We also narrowed down the
candidates for an invocation through dynamic typing: this did not simplify the views very
much. This shows that even for typed languages the static invocation relationship gives
too many candidates to provide behavioral information which can be usefully interpreted.

A view recovered from dynamic information from a particular execution scenario is
much easier to interpret, because we can put the relations displayed in the view in the
context of that particular scenario – of the specific functionality exercised.

The contribution of static information. At the beginning of our experiments we ex-
pected to get more mileage from combining static and dynamic information. In fact, in
the case studies presented here we make use of only the basic static predicatesClass,
Superclass andMethod. In practice, static information was used in (i) formulating predi-
cates for the clustering of elements into components, (ii) formulating base level predicates
which are purely static or combine static and dynamic information, (iii) formulating aux-
iliary level predicates for expressing design patterns or coding conventions.

5.3.2 Towards a Methodology

The case studies presented demonstrate the process of design recovery, but they do this
in a stylized way, as is required to convey them on paper. That is, in practice there is

88 5. CONCEPT VIEW RECOVERY: CASE STUDIES

more backtracking: a recovered view may not answer the question as expected and the
developer would then define a new perspective to get a better view. This occurs in mainly
two situations:

� The view we obtain is too crowded to be meaningfully interpreted. In this case we
define a new perspective which clusters some elements, thus presenting some of the
information at coarser granularity.

� The view we obtain refutes our hypothesis. We expected a certain structure, but the
view showed us that we must revise our hypothesis and formulate a new perspective.

Though we do not formulate a specific methodology, a certain pattern of usage arises
from our experiments with Gaudi: for a first view, almost any kind of logical component
clustering will do, as a way to get an overview and know where to focus. Second, we
try to eliminate as much ‘noise’ as possible by defining a new component clustering, or
by obtaining dynamic information for only a subset of the application’s classes. Thirdly,
we ask more pointed questions and define specific connector relations to get the answer
to these. This phase of the investigation is the longest. From the case studies we see that
method invocation and creation relations are central in understanding behavioral aspects
of a software system. The method invocation relations can be qualified to represent the
invocation of certain kinds of methods (based on method category name, for example).
Finally, we often move from high-level overviews towards instance-level views in a quest
to understand how a particular functionality is implemented. Table 5.1 summarizes the
main kinds of perspectives used during an investigation.

Perspective Description
Connector Component

Communication
invocation categories Uses the existing software organization to create components and show

a high-level view of communication.
invocation components Uses a user-defined component breakdown to show high-level commu-

nication.
Creation

creation components Uses a user-defined component breakdown to show a high-level creation
view.

Multiplicity of Communication
invocation,
creation

classes Without showing instances gives an idea of the multiplicity of relations
between classes.

Inside a Call Stack
invocation classes Displays sequence of method invocations within a call stack.

Table 5.1: Main kinds of perspectives

Using several program traces.As seen from the second case study, it is often useful
to compare the information obtained from the execution of two different scenarios on
an application. We might start with a relatively simple scenario and once we gain more
understanding of the application we are better prepared to analyze a more complicated

5.3. EVALUATION AND DISCUSSION 89

scenario. Furthermore, analyzing the first scenario suggests to us what we can safely
ignore so that a second scenario can be run with more selective instrumentation. Instru-
menting more selectively results in more focused views and in faster response time for
the queries.

5.3.3 Efficiency

How efficient is the process of exploring a software application with Gaudi? In this sec-
tion we discuss this issue and give some figures.

Extracting the Source Model.Whereas in exploring a software application we often ran
several scenarios to collect dynamic information, static information about the software
system was extracted just once. Extracting the static information from the software using
the MOOSE tool [DLT00] is fast (less than a minute for our case studies).

Obtaining dynamic information was also quite quick. The instrumentation was done
either through a browser that permits the instrumentation at the method level (select the
classes, methods categories or methods to be instrumented), or by automatically instru-
menting all classes in a specified Smalltalk category or application. The system must then
be exercised with a scenario.

Querying and View Generation. The response times1, varied from a fraction of a sec-
ond for a view which shows the invocation relationship between instances (Perspective
5 in both case studies), to one and a half minute for a view which shows both creation
and invocation relationships between classes (Perspective 3, Scenario 2, in the second
case study). Case study 1 consisted of 59,277 method invocation facts and case study 2
consisted of 1,187 method invocations (1st scenario) and 2,492 method invocations (2nd
scenario).

As a comparison, with the source model of case study 1, the time to detect an instance
of the Composite pattern as codified in Rule 10 (Section 4.4.1) was just over 3 minutes.

The Iterative Process.The most time consuming aspect of using the tool is the actual
process of analyzing the information displayed in a view and posing new queries. We
quickly arrived at views which helped us to focus on a part of the software system. Get-
ting further in the investigation sometimes required the formulation of new rules or the
generation of a new scenario.

Discussion.Gaudi was intended as a tool with which we could easily explore a software
system and experiment with the use of logic predicates for generating useful views from
dynamic information. In this sense Gaudi had met our goal: it requires little preparation
time (extraction of the source model), makes it easy to generate a few scenarios (easy to
get dynamic information) and is easily extensible (adding logic predicates and queries is
simple).

1On a SUN Ultra Enterprise 250 with 300 MHz and 1 Gigabyte main memory.

90 5. CONCEPT VIEW RECOVERY: CASE STUDIES

5.3.4 Generality of the Approach

Below we discuss issues which relate to the generality of the approach: can it be used on
any object-oriented software system?

Language independence

We have applied this approach so far only on Smalltalk applications. We expect, however,
that it is easily adaptable to other class-based object-oriented languages like C++ and
JAVA . This is supported by the fact that:

� the model of static and dynamic information as presented in Section 3.2 is to a
large degree language independent. Some exceptions are the interpretation of cer-
tain static facts. For example the interpretation ofSourceAnchor in the relation
class(ClassName,SourceAnchor) is language-specific. In Smalltalk this will corre-
spond to a class category, in C++ to a file name and in JAVA to a package. Further-
more, whereas in Smalltalk no type information is available for attributes, or for
identification of receiver candidates in an invocation, this kind of information can
be obtained from statically typed languages like C++ and JAVA .

Instrumentation techniques are language dependent. In Smalltalk the reflective ca-
pabilities make it relatively easy to obtain run-time information [Duc99]. Several
instrumentation techniques exist for JAVA [SKM01] and C++ [LN95b].

� the Prolog rules used to query the information base and to generate views are
also to a large degree independent of the implementation language of the appli-
cation. Some of the rules for the derived relations hold for all object-oriented lan-
guages, for exampleoverrides(Class,Subclass,Method), whereas others are more
language specific. One example of a language specific relation is thesendsCre-
ate(Class1,Class2) rule. Detecting the presence of a creation relationship is like
recognizing a language-specific clich´e [HYR96] in the base of dynamic informa-
tion.

Scalability

Scalability can be addressed in three ways:

Controlling granularity. Specifying a component clustering rule which groups together
many classes results in a manageable view even for large applications. As in the
Reflexion Model approach [MN97] we declaratively map classes or other software
entities into components to generate an initial model with coarse granularity. In
our case studies we used the existing software containment relations such as class
categories and inheritance hierarchies to group elements. In the same way such
relationships can be exploited for larger software systems, grouping elements by
applications or files and by exploiting naming conventions.

5.3. EVALUATION AND DISCUSSION 91

Focus. In order to focus on some of the elements of the source model to the exclusion of
others, we cluster those elements we want to ignore into a large component. This
was done in the Refactoring Browser case study. The addition of a domain predicate
which gives a developer more control over the elements which appear in a view is
considered in future work.

Selective instrumentation. Once we know what part of the system we want to focus on
we collect dynamic information only from a small subset of the classes or methods.
This was demonstrated in the second case study.

Scalability is also addressed by the iterative and open nature of the process itself.
That is, we do not expect to answer all the questions we have with one view, and can use
a variety of perspectives, each one to generate a view which focuses on one aspect or one
part of the system. For very large scenarios the response time of Gaudi for some of the
queries may be too long.

5.3.5 Related Work

The use of logic programming languages for querying static information was presented
in Section 4.4. Here we discuss several approaches that are most related to ours.

Knowledge-based approaches, such as the LaSSIE system [DBSB91], allow an engi-
neer to make queries at a higher level of abstraction, such as “What global variables are
accessed by a function that flashes a display lamp at an attendant’s console?”. These kinds
of approaches require that application specific information about the problem domain, the
code structure and the features be used to populate the knowledge base, and, more impor-
tantly, that this knowledge base be kept up to date. Our approach can be seen as a lower-
level knowledge-base system which incorporates knowledge general to the structure of
all object-oriented systems. While it does not permit queries which require application
specific information, it can populate the knowledge base automatically, without having
to elicit information from experts. As seen in the approaches of [Wuy01, Men00], soft-
ware engineering knowledge in the form of coding conventions and design patterns, as
well as application specific information can also be added to such a framework to create
a deductive knowledge base.

The work of Consens et al. on Hy+ [CM93] has many similarities with our work.
Hy+ is a query and visualization system based on hygraphs – an extension of directed
graphs in whichblobsare incorporated. A blob represents a set, and is used to cluster
together elements; blobs can also be nested. Avisualdeclarative query language, called
GraphLog, is used to define blobs (clustering) and edges to display. Queries are evaluated
by translating the visual pattern expressed in GraphLog into programs for the back-end
processor; Prolog, as well as other logical query languages have been used as back-ends.
The formulation of queries in GraphLog seems quite complicated. Hy+ has been used for
reasoning about dependency relationships between modules [CMR92] and for debugging
concurrent programs through post-mortem animation of event traces.

92 5. CONCEPT VIEW RECOVERY: CASE STUDIES

Our use of perspectives is similar in spirit to Reflexion Models [MN97]. In the Reflex-
ion Model approach an engineer posits a model of the system, similar to our component-
connector model, and defines a mapping of elements of the code to the components. Us-
ing static binary relations between the code elements a reflexion model is then created:
it shows the divergences (relations where none were expected), convergences (relations
where they were expected) and absences (no relations where some were expected) of the
source code from the engineer’s model. The model can be successively refined by chang-
ing the mapping of the code to the model, refining the model itself or including more
or other binary relations. Our approach differs from the Reflexion Model approach in
several ways. Our model (perspective) is used to express whatkind of information we
want to see,e.g. creation relations between components, so it is not used in checking
the conformance of a posited model to the source model. Our perspectives are based
on a meta-model of object-oriented programs and their execution – whereas Reflexion
Models are purely syntactic. Our approach supports multiple views, each with a different
semantics. In Reflexion Models, this could be handled by a typed source model [Mur96]
which treats different kinds of binary relations as typed edges, or by using a different
source model when a developer wants to view a different relation. The Reflexion Model
approach operates on any binary relation, so it can be used on message send events as
well, though no such case is reported [Mur96]. The Reflexion Model approach offers
a particularly simple and appealing methodology in which a source to high-level model
mapping is repeatedly refined. So conceptually there is one path, rather than several paths
to navigate in the methodology.

Other tools and approaches for understanding dynamic behavior have been presented
in Section 2.2.3. Tools which summarize information [PHKV93] offer a fixed set of
views. Tools which display sequence diagrams [PLVW98][JR97][KM96][SKM01] rely
on visualization techniques and navigational aids to help a user find the desired informa-
tion. Walker et al. [WMFB+98] display the interaction between objects through user-
defined high-level model using program animation techniques. Their tool focuses on dis-
playing the number of objects involved as the execution progresses. Our tool is based on a
simple graph layout tool and so does not have the sophisticated visualization capabilities
offered by these tools.

Our approach allows a user to declaratively define the kind of information of interest,
and distills the dynamic information into a more succinct form which can be displayed
compactly. Understanding message invocation sequences between instances does, how-
ever, seems important for getting a grasp on how an application works. Concept view
recovery allows a user to display this kind of view as well, for a chosen call stack. In the
next chapter we describe collaboration view recovery, in which we show how to general-
ize from specific object interactions to class collaborations.

Although some work on program analysis tools [CCdCL98] and query-based debug-
gers [LHS97] is related to ours, these kinds of tools have a different goal than reverse
engineering tools and are not well adapted to creating design models and revealing over-
all structures in the software.

5.4. REVISITING THE REQUIREMENTS 93

5.4 Revisiting the Requirements

Before we close this chapter on concept view recovery, we evaluate our work in the light
of the requirements we have outlined in Section 2.3. Note here that we consider the
collaboration view recovery application presented in the next chapter as an integral part
of our approach. This means that we will later evaluate our approach as a whole against
this set of requirements.

1. Lightweight information model. As discussed at the conclusions of Chapter 3, the
meta-models on which our approach operates are relatively simple to extract. Our
experiences with concept view recovery suggest that in many cases we do not make
use of the full static meta-model, and static information about classes, methods and
inheritance relationships suffice for a rich repertoire of queries and perspectives.

2. Simple view specification.Obtaining an initial view of the software is simple, using
predefined perspectives, as, for example, the calling relation between class cat-
egories. Though the notation of a logic programming language may not appear
simple to all, the declarative nature of the queries is intuitively simple. We also
discussed the possibility of implementing a domain specific language on top of the
logic programming language to facilitate queries.

3. Succinct views.By succinct we mean that the views recovered are manageable in size.
The extracted views shown in the case studies are manageable in size: they result
in graphs which can still be understood and interpreted by the engineer to extract
important information. This is not due to the logic programming approach, but
rather to the facility it provides in managing granularity and focus.

4. Developer guides the process.The two case studies demonstrated the process of de-
sign recovery in which a developer, guided by a question, refines perspectives and
queries to obtain information of interest. Both case studies show that through an
iterative process of querying an engineer can arrive at an understanding required to
answer the question posited at the beginning of the investigation. A view works as
a catalyst for generating questions about the studied system and helps the engineer
to focus the investigation of the code. It confronts the engineer with a new model
to compare to his or her initial mental model and assumptions about the system.

5. Extensible view specification.Each case study had a clear objective at the beginning.
However, the iterative nature of the process means that the nature of the question
changes throughout the investigation. The two case studies thus demonstrate that
perspectives can be tailored to a range of questions, enabling a developer to deter-
mine what aspects of the software he or she is interested in.

6. Behavioral views.Here we look again at the kinds of questions we want to be able to
answer using behavioral views:

94 5. CONCEPT VIEW RECOVERY: CASE STUDIES

� how do the main domain elements relate to each other?

By using an existing containment relationship, such as the Smalltalk class cat-
egories or the inheritance hierarchy, we can easily obtain an initial view of the
relationships of these components to each other. The component breakdown
can then be refined to better reflect our understanding of the domain elements.

� what parts of the software implement a specific feature?

In executing a scenario to collect dynamic information we tie our information
base to the feature or functionality we are interested in. Elements of the soft-
ware which have no role in implementing this functionality will not appear in
the dynamic information. This provides some initial focus. However, we will
in general need more focus to discover which parts of the software are respon-
sible for implementing a specific feature. The iterative process of extracting
views helps us to arrive at this information.

� to which messages does an instance of a certain class respond?

By querying the dynamic information, we can ask about the methods that have
been invoked on a class. We can also ask about the interface that a component
(a grouping of classes) presents in the system.

� how many instances of a class are present at runtime?

This information can be obtained through a predefined query.

� which objects are responsible for creating instances of a certain class?

The case studies showed that ‘creation’ views are useful in understanding re-
sponsibilities of classes. Creation views can also be obtained which show the
multiplicity of the creation relationships.

� which class instances participate in the interaction resulting from the invoca-
tion of a particular method?

In focusing our investigation we often want to see what is happening within
a method execution: how many objects there are and how they interact. Such
views can be obtained by defining a perspective which shows the method in-
vocations inside a call stack of a method execution. In the next chapter we
show how collaboration view recovery supports generalizing from one partic-
ular interaction to a class collaboration abstraction.

� what are variations on the way a method is executed?

In order to obtain this information, we would have to look at several occur-
rences of the execution of the same method – this is possible, but cumbersome.
In the next chapter we show how collaboration view recovery is used to extract
and understand variations on the execution of a method.

7. High-level views. The clustering of entities enabled us to obtain several views of dif-
ferent granularities going from the interaction of sets of classes grouped together to
the interaction between instances.

5.5. CONCLUSIONS 95

8. Low-level views. In trying to understand how a functionality is implemented we also
created perspectives which extract the interactions of instances within a method
invocation stack.

5.5 Conclusions

In this chapter we presented two case studies conducted to evaluate concept view recov-
ery. In particular, we showed how a developer guides the process of design recovery and
how perspectives are used to specify several different views at varying levels of granular-
ity and so to answer questions at different abstraction levels.

We discussed some lessons learned through the case studies and identified several
commonly used perspectives. We also argued that the approach is general enough to be
applied to other class-based object-oriented languages and that it provides mechanisms
for handling scalability problems.

In Section 5.4 we evaluated how the concept view recovery meets our requirements.
We saw that it supports the recovery of succinct views which can answer a range of behav-
ioral questions. We also noted that some of the low-level behavioral questions we pose,
in particular about the interaction of objects within a method execution stack, are not very
elegantly answered in concept view recovery. In the next chapter we present collaboration
view recovery, where we propose an approach for understanding and recovering class col-
laborations. Collaborations can capture low-level information about object interactions in
a succinct way, giving us insight into the roles that different classes play in an interaction.

96 5. CONCEPT VIEW RECOVERY: CASE STUDIES

6

Collaboration View Recovery

In this chapter we present collaboration view recovery. Like the concept view recovery,
this application is based on the use of perspectives in an iterative process. But whereas
component-connector perspectives use groupings and relations over all elements and re-
lations in the source model, collaboration view recovery supports only perspectives for
creating collaboration abstractions and querying the roles that classes play in collabora-
tions.

The case studies presented in the previous chapter showed that in focusing our inves-
tigation of a software system we come to a point where we want to understand what is
happening at the level of objects interacting to carry out a certain functionality. Looking
at an instance level view shows us one instance of the interaction of objects, but does not
let us generalize to a design abstraction. In particular, we want to know which classes
play what role: how classes collaborate. Design artifacts which are good at answer-
ing such questions come from collaboration-based or role-based design methodologies.
Collaboration-based or role-based designs decompose an application into tasks performed
by a subset of the applications classes. They provide a larger unit of understanding and
reuse than classes and can be an important aid in the maintenance and evolution of the
software.

Collaboration perspectives enable an engineer to recover a collaboration view, where
the software system is seen as a collection of class collaborations. These abstractions are
created by applying pattern matching to the execution trace – the role of the engineer here
is to specify what he or she considers to be similarity in execution sequences by modu-
lating the pattern matching criteria. Collaboration view recovery also supports querying
about which classes collaborate with each other, which methods are invoked by which
classes, and which classes play similar roles.

The chapter is structured as follows: in Section 6.1 we present a short overview of
collaboration-based design as it is used in forward engineering. In Section 6.2 we present
the challenges of reverse engineering collaboration-based designs and introduce the ap-
proach we propose. In Section 6.3 we present our approach in more detail and in Sec-
tion 6.4 we describe the Collaboration Browser, the tool we have developed to support
the recovery of roles and collaborations. In Section 6.5 we present the case studies which
validate the approach. Section 6.6 presents a discussion of the approach. In Section 6.7

98 6. COLLABORATION VIEW RECOVERY

we evaluate collaboration view recovery in terms of our requirements and conclude the
chapter with Section 6.8.

6.1 Collaboration-based Design

The need for modeling collaborations in object-oriented applications is now well rec-
ognized. Design methodologies which recognize the distinct responsibilities of classes
cooperating to achieve different tasks were first promoted by [WBW89, BC89], and
are now integrated into most object-oriented modeling methods and notations [BRJ99].
Design patterns, for example, capture collaborations to solve a specific design problem
[GHJV95].

Collaboration-based or role-based design decomposes an object-oriented application
into a set of collaborations between classes playing certain roles. Each collaboration en-
capsulates an aspect of the application and describes how participants interact to achieve
a specific task. In this section we first present a small example to illustrate the concepts
of collaboration- based design. We then briefly survey approaches to specifying and im-
plementing collaboration-based designs in forward engineering.

6.1.1 An Example

Consider a class model which describes a bureaucracy [Rie98], as shown in Figure 6.1.
This is a hierarchy of Director, Managers and Clerks which operates as described by the
Bureaucracy pattern [Rie98].

Employee

arrangeBigMeeting
arrangeSmallMeeting
writeReport

arrangeBigMeeting
arrangeSmallMeeting
writeReport

Director

Clerk

writeReport

Manager

addSubordinate
removeSubordinate
arrangeSmallMeeting
writeReport

Figure 6.1: Class diagram for Bureaucracy

6.1. COLLABORATION-BASED DESIGN 99

In effect, four of the GOF design patterns [GHJV95] govern the interaction of the
objects. A Manager or Director who receives a request delegates work to its subordinates,
as in the Composite pattern: the Clerk plays the role of Component and the Manager the
role of Composite. A Manager or Clerk receiving a request it cannot handle forwards the
request up the hierarchy, as in Chain of Responsibility: the Managers and Clerks play the
Predecessor role and the Director the Successor role. Clerks or Managers who want to
interact with each other first address their superior to coordinate them, as in the Mediator
pattern: at the same hierarchy level the objects are Colleagues, whereas the superior acts
as Mediator. Finally, when a subordinate changes state, such as completing some work,
or being absent, it reports this change of state to its superior: thus the superior acts as
Observer of its subordinate Subjects, as in the Observer pattern. Figure 6.2 summarizes
this information in a class-collaboration matrix [VN96]. It illustrates that an instance of a
class participates in several collaborations, playing a distinct role in each.

Observer

Composite

Mediator

Chain of
Responsibility

Clerk DirectorManager

Predecessor Predecessor

ObserverSubject

Successor

Component Composite

Colleague Mediator

Figure 6.2: Class-collaboration matrix for Bureaucracy. Each row represents a collabora-
tion and each cell describes the role the class plays in the collaboration.

Here we have described the collaborations and roles in terms of the design patterns
they instantiate. Roles describe the responsibilities of objects in a collaboration, but how
a role is actually modeled or specified is often left open [RG98]. Some design techniques
model roles using interfaces [Ree96], or as part of a behavioral contract between partic-
ipants [HHG90]. Collaborations are usually modeled using UML interaction diagrams.
These show how participants interact to achieve a task: they are usually succinct and show
only one instance of each kind of participant. In the next section we survey briefly a few
of the notations and techniques for specifying and implementing collaborations and roles.

6.1.2 Collaborations and Roles in Forward Engineering

Apart from the standard UML collaboration diagram notation [BRJ99], several re-
searchers have proposed ways to specify such behavioral compositions using contracts

100 6. COLLABORATION VIEW RECOVERY

[HHG90] and Reuse Contracts [Luc97] as an aid in reuse and evolution. There are also
several proposals on how to move from a collaboration-based design to the implementa-
tion – that is how to map the roles in a collaboration onto the application’s classes. Some
of these propose mappings from roles to classes at the design level [Ree96][RG98], or
strategies for implementing role-based designs [SB98][VN96][Ken99], while others pro-
pose features or extensions which retain the concept of role and collaboration at the code
level [SB98][ML98] [DR97].

This active research area attests to the general recognition that role-based design arti-
facts can greatly aid the understanding and maintenance of object-oriented applications.
In this section we briefly survey how role-based and collaboration-based designs have
been specified in these different approaches.

UML. In the UML [BRJ99], interaction diagrams model how groups of objects collabo-
rate and are typically used to describe a single use case, or a specific scenario in a use case.
These formalisms model the flow of control between class (role) methods in carrying out
a specific task.

OORAM. OORAM [Ree96] is a design method in which separate aspects of an applica-
tion are modeled usingrole modelsand these are combined to arrive at the class model for
the application. A role model [And97] is a set of roles, where each role is defined by a set
of role paths. Each role path gives a name of a receiver and a list of messages which that
role may send to the receiver. This is the output interface of a role – the messages it can
send. The input interface is not explicitly specified: it is the union of the output interfaces
directed towards that role by other roles.

Contracts. Contracts [HHG90] are design formalisms used to describe constraints on
message exchange between participants. Collaboration contracts, called Reuse Contracts
in [Luc97], have two aspects: the static structure refers to the participants and the ac-
quaintance relations between them, the interaction structure describes the messages sent
between the participants. The interaction structure states the invocation relationship be-
tween the methods of the participants, but it does not specify any ordering on these invo-
cations.

Role modeling.Riehle presents an approach to framework design based on role-modeling
[RG98, Rie00]. The approach shows how to start with role-models and compose them to
arrive at a class-based design. This work remains at the design level and does not prescribe
or suggest any type specification mechanism for describing a role and how it is embedded
in a specification of a collaboration.

Roles and collaborations at the implementation level.Interfaces, as present in JAVA ,
can be used to specify roles at the implementation level. Extensions have also been
proposed to enrich Smalltalk with roles [GSR96]. Roles have been implemented using
C++ templates [VN96], Aspect-Oriented Programming [Ken99] and Role Object pattern
[BRSW00]. These implementation techniques capture the notion of role, but not the in-
teraction of roles in a collaboration. Below we discuss a few contributions to supporting
collaborations at the implementation level:

6.2. REVERSE ENGINEERING COLLABORATIONS AND ROLES 101

Aspectual Components [LOML01], the more recent version of Plug-and-Play Com-
ponents [ML98], describe template collaborations between participants. These are then
instantiated, with classes playing the participants and methods of those classes match-
ing the roles in the collaborations. Aspectual components thus add data members and
function members to existing classes, and modify function members of existing classes to
augment their behavior, in the context of a collaboration. In this formalism, a collabora-
tion is a collection of interfaces; the semantics of the collaboration protocol is expressed
using the base programming language (JAVA in this case).

Executable Connectors [DR97] are very similar to the collaboration notion of Aspec-
tual Components, but they are used to add behavior to a collection of objects playing
roles, rather to a set of classes. The semantics of the collaboration is specified in terms of
rules which express how participant interfaces collaborate.

Smaragdakis and Batory [SB98] introduce Mixin Layers, a form of mixins that can
contain several smaller mixins, as a way to represent collaborations at the implementation
level and to build an application from the composition of these collaborations.

6.2 Reverse Engineering Collaborations and Roles

Since standard object-oriented languages do not provide language constructs to capture
collaborations, design information about collaborations is lost in the implementation. In
a collaboration, participants interact according to a protocol describing the set of allowed
behaviors. At the implementation level the description of this behavior protocol is dis-
tributed throughout the code. At the implementation level a collaboration thus consists of
two basic elements:participantsandroles. Therole of each participant is the part of the
participant which enforces the interaction protocol. A collaboration can thus be seen as a
collection of roles.

6.2.1 Describing Collaborations and Roles

In order to extract collaborations from existing code we must first make clear what kind
of description we want to extract: who theparticipantsare and how each participant’s
role is to be described.

Such a description should beeasy to understandand betied to the code. First, since
we want a description which helps in program understanding, we are not interested in a
formal notation, nor in a formal description of the interaction protocol. Visualizing a col-
laboration as an interaction of objects also helps in understanding collaborative behavior.
Second, the description should be tied to the static structure of the code, that is, to classes
and methods, rather than remain at the object level.

We therefore propose a simple description of a collaboration as a collection of classes
(the participants) and their roles, where the role of each class is given by set of methods
of the class which control the behavior of the class in the collaboration. We do not try to
recover a description of the protocol which governs the interaction of the methods.

102 6. COLLABORATION VIEW RECOVERY

An example of such a collaboration description is given in Table 6.1 below. The
participants in this collaboration are the classesDrawingEditor, Ellipse, Rectangle, and
DrawingVisitor and their roles are the set of methods listed in the respective columns.
Note that theEllipse andRectangle classes have equivalent roles in this collaboration.
The collaboration corresponds to a Visitor pattern [GHJV95], in whichDrawingEditor
plays the role of Client,DrawingVisitor plays the role of Visitor, andEllipse andRectangle
classes play the role of Visited Elements.

DrawingEditor Ellipse Rectangle DrawingVisitor

refresh

acceptVisitor:
lineColor
lineStyle
leftTop
rightBottom

acceptVisitor:
lineColor
lineStyle
leftTop
rightBottom

visitEllipse:
visitRectangle:

Table 6.1: Collaboration description for a collaborationDrawingEditor refresh

To recover collaborations and roles from existing code we need to discover the impor-
tant tasks in which instances collaborate, and break up the behavior of a class into roles,
as shown schematically in Figure 6.2, where each role describes the behavior of instances
of this class in a specific context. Below we discuss the challenges that must be tackled.

6.2.2 Challenges to the Recovery of Collaborations

There are several challenges to the recovery of collaborations from code: first, we must
recover interactions of classes from the code. Which classes interact with each other?
Which methods are invoked in an interaction? Second, since object-oriented code is full of
interactions the challenge is to find thesignificantinteractions – the design collaborations
are those which capture important behavioral concepts.

Recovering interactions.As argued in Section 2.2.3, static information does not provide
us with the information necessary for identifying collaborations. To identify collabo-
rations we need control flow information; this is difficult to obtain purely from static
analysis, due to polymorphism, inheritance and dynamic binding.

The notion of role is also hard to recover from static information. Even when lan-
guages explicitly support an interface construct, such as present in JAVA , there is no
semantics in terms of collaboration attached to this construct. That is, to recover col-
laborations and roles we need to understand the rules governing the run-time behavior of
the instances. The interface construct is, however, a good starting point for discovering
important collaborations.

The inheritance relationship is also not very reliable in deriving information about
roles because a subclass does not necessarily play the same roles that its superclass plays.
This depends on how inheritance has been used, and in reverse engineering we often
examine applications whose design may not follow accepted design guidelines.

6.3. EXTRACTING COLLABORATION VIEWS 103

Recording dynamic information about message exchanges between instances as the
program executes provides us with control flow information required for deriving collab-
orations and with information about the context in which methods are invoked. Program
tracing, however, results in a great volume of information about the interactions of ob-
jects. Much of the information about interactions is duplicated many times over in an
execution trace.

We use dynamic information to recover interactions. To reduce the volume of infor-
mation, while still maintaining the informationcontent, we use pattern matching to group
similar sequences of method invocations in a pattern. This allows us to abstract from a
particular execution sequence to a pattern of execution which occurs repeatedly in the
trace.

Finding the important collaborations. Once we have obtained information about in-
teractions – which instances interact with each other and the methods invoked in these
interactions – the challenge remains to identifyimportantinteractions.

Every method invocation in the trace is mapped to a collaboration pattern. How do
we find the important collaborations? The important collaborations are those which are
important to understand in order to carry out the maintenance task. We use the iterative
query-based approach introduced in Chapter 3. This allows the developer to create the
relevant abstractions and views, and to steer the process of design recovery.

6.2.3 Overview of Our Approach

Below we summarize our approach for recovering collaborations and roles. The process
is illustrated in Figure 6.3.

Based on a source model of static and dynamic information.Dynamic information is
used to obtain exact control flow information and so to extract interactions. Static
information is used to group similar interactions into collaboration patterns.

Uses pattern matching.We use pattern matching to find similar execution sequences in
the execution trace. This condenses the amount of information from information
about interactions of instances to information about patterns of interactions.

Supports iterative recovery through perspectives.As with concept view recovery, we
let the developer specify what kind of information he or see is interested in by
defining a perspective. This is done through two operations: specifying the desired
pattern matching criteria and querying the dynamic information in terms of classes
and interactions of interest.

6.3 Extracting Collaboration Views

In this section we first introduce some of the terminology and concepts, then explain how
collaborations are extracted using pattern matching and querying.

104 6. COLLABORATION VIEW RECOVERY

dynamic facts

invoked methods

static facts

Perspective

match with

View

view composer

receiver classes
sender classes

collaborations

source model

query about

pattern matching

query engine

Figure 6.3: Pattern matching and querying in the iterative query cycle

6.3.1 Terminology and Concepts

We reserve the termcollaborationandrole to talk about the high-level design concepts.
Our starting point for the recovery of collaborations is the execution trace. Each method
invocation recorded in the execution trace gives rise to a sequence of method invocations,
an interaction which we call acollaboration instance. We then identifycollaboration
patternsby comparing similar collaboration instances.

Collaboration instance.A collaboration instance is the sequence of message sends be-
tween objects, ordered as a call tree, which results from a method invocation (all
message sends up to the return).

Collaboration pattern.A collaboration pattern is an equivalence class of several collab-
oration instances.

high-level concepts

intermediate abstractions

low-level artifacts

role

collaboration pattern
querying

class interface

collaboration instance

collaboration

pattern matching

execution trace

in collaboration pattern

class interface

querying

Figure 6.4: From an execution trace to collaborations and roles

6.3. EXTRACTING COLLABORATION VIEWS 105

A collaboration pattern is an approximation to the higher-level design concept of col-
laboration. The corresponding approximation to the high-level notion of role is the set of
(public) methods that a class presents in the context of a collaboration pattern. We can
obtain this information by querying about a collaboration pattern.

Figure 6.4 above illustrates how pattern matching and querying supports the recovery
of collaborations. Pattern matching allows us to create the abstractions ofcollaboration
patterns. These are indications for collaborations. The execution trace can be queried to
obtain the interface of a class in the whole execution trace or in the context of a collab-
oration pattern. The interface of a class in a collaboration pattern is an indication for the
role of the class in the collaboration.

Perspectives and views.A perspective is a specification of the aspects of the source
model that we are interested in. In the context of collaboration view recovery, a perspec-
tive is a specification of (i) what we consider similarity in execution sequences – this
determines how collaboration instances are grouped into collaboration patterns and (ii))
what we want to know about collaboration patterns. These two specifications correspond
to the two operations, ‘match with’ and ‘query about’, illustrated in Figure 6.3. Pattern
matching and querying are the two key operations in recovering collaborations. Pattern
matching condenses the information about all method invocations present in an execu-
tion trace into a much smaller set of collaboration patterns. Setting the pattern matching
criteria dictates what the developer considers to be important about a collaboration, be
it the classes involved, the methods invoked or the nesting structure of the method in-
vocations. The effect of choosing different pattern matching criteria will be discussed
in Section 6.3.2. Querying about collaborations begins once we have a base of collabora-
tion patterns. It helps us to find the important collaboration patterns by selecting them in
terms of the senders, receivers and invoked methods involved.

In collaboration view recovery our ‘window’ on the source model is restricted to
sender classes, receiver classes, invoked methods and collaboration patterns. This then
corresponds to the view. Specifying similarity between execution sequences determines
what collaboration patterns we will see and querying lets us put sender classes, receiver
classes and invoked methods in relation to each other in the context of a specific collabo-
ration pattern.

6.3.2 Pattern Matching

The settings for the pattern matching criteria specify which collaboration instances will
be matched as instances of the same collaboration pattern. They reflect what the engineer
considers important about a collaboration.

When the pattern matching is performed these settings are used to transform each
collaboration instance to its pattern representation. Identical patterns are then grouped
together as one collaboration pattern. We retain, however, some of the original collabora-
tion instance information about senders, receivers and invoked methods in order to allow
querying about these.

The execution trace can be seen as an ordered, labeled tree where each node corre-

106 6. COLLABORATION VIEW RECOVERY

sponds to a method invocation event. Each subtree in this large tree is a collaboration
instance. So grouping collaboration instances into one collaboration pattern means that
we match subtrees of the execution trace. But we are not interested in exact matches –
this is much too restrictive to allow us to generalize from a particular execution sequence
to a design abstraction. To supportapproximatematching of collaboration instances we
propose a set of pattern matching criteria which are selected and set by the engineer. Be-
low we present a small example to illustrate the ideas behind the pattern matching criteria
we propose. These are later discussed in greater detail in Section 6.6.3 and Section 6.4.2.

An example. When are two collaboration instances similar enough to be considered the
same? We illustrate the ideas behind the pattern matching criteria using an example.
Consider the design of a simple program which simulates the forwarding of packets in a
local area network (Figure 6.5). Each node is either a workstation or a printer. Printers can
forward packets or print packets. Workstations can forward packets or originate packets.
Packets can be asked, usingisAddressedTo:, if they are addressed to a particular node.

Node

Printer Workstation

print: aPacket
accept: aPacket

originate: aPacket
accept: aPacket

name

send: aPacket
hasNextNode

accept: aPacket
nextNode

aPacket node1nodePrinter

send:

print:

[true]

[false]

isAddressedTo:

accept:

accept:

Figure 6.5: LAN design

Consider now what happens at runtime as such a program executes. A packet may be
relayed several times before it reaches its destination. But what is happening is always
the same: the node asks the packet if it is addressed to that node, if it is then the execution
ends, otherwise the packet is forwarded to the next node in the LAN. One example of an
execution is given in Figure 6.6.

If we take into account the identity of the nodes, then we will only recognize collab-
oration instances as similar if the very same nodes participate in them. If we consider
instead the class of the nodes, then we match events with the same class rather than the
same object. If we consider rather the superclass of the class, in this caseNode, then we
will match as similar events where both printers and workstations behave the same. So
we can control matching by deciding whatinformation about an eventwe are interested
in.

Theaccept: method in this example is implemented recursively. So if we look at the
call tree resulting from an invocation ofaccept:, we will obtain a shallower or deeper

6.3. EXTRACTING COLLABORATION VIEWS 107

isAddressedTo:

accept:

send:

node5 aPacket printer node3node2

accept:

accept:

send:

accept:

send:

isAddressedTo:

isAddressedTo:

isAddressedTo:

Figure 6.6: LAN execution

tree depending on the number of times the packet has been relayed in the network. If
we treat collaboration instances as call trees of events then collaboration instances will
match only if they have exactly the same number of recursive calls. If we flatten the tree,
however, and match collaboration instances with the samesetof events, then we ignore
the extra information about recursion or iteration of the same event. Thestructure of the
collaboration instanceis thus also important as a matching criterion.

We can also choose toexclude some eventswe are not interested in. Self-sends, for
example, often add no special semantics to the collaboration instance. In many cases we
also want to obtain a high-level view of what is happening in the collaboration instance,
so we prefer to look at only the first few levels of invocations. In our LAN example, for
example, if we treat the structure of the collaboration instance as a tree, but look only at
the two top levels of invocation, then eachaccept: invocation will be seen as consisting
of a tree of three events where the topmost event is theaccept: invocation and its children
are the two eventsisAddressedTo: andsend:.

This simple example illustrates the difficulties of abstracting from collaboration in-
stances to collaborations. In most cases we try to abstract as much as possible – the ex-
treme is to match collaboration instances based on the information for only the top level
method invocation event. This would hide, however, interesting and important variations
of a method invocation. Our experiences and experiments with different pattern matching
schemes are described in Section 6.6.3.

Pattern matching criteria. To summarize, we propose the following matching criteria
which can be modulated along three independent axes:

Information about an event. An event in the execution trace is a method invocation, as
given in the model described in Section 3.2.3. An event contains basically three
items of information: the sender, the receiver and the invoked method. Each of
these three items can be taken into account or ignored in the matching scheme.
Table 6.2 shows what information about each of these three items can be used in
the matching scheme.

108 6. COLLABORATION VIEW RECOVERY

sender none object identity sender class

receiver none object identity receiver class
name of class
defining method

invoked method none method name method category name

Table 6.2: Pattern matching options for the method invocation events

Events to exclude.The matching scheme allow us to ignore certain events, on the basis
of three criteria:

Depth of invocation. Method invocations at a greater depth (with respect to the
whole execution scenario) are ignored.

Relative depth of invocation. The relative depth of invocation is the depth of in-
vocation with respect to the first invoked method in the collaboration pattern.
Using this criterion we specify that method invocation at a greater depth in the
collaboration pattern should be ignored.

Self sends.Method invocations in which an object invokes a method on itself are
ignored.

Structure of the collaboration instance. A collaboration instance is a tree of events.
However, similar collaboration instances may differ in their tree structure and still
have the same ‘meaning’. Therefore, in the matching scheme it is also possible to
treat collaboration instances as sets of events, thus ignoring all ordering and nest-
ing relations between method invocations. In this way collaboration instances are
treated as identical if they have the same method invocation events in their set.

6.3.3 The Query Model

A developer focuses on the relevant collaboration patterns by querying the dynamic infor-
mation. The query model supports multi-way queries about the two basic relations which
are of interest to us in recovering collaborations: method invocations in the executed sce-
nario, and method invocations in the context of a collaboration pattern.

send(Sender,Receiver,Method): this relation holds when there is an instance of the
classSender which invokesMethod on an instance of the classReceiver, in the
context of the whole execution trace.

sendInCollab(Sender,Receiver,Method,Collab): this relation holds when there is at
least one collaboration instance in the collaboration patternCollab in which an in-
stance ofSender invokesMethod on an instance ofReceiver.

For each of these relations, multi-way queries are supported. That is, in querying about
a relation we specify the value of one or more arguments in the relation – the response to

6.4. TOOL SUPPORT: THE COLLABORATION BROWSER 109

the query provides the values of the missing arguments. This will be illustrated in greater
detail when we introduce the Collaboration Browser tool. Table 6.3 lists the queries about
thesendrelation, while Table 6.4 lists the queries about thesendInCollab relation.

Note that thesend relation corresponds to the predicatesendsToMethod in concept
view recovery, and thesendInCollab relation corresponds roughly to thesendInstance-
InStackMethod predicate in concept view recovery. We draw the parallel here to empha-
size that we consider concept view recovery and collaboration view recovery to be part
of the same approach, though we have implemented two separate tools for each kind of
application.

Participant classes.The participants in a collaboration instance are all the receiver
classes in the collaboration instance. We do not include the sender of the first invoked
method of the collaboration instance as a participant, so that each sender class in the
collaboration instance is also a receiver class.

Sender
classes

Receiver
classes

Invoked
Methods

Query

Q1 senders receivers ? Given a list of senders and receivers, returns the union
of all the invoked methods for each sender-receiver pair

Q2 senders ? ?
Given a list of senders, returns the union of all receivers
for all sender-receiver pairs, and the corresponding in-
voked methods

Q3 ? receivers ?
Given a list of receivers, returns a union of all senders
for all sender-receiver pairs, and the corresponding in-
voked methods

Q4 senders ? methods
Given a list of senders and a list of methods, returns all
the receivers which receive any of these methods from
one or more of the senders

Q5 ? receivers methods
Given a list of receivers and a list of methods, returns
all the senders which send any of these methods to one
or more of the receivers

Q6 ? ? methods
Given a list of invoked methods returns senders and re-
ceivers which send or receive these respectively

Table 6.3: Queries about method invocations in a trace

6.4 Tool support: The Collaboration Browser

To support the recovery of collaborations, we have implemented a tool prototype, the
Collaboration Browser. The Collaboration Browser presents the dynamic information
to the user through four basic elements of information: sender classes, receiver classes,
invoked methods and collaboration patterns. Each of these four elements is displayed on
the screen in a separate panel as seen in Figure 6.7. Panelsa, b andc list the sender
classes, the receiver classes and the invoked methods respectively. Panelsd ande both
list collaboration patterns. The distinction between these two collaboration pattern lists is
explained further below, as is the function of the button panelf.

110 6. COLLABORATION VIEW RECOVERY

Sender
classes

Receiver
classes

Invoked
Methods

Collaboration
Pattern

Query

A. Query to obtain collaboration patterns in which ALL selected elements participate

Q7
participant
classes ?

Returns the collaboration patterns for
which there is a collaboration instance in
which all the participant classes partici-
pate.

Q8
participant
classes

methods ?
Returns the collaboration patterns for
which there is a collaboration instance in
which all the participant classes receive
the invoked methods.

Q9 methods ? Returns the collaboration patterns in
which all the methods are invoked.

B. Query to obtain collaboration patterns in which any of selected elements participate

Q10
participant
classes ?

Returns the collaboration patterns in
which any of the participant classes par-
ticipate.

Q11
participant
classes

methods ?
Returns the collaboration patterns in
which one of the methods is invoked on
one of the participants.

Q12 methods ? Returns the collaboration patterns in
which one of the methods is invoked.

C. Given a collaboration pattern query about senders, receivers and invoked methods

Q13 ? ? ? collaboration

Returns the senders, receivers and in-
voked methods which participate in at
least one collaboration instance in the
pattern.

Q14 ? ? methods collaboration
Returns the senders and receivers which
correspondingly send and receive ALL
the invoked methods

Q15 ? receivers ? collaboration
Returns the union of all the senders for
the given receivers, and the union of all
the methods they invoke on the receivers.

Q16 senders ? ? collaboration
Returns the union of all the receivers for
the given senders, and the union of all the
methods they receive from the senders.

Q17 senders receivers ? collaboration
Returns the invoked methods for all the
senders and receivers.

Table 6.4: Queries about method invocations in a collaboration pattern

6.4. TOOL SUPPORT: THE COLLABORATION BROWSER 111

In Section 6.4.1 we explain the functionality of the Collaboration Browser, giving
some small examples. The screen shots which provide the examples are from an analysis
of the HotDraw application, which will be presented in greater detail in Section 6.5.1. In
Section 6.4.2 we briefly discuss implementation issues.

6.4.1 Functionality of the Collaboration Browser

The Collaboration Browser supports three basic kinds of operations: querying the current
base of dynamic information, editing the base of dynamic information through filtering
out information or loading a collaboration instance, and displaying interaction diagrams.
The pattern matching criteria are currently set by hand.

In the presentation below we have numbered the queries (Q1 to Q17 from Table 6.3
and Table 6.4), editing (E1, E2, E3, E4) and displaying functions (D1, D2, D3) in order
to refer to them later on in Section 6.5.1.

a b

c d e

f

Figure 6.7: Collaboration Browser window: panelsa, b andc list the sender classes, the
receiver classes and the invoked methods respectively. Panelsd ande both list collabora-
tion patterns.

112 6. COLLABORATION VIEW RECOVERY

Querying the dynamic information

Q1-Q6: Query about senders, receivers and methods in the context of the whole
scenario. The “query trace” button (at the top of the Collaboration Browser window) is
used to query the relationships of sender classes, receiver classes and invoked methods in
the context of the complete execution scenario.

Example: in Figure 6.7, a sender class,DrawingController and a receiver class,Tool,
have been chosen. Querying the trace with these selected sender and receiver classes
resulted in panelc being updated to list the methods of classTool which are invoked by
an instance ofDrawingController.

Q7-Q17: Query about senders, receivers and methods in the context of a collab-
oration pattern. The “query collab.” button (at the top of the Collaboration Browser
window) is used to query the relationship of sender classes, receiver classes, invoked
methods and collaboration patterns.

Example: in Figure 6.7 three methods of classTool have been selected in panelc:
controller:, cursor and selected. Paneld list the collaboration patterns resulting from
the invocation of each one of the methods selected:Toolcontroller:, Toolcursor and two
Toolselected collaboration patterns. In contrast, panele lists the (shortest) collaboration
patterns in which ALL these three methods of classTool come into play. The list shows
four collaboration patterns, three with the nameDrawingControllerchangedTool, but each
with a different identity number, and one namedDrawingControllertool. The first three
collaboration patterns result from the invocation ofchangedTool on an instance ofDraw-
ingController, the last one from the invocation oftool on an instance ofDrawingController.

Note that the answer to the query about which collaboration patterns include partic-
ular participants and methods always provides theshortestcollaboration pattern which
meets the criteria. It is clear that there are many longer collaboration patterns which
contain these shortest patterns and there is no interest in exhaustively listing all of them.
Paneld lists the shortest collaboration patterns in whichoneof the selected participants
occurs, whereas panele lists the shortest collaboration patterns in whichall the selected
participants occur.

First, using queries Q7-Q12 (parts A and B of Table 6.4), we can ask which collabo-
ration patterns include particular receivers and invoked methods. Second, using queries
Q13-Q17 (part C of Table 6.4), we select a collaboration pattern either from paneld or
from panele and ask about the senders, receivers and invoked methods in the pattern.
If senders, receivers or invoked methods are also specified, the missing (unselected) ele-
ments will be returned as a response to the query. Several queries are here of particular
interest:

Q7: collaboration pattern for given participants. Given a list of participants, we ask
in which collaboration patterns they occur together.

Q15: role of a class.Selecting a collaboration pattern and a receiver class we ask about
the role (a set of methods) this class plays in the collaboration pattern.

6.4. TOOL SUPPORT: THE COLLABORATION BROWSER 113

Q14: role equivalence.Selecting a collaboration pattern and a role (a set of methods),
we ask which classes play this role in the collaboration pattern.

Editing the dynamic information

To focus the investigation on the events of interest the developer can filter out method
invocation events which are not relevant by specifying sender classes, receiver classes
and methods to be filtered out. This reduces the amount of dynamic information to be
analyzed and presented. Another option for focusing on events of interest is to load an
instance of one collaboration pattern as the current base of information. This allows the
developer to focus on analyzing one collaboration pattern.

The browser queries operate on a current execution trace. When the tool starts up, the
current trace corresponds to original execution trace obtained through instrumenting and
executing the application. In the course of the iterative process this trace can be edited by
the user (using the buttons in panelf) to:

E1: remove method invocation events from the trace for selected senders, receivers and
methods,

E2: remove method invocation events which are self-sends,

E3: set the current trace to an instance of a selected collaboration pattern, or

E4: reset the current trace to the original execution trace.

Displaying an instance of a collaboration pattern

The interaction diagram window displays an instance of the selected collaboration pattern
as a sequence diagram. It can be displayed (using buttons on the interaction diagram
window, see Figure 6.8) as:

D1: All: the whole call tree

D2: Abbreviated: an abbreviated call tree (calls up to depth of 2)

D3: Context: the context of the call tree (an abbreviated view from one level up the call
tree).

Example: In Figure 6.7 the collaboration pattern calledDrawingcontrollerchanged-
Tool#1643 is listed in at the top of panele. When this collaboration pattern is selected, an
instance of the pattern is displayed as an interaction diagram, shown in Figure 6.8. This
interaction diagram shows how four objects, instances ofDrawingController, Drawing,Tool
andToolState, interact when the methodchangedTool is invoked on aDrawingController.

114 6. COLLABORATION VIEW RECOVERY

Figure 6.8: The interaction diagram corresponds to an instance of the topmost collabora-
tion pattern in panele of Figure 6.7.

6.4.2 Implementation

The Collaboration Browser is implemented in Smalltalk. As for the Gaudi tool, we col-
lect dynamic information by first instrumenting the application to be investigated using
Method Wrappers [BFJR98], then exercising a scenario on the application. Static infor-
mation, when required for pattern matching, is obtained directly from Smalltalk. The
visualization of sequence diagrams is based on the Interaction Diagram tool [BFJR98].

Pattern Matching. The pattern matching criteria specify what event information is used
to label each event node in the call tree of the execution trace, and which event nodes
should be ignored. We implement the pattern matching using hashing, by traversing the
call tree in a bottom-up fashion and assigning a hash value to each event node in the tree.
Hash conflicts are resolved using linear probing.

In assigning hash values we distinguish between the case where the collaboration
pattern is treated as atreeof event labels, and the case where it is treated as asetof event
labels:

Tree structure. The tree matching is implemented by computing a hash value for each
node in the call tree such that the hash value of a parent node is a function of the

6.5. VALIDATION OF THE APPROACH: CASE STUDIES 115

hash values of its children. This matches trees with unordered siblings.

Set structure. The set matching is implemented by building a set of event labels for each
event node, then assigning a hash value to this set as a function of the labels in the
set.

6.5 Validation of the Approach: Case Studies

In this section we present three case studies to demonstrate the use of the Collaboration
Browser and to show how our approach supports the understanding and recovery of col-
laborations. In the first case study, we walk the reader through the process of design
recovery. For the two case studies which follow we describe the process briefly and sum-
marize the results obtained. In the first case study we aim to identify variations on a
method invocation and to characterize the resulting collaboration patterns. In the second
case study our aim is to decompose the execution trace into a set of collaborations and to
understand which classes take part in these collaborations. Finally, in the third case study,
we look at the interface of a class and partition it into the roles the class plays in different
collaborations.

Note that the first step after the extraction of the source model is the pattern matching.
The queries we describe then operate on the execution trace and the set of collaboration
patterns created through pattern matching.

The particular pattern matching settings described in the case studies were selected af-
ter experimenting with different settings. Some of these experiments are discussed in Sec-
tion 6.6.3. For all the three case studies, tree matching was considered too restrictive to be
useful, so collaboration instances are treated as sets of events. Experiments with differ-
ent relative levels of invocations and event labeling options led to selecting a high-level
perspective of a collaboration instance (looking at only the first few invocation levels),
and a ‘polymorphic’ perspective of a method invocation event: we match on the name of
the invoked method and the name of the class (in the inheritance hierarchy of the object’s
class) which defines this method.

In the first case study we refer to queries and functions of the Collaboration Browser
as they are numbered (Q for queries, E for edit, D for display) in Section 6.4.

6.5.1 Investigating Collaborations of Tools in HotDraw

We have already used HotDraw as a case study in Chapter 5, to obtain several high-level
views and some views of finer granularity which show invocations between instances
around the creation of a rectangle figure. Although a concept view can show information
about the invocation of instances, they do not help us to abstract from these to recover
collaborations and roles. The Collaboration Browser provides a better user interface for
the kinds of queries we want to pose in recovering collaborations.

Background information. HotDraw was presented in Section 5.1. We are interested
in particular in the implementation of tools. Tools are used to manipulate the drawing:

116 6. COLLABORATION VIEW RECOVERY

create new figures or manipulate the existing figures.

� with which classes does the classTool collaborate?

� what role does the classTool have in different collaborations?

� what roles do other classes play which participate withTool in handling a user
event?

Collecting Dynamic Information. We instrument all methods in the HotDraw classes,
then run a short scenario on the sample HotDraw editor in which we make use of different
tools from the editor’s upper panel: create a rectangle and color it, create an ellipse and
color it, move the rectangle from back of the ellipse to the front, move the ellipse from
back to front, group the two figures, move the two figures, ungroup the figures, move the
ellipse.

Pattern matching. We set the following pattern matching options: (i) as information
about an event, we choose the method name and the name of the class defining the method,
(ii) for events to exclude: the depth of invocation is set to 20, the relative depth of invoca-
tion to 3, and we ignore self-sends, (iii) for structure of the collaboration instance: a set
of events (rather than a tree).

The scenario executed generated 53,735 method invocation events. The pattern match-
ing resulted in 183 collaboration patterns.

Querying about interfaces. We start by querying about the interface that classTool
presents to other classes in HotDraw. A Q3 query returns all the senders and methods
for the receiverTool. We then proceed with Q1 queries to obtain the methods invoked for
each sender class. The results of these queries are given in the Table 6.5 below.

From Table 6.5 we notice that there is overlap in the table cells. That is, some methods
of Tool are invoked by instances of two different classes. For example, bothEndToolState
andToolState invoke cursorPointFor:, drawing andvalueAt:, bothFigureTransitionTable
andEndToolState invoke figureAtEvent: and bothDrawingController andDrawingEditor
invoke initialize.

Understanding the context of method invocations.Using the Collaboration Browser
we look at the collaboration patterns which result from the invocation of these methods
using Q8 queries. In the case offigureAtEvent: we see that the collaboration patterns for
this method occur in two different contexts, as illustrated in Figure 6.9 showing two D3
displays. In the first context the methodnextStateForTool:event: is invoked on an instance
of FigureTransitionTable, which in turn invokes thefigureAtEvent: method on an instance
of Tool. In the second context the methodevaluateIn:event: is invoked on an instance
of EndToolState, which in turn invokes three methods on an instance ofTool: controller,
cursorPointFor: andfigureAtEvent:, and then the methodprocessMenuAt:local:for: on an
instance ofDrawing.

We repeat a new sequence of Q8 queries and D3 displays to compare the different
contexts for theinitialize method. WhenDrawingController is created it initializes aTool,

6.5. VALIDATION OF THE APPROACH: CASE STUDIES 117

Senders Tool method
Drawing passInputDown

DrawingController

controller:
cursor
handleEvent:
initialize
selected
startState

DrawingEditor
initialize
passInputDown:
startState:

FigureTransitionTable figureAtEvent:

EndToolState

controller
cursorPointFor:
figureAtEvent:
drawing
sensor
valueAt:

ToolState

cursor:
cursorPointFor:
drawing
valueAt:
valueAt:put:

Table 6.5:Tool interface matrix. It shows the methods of classTool which are invoked by
other HotDraw classes.

Figure 6.9:FigureAtEvent is invoked onTool in two different contexts

118 6. COLLABORATION VIEW RECOVERY

sets its start state and sets the controller for that tool.DrawingEditor, on the other hand,
invokes theinitialize method onTool when it builds the button description for the tool and
associates it to an icon. This is a collaboration pattern resulting from the invocation of
buildButtonDescriptionForTool:andIcon: onDrawingEditor.

SinceToolState is a subclass ofEndToolState, the overlap in the interfaceTool presents
to these is expected. Using similar queries and displays (Q8 and D3) we discover that
the collaboration patterns in which these classes invoke methods onTool result from an
invocation ofevaluateIn:Event: on an instance ofToolState or EndToolState – but this
method invocation gives rise to several collaboration patterns, depending on the kind of
tool in question.

Looking at the collaborations ofTool. We look more systematically at the collaboration
patterns in which instances ofTool participate. As discussed in Section 6.3, each method
invocation recorded in the trace is a collaboration instance. Thus many collaboration
patterns are not of great interest because they correspond to a trivial interaction of just one
method invocation. In general, then, to arrive at more significant collaboration patterns,
we identify patterns in which in which several classes participate or in which a subset of
the methods of a class are involved.

For each class in the execution trace (listed in the receivers panel) we use Q7 queries to
obtain the shortest collaboration patterns in which bothTool and this class participate. The
collaboration patterns obtained in this way are summarized in Table 6.6. The name of each
collaboration pattern corresponds to the name of the invoked method which generates the
interaction and the name of the class which implements the method. We have also listed
each collaboration pattern only once, though in many cases there are actually several
collaboration patterns.

Collaboration Pattern Name
DrawingController changedTool
DrawingController tool:
DrawingController handleEvent:
Drawing handleForMouseEvent:
Tool handleEvent:
Tool figureAtEvent:
Tool startState:
Tool selected
ToolState nextStateForEvent:tool:
EndToolState evaluateIn:Event:
FigureTransitionTable nextStateForTool:event:
ToolbarController redButtonReleasedEvent:

Table 6.6: Collaborations involvingTool

Some of the collaboration patterns listed in the table are contained in each other. In
particular, we deduce by looking at the collaboration patterns, the nesting relationship
between collaboration patterns ofDrawingController handleEvent::

6.5. VALIDATION OF THE APPROACH: CASE STUDIES 119

DrawingController handleEvent:
Tool handleEvent:

ToolState nextStateForEvent:tool:
FigureTransitionTable OR SimpleTransitionTable nextStateForTool:event:

Tool changedToState:event:
EndToolState OR ToolState evaluateIn:Event:
EndToolState OR ToolState isEndState

We can thus reduce the number of non-overlapping collaborations in whichTool takes
part. Which collaboration patterns we want to eliminate from the table depends on the
question which is driving our investigation – on whether we are interested in understand-
ing the elementary collaborations first, or prefer to have an overview of some of the larger
collaborations.

Investigating a particular collaboration. We choose to concentrate on the collabora-
tion patternsTool handleEvent:, to learn about how tools handle user events. There are
four collaboration patterns resulting from the invocation of this method. The differences
between these is illustrated in Table 6.7: since the pattern matching settings specify a
relative depth of 3, only differences in the method invocations up to a relative depth of 3
are seen in the collaboration pattern. The differences of the collaboration patterns are due
to different methods executed. The table lists the four variations, each one in a separate
row. For each variation, the name of the class which implements the executed method is
listed under the column of the method.

handleEvent: nextStateForTool:event: evaluateIn:event: nextStateForEvent:tool: isEndState
1 Tool SimpleTransitionTable EndToolState ToolState ToolState
2 Tool SimpleTransitionTable EndToolState ToolState EndToolState
3 Tool ToolState
4 Tool FigureTransitionTable EndToolState: ToolState ToolState

Table 6.7: Different collaboration patterns forTool handleEvent:.

Looking more closely at an instance of each one of these patterns using the interac-
tion diagram display we see that there are principally three variations, since collaboration
pattern 1 and 2 are similar. In contrast, collaboration pattern 4 in which aFigureTransi-
tionTable participates, differs considerably from the three others. For each one of these
collaboration patterns we query about the participants of the collaboration pattern and
their role. From these queries we learn that when thenextStateForTool:event: is invoked
on an instance ofFigureTransitionTable, rather than on aSimpleTransitionTable, then it
in turn requestsTool to provide the figure associated with an event by invokingfigureAt-
Event:.

Characterizing a collaboration. By querying about each of these four collaboration
patterns we extract the role that the participant classes play in each collaboration. This

120 6. COLLABORATION VIEW RECOVERY

a Tool a SimpleTransitionTablea ToolState

handleEvent:
nextStateForEvent:tool:

evaluateIn:event:

isEndState

nextStateForTool:event:

Tool handleEvent #1
a SimpleTransitionTable an EndStatea Tool a ToolState

isEndState

nextStateForTool:event:

nextStateForEvent:tool:
handleEvent:

evaluateIn:event:

Tool handleEvent #2

a ToolState

handleEvent:
nextStateForEvent:tool:

a Tool

Tool handleEvent #3
a FigureTransitionTablea ToolState a Drawinga Tool

nextStateForEvent:tool:
handleEvent:

nextStateForTool:event:

figureAtEvent:

evaluateIn:event:

isEndState

figureAt:

Tool handleEvent #4

Figure 6.10: Collaboration patterns resulting from invocation ofTool handleEvent. The
method invocations in boxes and bold font show invocations which have not been ex-
panded in the interaction diagram.

6.5. VALIDATION OF THE APPROACH: CASE STUDIES 121

information is not straightforward to present, since we see that there are two collabora-
tions EndToolState evaluateIn:event: andDrawing figureAt:, whose participants are not
predictable – they depend on the user event, and on the figures which are in the drawing.
We therefore choose to characterize the predictable elements of the collaboration patterns
and to leave the variable elements open. This can be seen in Table 6.8, where the variable
collaborations have been denoted by bold faced method names.

Recovering other collaborations. We can now revise the list of collaborations of
Table 6.6 : we removeDrawingController handleEvent:, Tool handleEvent:, ToolState
nextStateForEvent:tool: andFigureTransitionTable nextStateForTool:Event:, since we un-
derstand how they fit together.EndToolState evaluateIn:Event andTool figureAtEvent: are
shaded in the table - these are the ones which are still to be investigated. We thus obtain
Table 6.9.

Class name handleEvent #1+#2 handle Event #3 handleEvent #4

Tool handleEvent handleEvent
handleEvent:
figureAtEvent:

ToolState
nextStateForEvent:tool
evaluateIn:event:
isEndState

nextStateForEvent:tool:
nextStateForEvent:tool
evaluateIn:event:
isEndState

EndToolState
evaluateIn:event:
isEndState

evaluateIn:event:
isEndState

SimpleTransitionTable nextStateForTool:event:
FigureTransitionTable nextStateForTool:event:

Drawing figureAt:

Table 6.8: Class-Collaboration description for collaborationTool handleEvent:. Each
column corresponds to a collaboration, each row to a class. The table cells give the role of
the class in the collaboration. The methods in bold represent unexpanded collaborations
which result in variations on the collaboration patterns.

Collaboration Pattern Name
DrawingController changedTool
DrawingController tool:
Drawing handlerForMouseEvent:
Drawing controller
EndToolState evaluateIn:Event
Tool figureAtEvent:

Tool startState:
Tool selected
ToolbarController redButtonReleasedEvent:

Table 6.9: Collaborations involvingTool

We continue in the vein of the investigation described above to discover the role of
Tool in these collaborations and the other participants of these collaborations. Each collab-
oration recovered represents an important task in whichTool interacts with other classes.

122 6. COLLABORATION VIEW RECOVERY

By characterizing the collaboration patterns and their variations we also learn more about
interactions in the application.

6.5.2 Collaborations in CodeCrawler

In this section we present some results from using the Collaboration Browser to under-
stand collaborations in CodeCrawler [Lan99][DDL99]. CodeCrawler is a tool which sup-
ports reverse engineering through the visualization of code metrics. It combines a range
of code metrics with a variety of layout and display options to produce graphs which help
an engineer to understand a software system and to detect problems and anomalies.

Background information. CodeCrawler is implemented in Smalltalk and consists of 86
classes. In our investigation we are interested in how instances of classes interact in cre-
ating a CodeCrawler display. We therefore look basically at four inheritance hierarchies:
Item, ItemFigureModel, Figure andAbstractLayout. We know that a graph, a concept im-
plemented in classGraph, is composed of nodes and edges and that it represents the Model
behind the display. The actual view is represented by classes of theItemFigureModel, Fig-
ure andAbstractLayout hierarchies. Figure 6.11 below illustrates these hierarchies with
the main classes which appear later in the scenario.

CircleLayout HorizontalLayout VerticalTreeLayout

AbstractLayout

Graph

Item

EdgeNode CompositeItem

ItemFigureModel

NodeFigureModel EdgeFigureModel

LineFigure Drawing

Figure

RectangleFigure

1

*

MODEL

VIEW

Figure 6.11: The known elements of CodeCrawler

We want to know how the main elements illustrated in Figure 6.11 collaborate to
create a display in CodeCrawler. In particular we are interested in the different roles
played by the classes inItemFigureModel hierarchy.

Collecting Dynamic Information. We instrument all the methods of the classes in these
four inheritance hierarchies, for a total of 41 classes. We then execute the following
scenario: load a software application to be displayed, run Class BluePrint operator to

6.5. VALIDATION OF THE APPROACH: CASE STUDIES 123

collect metrics, open CodeCrawler, choose inheritance classification display, display it,
enlarge display, choose circular display, vertical tree display, horizontal display.

Pattern matching. We set the following pattern matching options: (i) for information
about an event, we choose the method name and the name of the class defining the method,
(ii) for events to exclude: the depth of invocation is set to 20, the relative depth of invoca-
tion to 4, self-sends are not ignored, (iii) for structure of the collaboration instance: a set
of events (rather than a tree).

This scenario generated 7,132 method invocation events. The pattern matching re-
sulted in 116 collaboration patterns.

Looking at the interface of ItemFigureModel classes.Since we are interested in the roles
played by the classesNodeFigureModel andEdgeFigureModel we first look at the inter-
face that these classes present to other classes. The results of the queries are summarized
in Table 6.10 below.

Senders NodeFigureModel EdgeFigureModel

CircleLayout
HorizontalLineLayout
QuadraticLayout
VerticalTreeLayout

translateTo:
width
height
childrenFigures
descendantFigures
isRootFigure
level
level:

Drawing

bounds
figure
isEdgeFigure
isNodeFigure
zoomByFactor:

figure
isEdgeFigure
isNodeFigure

EdgeFigureModel

addChildFigure:
addEdgeFigure:
addParentFigure:
figure

ViewBuilder

applySizeMetrics
figureClass:
fillColor:
initialize
initializeFigure
isAttributeFigure
isClassFigure
isFunctionFigure
isMethodFigure
item
item:

figureClass:
initialize
initializeFigure
item:
node1Figure:
node2Figure:

Table 6.10: Interface matrix forNodeFigureModel andEdgeFigureModel.

From Table 6.10 we learn that the layout classes invoke methods onNodeFigure-

124 6. COLLABORATION VIEW RECOVERY

Model, but not onEdgeFigureModel. Furthermore, whereasEdgeFigureModel invokes
methods onNodeFigureModel, the reverse does not hold. This asymmetry of nodes and
edges suggests that nodes are more ‘central’ than edges in CodeCrawler. Layout is likely
done for nodes, and the edges follow.

Recovering Collaborations. As in the first case study, we used queries to find the col-
laboration patterns in which these two classes participate. For each of the collaboration
patterns we then recorded all the participants in the collaboration and the part of their
public interface which is invoked in the collaboration. In Table 6.11 below we list the
main collaborations and the participants in these collaborations. We have chosen to omit
here the roles of the participants as this results in a very large table, and the details are not
of interest here. The interesting thing is that we can ‘decompose’ the trace information
into collaborations and we can see the patterns of collaboration: which classes interact
with other classes, and in which context.

How did we decide which collaboration patterns to look at? In extracting collabora-
tions we look at collaboration patterns which do not contain each other, and which are
not trivial, i.e, they have two or more participants. The collaboration patterns shown in
the table meet this criteria. This is why noViewBuilder collaboration patterns are seen
in Table 6.11: eachViewBuilder collaboration pattern also includes one or more of the
patterns given in the table.

Through querying we realized that most of the trace generated consists of one large
collaboration pattern (5,073 invocation events out of total of 7,132), from the execution of
the methodcreateViewFromScratch on an instance ofViewBuilder. This method, whose
code is given below, builds up a CodeCrawler view from scratch. First the model aspects
are handled: building the graph from nodes and edges then the view aspects of sorting the
nodes and coloring them and finally the layout of the graph is done.

createViewFromScratch
self initialize.
self initializeAttributeNodePluginMetrics.
self initializeClassNodePluginMetrics.
self initializeMethodNodePluginMetrics.
self initializeFunctionNodePluginMetrics.
self inferNodesToBeDisplayed.
self inferEdgesToBeDisplayed.
self sortNodeFigures.
self colorizeFigures.
self layoutFigures

We have therefore sorted the collaborations in an approximate ordering corresponding
to the execution of this method. Collaboration patterns which handle model aspects occur
first, followed by collaborations which create the figure to be displayed and finally the
collaboration which does the layout and displays the drawing. We have also sorted the
participants in such a way that participants which belong to the model aspect appear first,
followed by those that belong to the view concept. The table then shows a diagonal
structure: as we proceed in creating the view, we use less and less the model classes

6.5. VALIDATION OF THE APPROACH: CASE STUDIES 125

and more and more the view classes. Table 6.11 indeed confirms the central role that
NodeFigureModel plays in the creation of a CodeCrawler display.

Collaboration Gra
ph

Nod
e

Edg
e

Nod
eF

igu
re

M
od

el

Edg
eF

igu
re

M
od

el

Rec
ta

ng
leF

igu
re

Lin
eF

igu
re

La
yo

ut

Dra
wing

1
Graph
classNodes

X X

2
Graph
inheritanceEdges

X X

3
NodeFigureModel
applySizeMetrics

X X

4
NodeFigureModel
isClassFigure

X X

5
NodeFigureModel
initializeFigure:

X X

6
EdgeFigureModel
initialize

X X

7
EdgeFigureModel
initializeFigure:

X X X X

8
AbstractLayout
initialize:

X X

9
AbstractLayout
LayoutAt:

X X

10
Drawing
displayedEdgeFigure

X X X

Other collaboration patterns with the same participants as collaboration patterns:
4. isAttributeFigure, isFunctionFigure, isMethodFigure.
8. CCVerticalTreeLayout levelWidthOfSubtree:atLevel:, CCTreeLayout nodeFiguresOn-
Level:outOf:, CCTreeLayout maxLevelOfNodeFigures: and CCTreeLayout initializeLevelOfChil-
drenOfNode:.

10. Drawing displayedNodeFigure.

Table 6.11: Class-Collaboration matrix for collaborations in CodeCrawler

6.5.3 Collaborations in the Refactoring Browser

In this section we present some results from looking at the collaborations of the class
CompositeRefactoryChange in the Refactoring Browser [RBJ97].

Background information. Recall that in the case study in Section 5.2 we looked for a
facade in the Refactoring Browser. In that investigation we wondered about the role of
CompositeRefactoryChange. It is difficult with concept views to convey what is happen-
ing in the application in terms of the sequence of calls and the responsibilities of classes

126 6. COLLABORATION VIEW RECOVERY

in different contexts. We now use the Collaboration Browser to look more closely at the
collaborations in whichCompositeRefactoryChange takes part.

Collecting dynamic information. As in the second scenario presented in Section 5.2,
we instrument the classes in the two categoriesRefactory-Refactorings and Refactory-
Support, as well as the classSystemNavigator, and run a refactoring scenario to push a
method down the inheritance hierarchy, then to rename a method.

Pattern matching. We set the same pattern matching options as for the CodeCrawler
case study. The executed scenario generated 1,724 method invocation events. The pattern
matching resulted in 125 collaboration patterns.

Querying about the interface ofCompositeRefactoryChange. We look at the interface
thatCompositeRefactoryChange presents to other classes in the scenario – this is given
in Table 6.12. It shows that bothRefactoring classes instances invoke the same methods
on instancesCompositeRefactoryChange. In the table we also give the methods that
instances ofCompositeRefactoryChange invoke onother instances of the same class.

Senders CompositeRefactoryChange method

CompositeRefactoryChange
changes:
postcopy

RenameMethodRefactoring
PushDownMethodRefactoring

addChange:
addChangeFirst:
execute
executeWithMessage:
initialize
name
removeMethodFrom:
compile:in:
compile:in:application:classified:

Table 6.12: Interface matrix forCompositeRefactoryChange

Querying about the collaborations ofCompositeRefactoryChange with Refactoring
classes.We query about the collaboration patterns in whichCompositeRefactoryChange
and aRefactoring class both participate. These are listed in Table 6.13. For each collabo-
ration pattern we give the role thatCompositeRefactoryChange plays in the collaboration.

We use the Collaboration Browser to look at the collaboration patterns in Ta-
ble 6.13. We see that the structure and functionality ofRefactoring convert-
Method:for:using:notifying andPushDownMethodRefactoring pushDown:using: are simi-
lar – they are both collaborations in which aCompositeRefactoryChange creates anAd-
dMethodChange object and sets its attributes. We also see that the two collaboration pat-
tensRefactoring performChange: andRefactoring performChange:withLabel have similar
structure and functionality – in both cases the elementary changes are executed. In both
cases theCompositeRefactoryChange object which executes the changes, on the invoca-
tion of execute or executeWithMessage: also creates a deep copy of itself. Though we
do not understand from this all the details of what is happening, we suppose that this is

6.5. VALIDATION OF THE APPROACH: CASE STUDIES 127

Collaboration Role of CompositeRefactoryChange
Refactoring
initialize

name:
initialize

Refactoring
convertMethod:for:using:notifying

compile:in:

PushDownMethodRefactoring
pushDown:using

compile:in:application:classified:

Refactoring
performChange:

addChange:
addChangeFirst:
postCopy
changes:
execute

Refactoring
performChange:withLabel:

addChange:
addChangeFirst:
postCopy
changes:
executeWithMessage:

Table 6.13: Collaborations forCompositeRefactoryChange

for the purpose of undoing changes in a transactional way. We thus compress Table 6.13,
to arrive at Table 6.14.

Collaboration Role of CompositeRefactoryChange

create a composite change
name:
initialize

create and set a change object
compile:in: OR
compile:in:application:classified:

execute the changes

addChange:
addChangeFirst:
execute OR executeWithMessage:

in execute:
create a deep postCopy
copy of itself changes:

Table 6.14: Collaborations forCompositeRefactoryChange: here we have grouped to-
gether similar collaborations from Table 6.13.

From this table we see that these collaboration patterns partition the interface ofCom-
positeRefactoryChange into roles. There remains, however, the methodremoveMethod-
From: which is unaccounted for. We query to obtain collaborations in which this method
is invoked and obtain two:ChangeMethodNameRefactoring performRefactoring and
PushDownMethodRefactoring performRefactoring. Selecting each of these collaboration
patterns and querying about their participants, we obtain a nesting relationship which indi-
cates that these collaboration patterns include also the collaboration patternsRefactoring
performChange: andRefactoring performChange:WithLabel:. We thus see where each of
the methods of the public interface ofCompositeRefactoryChange comes into play.

128 6. COLLABORATION VIEW RECOVERY

6.6 Evaluation and Discussion

What do these three case studies demonstrate? In the first case study we walked the reader
through the process of using the Collaboration Browser. We also showed how queries
are used to identify variations on a method invocations and to characterize the resulting
collaboration patterns. In the second case study we showed how the execution trace can
be decomposed into a set of collaborations, thus giving us a feeling for the patterns of
collaboration: which classes collaborate with each other, and in which context. Finally,
in the third example we partitioned the interface of a class into several roles and identified
the collaborations in which it plays these roles.

The case studies demonstrate that the queries aid us in locating interesting collabo-
rations and in understanding the role of a class in a collaboration. They also show that
the task is not simple: we cannot automatically obtain enlightening information – rather
we must work in interpreting the information obtained and in deciding on the best way to
explore collaboration patterns.

In this section we evaluate the approach in the light of the case studies conducted and
discuss some critical issues.

6.6.1 Lessons learned

The case studies demonstrated that we can quickly locate the information of interest, and
find collaboration patterns which should be further investigated. What we also see from
these case studies is that it is rare that we can actually partition the public interface of a
class into separate sets of methods which correspond to the roles of a class in different
collaborations. It is also a challenge to find the right settings for the pattern matching
criteria for each case study so that we are not presented with too many variations on
a method execution, while at the same time getting some information about important
variations. Section 6.6.3 discusses our experiences and results with a range of matching
schemes.

By characterizing a collaboration and its variations we gain a better understanding of
how the functionality of the software is carried out through the interaction of instances.
First, it helps us to understand the function of a class, by seeing the different roles it
plays. Second, it tells us where in the code we should look to understand the protocol
of interaction. Finally, through the iterative process of recovering information about a
collaboration we learn much about the program behavior.

Although we were interested to know how far we could go in collaboration recovery
without visualization, in working with the tool we realized it was important to integrate
a sequence diagram visualization in order to display collaboration instances. This was
certainly a help in the process of collaboration recovery.

Table 6.15 below summarizes the size of the case studies in terms of the number of
classes instrumented (number of methods), the resulting number of method invocations
in the execution trace, and the number of collaboration patterns which resulted with the
pattern matching scheme.

6.6. EVALUATION AND DISCUSSION 129

Application Classes Methods Invocations Collaboration Patterns
HotDraw 39 548 53,735 183

CodeCrawler 41 426 7132 116
Refactoring Browser 68 657 1724 125

Table 6.15: Size of case studies.

6.6.2 Towards a Methodology

The process of extracting collaborations using the Collaboration Browser is an iterative
one – the result of one query leads to another query, and so the user focuses on classes
and collaborations of interest. Below we sketch the process, giving a rough ordering of
different kinds of queries. The first step in the process is the creation of collaboration
patterns through the setting of the pattern matching options. In the process of querying,
though, we may want to alter these settings to create a new base of collaboration patterns.

1. Creating collaboration patterns.We start by setting the pattern matching criteria
and launching the pattern matching to create the collaboration patterns which form
a base for the querying.

2. Querying about interfaces.In querying we generally start by finding out which
classes communicate with each other. For this we query to find the interface a class
presents to other classes.

3. Looking for a collaboration pattern.We query about collaboration patterns in
which certain classes participate, or ones in which certain methods come into play.

4. Looking at all the participants for a collaboration pattern.Once we have obtained
several collaboration patterns which are of interest, we want to know which classes
participate in a given collaboration pattern, and what role each class plays.

5. Understanding a collaboration.The interaction diagram displays aid us in under-
standing a collaboration. We can also load an instance of a collaboration pattern
as the current base of dynamic information, and begin at step 2. again, this time
working with a smaller base of dynamic information.

6.6.3 Pattern Matching

In the case studies presented we concentrated on the process of recovering collaborations
by querying and on showing what kinds of questions can be answered using this approach.
In this section we look at pattern matching criteria as they are practically used. We start
by summarizing guidelines from our experience with case studies. We then look at each
of the pattern matching options. Finally, we look at the effect of the size of the trace on
the number of collaboration patterns obtained.

Some guidelines.Our experiments suggested that treating collaboration instances as trees
is too restrictive for design recovery. We therefore chose to treat collaboration instances

130 6. COLLABORATION VIEW RECOVERY

as sets of events. Self-sends can safely be ignored without loss of ‘meaning’. The two
criteria most useful to modulate are the relative depth of invocation and the event labeling
options. Matching on object identity is in most cases too restrictive unless we want to
detect the use of a particular object. Labels which allow for polymorphism, such as the
name of the class defining the method, enable us to abstract away from the actual class of
the object or the method name to something with the same ‘meaning’.

Collaboration Structure. As mentioned in Section 6.3.2, the problem of matching simi-
lar collaboration instances is a problem of approximate tree matching. Each collaboration
instance is a subtree in the execution trace with nodes labeled with send event informa-
tion: (SenderClass, SenderInstance, ReceiverClass, ReceiverInstance, InvokedMethod).
If we are flexible on how we match nodes,e.g.only some parts of the label should match,
then we can match trees whose nodes differ slightly. The structure of the tree itself will
also determine which trees will be matched as similar. Several algorithms exist for ap-
proximate tree matching [ZSW94], which measure similarity of two trees in terms of the
deletion, insertion and relabeling operations which convert one tree to another. We have
chosen to arrive at a approximate matching, though, by doing away with some nodes
altogether, in effect filtering them out, and by considering another way to view the tree
structure.

If collaboration patterns are treated as trees, then two collaboration instances match
if they have equivalent call trees of method invocation events. Tree equivalence can be
defined recursively: two trees are equivalent if the label of their root node matches, and
their subtrees have a one-to-one matching.

This kind of matching, however, does not take into account some variations of a col-
laboration. For example, similar collaborations in which the number of participants is
different will not be matched, since their call trees have a different structure. The same is
true for iterations of message exchanges which vary in the number of iterations.

We canflatten the collaboration tree and represent it as a set of node labels. Here
we make the assumption that this kind of structure is not likely to be duplicated for col-
laborations which differ semantically to a great degree. This seems like a reasonable
assumption. Consider each method invocation event as a node-labeling token in an al-
phabet. For general trees (general language) the probability of a token labeling any node
is the same, whereas trees which represent method invocation events represent a highly-
structured language where the distribution of the tokens in specific subtrees is not random.

Practically speaking, flattening a tree structure means that a collaboration is repre-
sented as a set of node labels. Collaborations are considered equivalent if their label sets
are identical. This matching scheme gets rid of nesting relation on the events and ignores
iterations and recursions. The node labeling options control which event information en-
ters into the label.

In our case studies we have treated collaboration patterns as sets of labels rather than
as trees, since we considered tree matching too restrictive for the kind of information we
were trying to extract. Table 6.16 below compares the number of collaboration patterns
obtained for each kind of structure matching. The other matching parameters were set
as follows: no limit on relative depth of invocation or on depth of invocation (it was set

6.6. EVALUATION AND DISCUSSION 131

greater than the deepest collaboration instance), ignoring self-sends, matching nodes on
defining class and name of method.

Structure Collab. Patterns Collab. patterns> 1 Tool handleEvent
Set 295 235 25
Tree 428 368 33

Table 6.16: Number of collaboration patterns as a function of collaboration structure for
the HotDraw case study

Table 6.16 lists the total number of collaboration patterns obtained, the number of col-
laboration patterns whose length (number of method invocations occurring in the pattern)
is greater than 1, and also the number of collaboration patterns obtained for the collabo-
rations resulting from the invocation ofhandleEvent: onTool. Recall that in Section 6.5.1
we looked at four variations of this collaboration.

Relative depth. In the HotDraw case study we set the relative depth for matching at 3.
Table 6.17 shows the effect or different values of relative depth on the total number of col-
laboration patterns found, on the total number of collaboration patterns which correspond
to more than just one method invocation, and the number of collaborations found forTool
handleEvent. Here the total depth of invocation is set to 25, the event label to defining
class and name of method. We ignore self-sends, and treat the collaboration structure as
a set of labels.

relative depth Collab. Patterns Collab. patterns> 1 Tool handleEvent
1 127 68 1
3 183 121 4
7 287 225 21

max(23) 295 235 25

Table 6.17: Number of collaboration patterns as a function of relative depth for the Hot-
Draw case study

Table 6.17 shows that there are 127 different node labels (defining class and name
of method), as obtained with matching to a depth of invocation of 1. Also there are a
maximum of 295 collaboration patterns when the relative invocation depth is set to the
maximum depth of an invocation in the trace. When self-sends are taken into account
as well, this figure rises to 572. In general, ignoring self-sends reduces the number of
collaboration patterns by approximately a factor of 2.

In the HotDraw case study increasing the relative depth of invocation to 7 resulted in
21 different collaboration patterns for the invocation ofhandleEvent on Tool. The same
‘dramatic’ effect was not observed in the other two case studies, where there were much
fewer variations on the execution of a method.

Event node labeling.The information we choose for labeling the event nodes depends on
the aspects of a collaboration we are interested in. In design recovery we are usually not

132 6. COLLABORATION VIEW RECOVERY

interested in what is happening at the object level (exactly which instances send messages
to each other), but rather in generalizing from these object interactions. Labeling an
event node with the names of the sender and receiver classes and ignoring method names,
for example, will match all collaboration instances which have the same sender-receiver
pairs, regardless of the invoked method. Labeling an event node with the name of the
selector category rather than the method name will match collaboration instances where
methods with similar semantics (since they are in the same category), but different method
names are invoked. For example, in the CodeCrawler case study, using defining class and
method category as a labeling function, we match all the collaboration patterns listed in
row 4 of Table 6.11 as one collaboration patternNodeFigureModel testing, instead of the
four different collaboration patterns obtained with matching on method name. In our case
studies we used the method name together with the name of the superclass which defines
this method as our node labeling.

Size of the trace.Our case studies showed that pattern matching compressed the amount
of information we operate with considerably: in the HotDraw case study 50K method
invocations resulted in 180 collaboration patterns. But what happens as the size of the
trace increases? To get a feeling for this we ran a few more scenarios to obtain figures for
larger traces. In each of these cases we treat the collaboration structure as a set, ignore
self-sends, do not restrict the relative or absolute depth of invocations and label the nodes
with defining class and method name.

Application Classes Methods Invocations Collab. Patterns Deepest Collab.

HotDraw 39 548 35,435 177 19
HotDraw 39 548 53,735 295 23
HotDraw 39 548 140,585 393 23

CodeCrawler 41 426 7,132 116 11
CodeCrawler 77 669 19,369 128 8
CodeCrawler 77 669 86,992 186 13

Table 6.18: Number of collaboration patterns as a function of number of events

Table 6.18 lists the number of collaboration patterns as a function of the size of the
trace. It also gives the number of classes and methods instrumented, and the depth of the
deepest collaboration instance in the trace. This information is graphed in Figure 6.12.
It is hard to project from these few data points to draw conclusions about the number
of collaboration patterns found as the trace grows even larger. It is clear that this also
depends on thebreadthof the scenario – for a scenario which exercises the same basic
functionality over and over we would expect the curve to level off as the size of the trace
grows, but a scenario which exercises new parts of the system as time proceeds may result
in a steady increase in the number of collaboration patterns found.

6.6. EVALUATION AND DISCUSSION 133

number of method invocations recorded

nu
m

be
r

of
 c

ol
la

bo
ra

tio
n

pa
tte

rn
s

fo
un

d

.. .
50,000 100,000 150,000

.

.

.

.

100

200

300

400

.

.

.

. .
.

Code Crawler

HotDraw

Figure 6.12: Number of collaboration patterns as a function of size of trace

6.6.4 Characterizing Collaborations and Roles

An important issue raised by this work is the characterization of collaborations. The nota-
tion currently used to model object-oriented collaborations are UML interaction diagrams.
As discussed in Section 6.3, UML interaction diagrams are used at the design level, so
it is hard to tie them to collaborations occurring in the code. It would be interesting to
experiment with other ways of modeling collaborations which can express similarity of
collaboration instances found in a trace.

In our case studies we have chosen to represent a collaboration as a set of participants
and their corresponding role. This is also in synch with the pattern matching settings we
use. Since we label each method invocation event with the name of the invoked method
and the name of the class defining that method, we treat collaboration instances as equiv-
alent when they have the same labels in their set. If, on the other hand, we include also
the name of the sender class in an event label, then the collaboration pattern is better
characterized as a matrix. For example, Table 6.19 shows the collaboration patternTool
handleEvent: #4 (Table 6.8) as a matrix.

sender—receiver Tool ToolState EndToolState FigureTransitionTable Drawing

Tool
nextStateForEvent:tool
evaluateIn:event:
isEndState

evaluateIn:event:
isEndState

figureAt:

ToolState nextStateForTool:event:
EndToolState

FigureTransitionTable figureAtEvent:
Drawing

Table 6.19: Collaboration matrix description for collaborationTool handleEvent: #4

Characterizing roles. The same issue of characterizing collaborations applies also to

134 6. COLLABORATION VIEW RECOVERY

the characterization of roles. In the Collaboration Browser roles are defined in terms of
method names. Matching on roles is therefore textual: we look at the method name to
see if it occurs in the collaboration pattern. But there are cases where two instances play
a similar role in a collaboration though the method names differ – just as abstract classes
generalize from their subclasses, an abstract characterization of a method would gener-
alize from method names. We also experimented with matching methods by the method
category they belong to, to arrive at a behavioral semantics of the method independent of
its name.

6.6.5 Generality of the Approach

Language independence.The approach we present is general enough to be used for the
extraction of collaborations from software applications implemented in any class-based
object-oriented language. The approach relies most heavily on dynamic information,
static information is used in pattern matching for assigning labels to nodes,e.g., matching
on method category name, matching on the name of the class defining the methods. The
pattern matching scheme can easily be tailored to accommodate static groupings for other
object-oriented languages.

Efficiency. Once pattern matching has been done, we are querying a relatively small
database. Without putting much effort into query and algorithm optimization, the re-
sponse times obtained in the case studies for both ‘query trace’ and ‘query collab’ queries
were fast (less than 2 seconds).

Scalability. The collaboration recovery technique is scalable to large systems for the
following reasons:

Compression of information through pattern matching. Data from our case studies
shows that the number of collaboration patterns obtained as a percentage of the
number of method invocations in the trace range from less than 0.5% (for the
HotDraw case study) to 7.2% (for the Refactoring Browser case study). As dis-
cussed Section 6.6.3, if we execute a scenario to exercise only a specific func-
tionality, we expect that the number of collaboration patterns found would form a
decreasing percentage of the trace size as the trace size grows.

Information presented through classes and methods.The query model we support
presents the information to the developer in terms of classes, methods and collabo-
ration patterns. Even for large systems, this information can easily be searched and
accessed. We can also consider grouping classes and methods as they are grouped
in the Smalltalk browser: contained in applications or class categories, or in method
protocols.

Meaningful collaborations are naturally small. By this we mean that in seeking to un-
derstand collaborations in a software system we look for interaction where only a
subset of the classes participate.

6.6. EVALUATION AND DISCUSSION 135

Limitations. We treat a collaboration instance as the execution sequence ofall the events
which result from a method invocation, rather than looking at an arbitrary sequence of
events within a method invocation. This has simplified the implementation of pattern
matching as an operation on trees. But we could also consider a broader definition of
collaboration instance, and as a result a broader notion of collaboration.

In our characterization of collaborations we represent the role of a class in a collabo-
ration as a set of all the methods invoked on instances of that class in the collaboration.
That is, in a single collaboration, we do not consider that different instances of the same
class play different roles, or that a single instance could switch roles. A finer analysis of a
particular collaboration pattern could yield a more refined partitioning of different roles.

The Collaboration Browser does not currently support queries which can relate one
collaboration pattern to another (e.g., which collaboration pattern is contained in another),
but this might be a useful extension for a better navigation of collaboration patterns.

6.6.6 Related Work

Several visualization approaches to dynamic information have been discussed in Sec-
tion 2.2.3. We compare this present work with two approaches which use pattern match-
ing as a technique for reducing information overload [PLVW98][JR97][JSB97].

The work on execution patterns [PLVW98] reports experiments with a range of elision
techniques which allow an engineer to visually recognize patterns in the interactions of
objects. The dynamic information is presented as a modified form of a sequence diagram
where the flow of control is depicted always from left to right (so there may be more than
one time line for each object). Using this display as a basis, several chart metaphors are
introduced to represent message send behavior more compactly. Pattern matching is also
used to simplify the presentation of the data by hiding details not considered essential and
so highlighting similar sequences in the execution trace.

In ISVis [JR97] [JSB97] pattern matching is used, as in our approach, to group to-
gether similar execution sequences. The patterns identified are used in several different
visualizations. Execution patterns are plotted against all the classes of the application in
a visual ‘pattern matrix’ which enables the developer to scan the patterns for ones with
specific classes as participants. This is a form of visual querying similar to our querying
about collaboration patterns with specific participants. Patterns are also plotted against
the length of the trace in a mural view, so that the occurrence of a specific pattern in the
trace can be localized.

The work we presented here is similar to the work described in [JSB97] and
[PLVW98] in the goal of finding recurring patterns as a way of recognizing important
design concepts. Our work is, however, not oriented towards program visualization: we
use only a simple sequence diagram visualization to display an instance of the collabora-
tion pattern chosen. Our main focus is on using the dynamic information to help in the
recovery of roles and collaborations. We see our work as complementary to the visual-
izations proposed in [JSB97] and [PLVW98]: these tools display an entire trace and give
the user a feel for the overall behavior of an application and the repeated occurrence of

136 6. COLLABORATION VIEW RECOVERY

patterns in order to identify different phases of execution, whereas our approach focuses
on the roles of classes in much smaller chunks of interaction, without considering the time
dimension of the trace.

Work on the detection of design patterns in code is also related to our work since de-
sign patterns often represent a collaboration. These have been discussed in Section 2.2.4.
Finding collaborations may aid in detecting design patterns.

We know of only one other approach which explicitly aims to reverse engineer
collaborations[Hon98]. In this approach, static information only is used to recover Col-
laboration Contracts [Luc97]. The approach is an incremental one, in which aclassifi-
cation browseris used first to classify a set of classes of the application as participants
of interest and then to edit their interface, so as to arrive at a description of participant-
roles in a collaboration. This classification of participant-roles is then enlarged by all the
acquaintances of the participants already in the classification. Finally, by looking at the
method bodies of all the participants-methods in the classification the calling relationships
between methods can be inferred, albeit without an ordering relationship on the method
calls. The classification browser approach relies even more heavily than our approach on
the input of a user who must select the initial participants and their roles in the collabora-
tion and in determining appropriate acquaintances to include in the collaboration.

6.7 Revisiting the Requirements

We now evaluate our work on collaboration view recovery in the light of the requirements
we have set for ourselves in Section 2.3.

1. Lightweight information model. This has been discussed in Section 5.4. For recov-
ering collaborations, we use static information only in pattern matching for labeling
the method invocation events,e.g., to generalize from a method name to a method
category, or from a receiver class name to the name of the class in the inheritance
hierarchy which defines the executed method. Collaboration view recovery thus
requires static information about classes and the methods they define, and about
inheritance relationships.

2. Simple view specification.The pattern matching criteria are simple to set and the
query model proposes simple queries about basically two relations.

3. Succinct views.What is an extracted view in collaboration view recovery? The arti-
facts we usually aim to recover from this analysis are class-collaboration matrices,
or some characterization of a collaboration pattern. We are usually not interested in
carrying out this analysis for all the classes in the software system but for a partic-
ular subset of classes. The information which results can thus be summarized in a
compact way.

4. Developer guides the process.The developer guides the recovery process by setting
pattern matching options and by querying the dynamic information. The first case

6.7. REVISITING THE REQUIREMENTS 137

study demonstrated the process of collaboration recovery in which a developer
poses a question and launches queries in order to understand a collaboration and
to characterize its variations.

5. Extensible view specification.In collaboration view recovery we are restricted to
querying about two kinds of relations: method invocations in a trace, and method
invocations in the context of a collaboration pattern. So collaboration view recovery
does not provide for extensible view specification. This is provided for in concept
view recovery. The proposed pattern matching criteria can, however, be extended
by taking into account, for example, other kinds of static information in labeling
method invocation events, or by considering other options for describing the struc-
ture of a collaboration instance.

6. Behavioral views.Here we look again at the kinds of questions we want to be able to
answer using behavioral views:

� how do the main domain elements relate to each other?

In collaboration view recovery the main elements are classes, methods and
collaboration patterns. We can query about their relation to each other within
the two relations supported by the query model. Concept view recovery sup-
ports a wider range of relations and enables the developer to create component
abstractions corresponding to domain concepts.

� what parts of the software implement a specific feature?

In collaboration view recovery we can ask which classes and methods imple-
ment the functionality of a particular method. Again, concept view recovery
can provide answers to this question in a wider sense.

� to which messages do instances of a certain class respond?

This information can be obtained by querying the trace (‘query trace’ in the
Collaboration Browser) about the senders and invoked methods for a particu-
lar receiver class.

� how many instances of a class are present at runtime?

Collaboration view recovery cannot provide us with an answer to this ques-
tion. It can be obtained in concept view recovery.

� which objects are responsible for creating instances of a certain class?

Again, the answer to this question can be obtained in concept view recovery.

� which class instances participate in the interaction resulting from the invoca-
tion of a particular method?

Whereas in concept view recovery this question can be answered only for one
particular method invocation, collaboration view recovery provides us with in-
formation about different collaboration patterns resulting from the invocation
of a particular method.

138 6. COLLABORATION VIEW RECOVERY

� what are variations on the way a method is executed?

This question can also be answered in collaboration view recovery. The
first case study demonstrated how the querying facility of the Collaboration
Browser helps us to understand the variations of a method execution.

7. High-level views. Though the views obtained in collaboration view recovery are low-
level in the sense that they look at the method level, they can be considered high-
level when they help to decompose a software system (for a particular scenario)
into a set of collaborations, as was done for the CodeCrawler case study.

8. Low-level views. Low-level views in collaboration view recovery correspond to char-
acterizations of a collaboration pattern.

6.8 Conclusions

In this chapter we presented collaboration view recovery. We argued that collaboration-
based design artifacts are an important aid in understanding, maintaining and evolving
object-oriented software, and presented the challenges to extracting these from code. We
then introduced pattern matching as a technique to identify similar execution sequences
in the trace as instances of one collaboration abstraction. We discussed how perspectives
are specified using two operations: setting the pattern matching options and querying. We
explained how the engineer gives semantics to the notion of collaboration by setting the
pattern matching criteria and described a simple query model to support the recovery of
important collaborations.

We presented the Collaboration Browser tool which supports our approach and
demonstrated through case studies how it is used to characterize a particular collabo-
ration, to decompose a program trace into collaborations, and to break down the interface
of a class into several roles. We reviewed lessons learned from our use of the tool and
sketched a methodology for the extraction of collaborations.

In Section 6.7 we discussed how collaboration view recovery meets our requirements.
From this discussion we saw that collaboration view recovery is better than concept view
recovery at answering some of the behavioral questions we pose. In the conclusions which
follow we evaluate concept view recovery and collaboration view recovery together as one
contribution.

7

Conclusions

In this chapter we summarize the contributions made in the dissertation, discuss the limi-
tations of our approach and point to directions for future work.

7.1 Contributions

In this dissertation we presented a new approach for reverse engineering behavioral design
views of object-oriented software systems using dynamic information. Our approach is
based on perspectives – lenses through which the engineer views the dynamic information
– and their use in an iterative recovery process.

We claimed that such an approach can overcome the difficulties of recovering suc-
cinct and focused views of object-oriented software from dynamic information because
it enables an engineer to declaratively specify the kind of information that he or she is
interested in, instead of presenting him or her with a lot of information at fine granularity.

To validate our claim we developed techniques to support the specification of perspec-
tives and the extraction of design views. We developed methods for expressing basically
two kinds of perspectives: the first kind is the component-connector perspective which
supports the recovery of concept views of the software; the second is the collaboration
perspective which supports the recovery of collaboration views. We demonstrated that
these two kinds of perspectives enable the extraction of a range of views which answer
many behavioral questions. The views obtained by each of the techniques are comple-
mentary: concept views are useful in obtaining high-level views of the software, whereas
collaboration views are helpful in understanding how classes collaborate to carry out a
certain functionality and the roles they play in different collaborations.

We first identified a model for representing object-oriented programs and their execu-
tion. This model consists of a meta-model for static information and a meta-model for
dynamic information, and provides a cornerstone for the definition of perspectives. The
meta-model for static information is used in perspectives for creating component abstrac-
tions and collaboration abstractions. Our case studies demonstrate that even a small core
of this meta-model – only classes, methods and inheritance definition entities – suffices
for obtaining a repertoire of interesting perspectives. The meta-model for dynamic infor-

140 7. CONCLUSIONS

mation represents program execution as a sequence of message send events between class
instances. This meta-model is used in perspectives for creating connector abstractions.
The two meta-models are conceptually simple, and they arelightweight: easy to populate
for any object-oriented system.

For the recovery of concept views we introduced a framework to support the defini-
tion of perspectives using a logic programming language. We described how component
abstractions are defined by grouping together static entities of the software into a compo-
nent, and how the semantics of a connector is defined by defining a relation in terms of
message send events. We identified and encoded several useful component and connector
types and showed how an engineer can define new ones. Finally, using case studies, we
demonstrated the use of perspectives for the iterative recovery of concept views.

Our work on concept view recovery showed that perspectives provide forsimple view
specification, and that the logic programming framework supportsextensible view speci-
fication. The case studies described showed that the views obtained aresuccinct, and that
they enable us to answer manybehavioral questionsat both ahigh-levelof component
relations and alow-levelof object interactions. The case studies also demonstrated an
iterative recovery processguided by the developer.

For the recovery of collaboration views we introduced pattern matching as a technique
to identify similar execution sequences in the execution trace in order to abstract from the
interaction of objects to class collaborations. Here the notion of perspective translates to
focusing on interesting information through pattern matching and querying. We described
how setting the pattern matching criteria determines the semantics of a collaboration, and
showed through our case studies how querying is used to find and characterize important
collaborations.

Our work on collaboration view recovery showed that perspectives provide forsimple
view specificationthrough these two operations. Though we do not have a visual no-
tation for a collaboration view, as we do for a concept view, the case studies described
showed that the views obtained can be expressedsuccinctlyas class-collaboration matri-
ces which show the roles that classes play in different collaborations. These enable us to
answer specificbehavioral questionsrelating to the collaborations of instances at runtime.
Characterizing a collaboration provides us with a focusedlow-levelview of the software,
whereas decomposing the execution trace into a set of collaborations provides us with a
high-levelview. The case studies also demonstrated an iterative recovery processguided
by the developer.

In summary, we have provided evidence that an approach based on perspectives and
their use in an iterative recovery process meets the requirements for the recovery of be-
havioral views which we outlined in Section 2.3.

Our overall contribution is the development of techniques to support the iterative re-
covery of behavioral views using perspectives and the demonstration of the feasibility and
usefulness of such an approach. An approach based on perspectives can overcome some
of the difficulties associated with current visualization approaches, in providing focused
and succinct views earlier in the process of design recovery. Our work also makes some
contributions in a larger research context:

7.2. DISCUSSION 141

Logic programming is a powerful paradigm for representing, describing and reasoning
about design knowledge. It has been used as a meta-programming language for building
software development support tools which use static information to check and enforce
design constraints [Wuy01][Men00]. Our contribution here is to demonstrate that logic
meta-programming can be used for reasoning about dynamic information as well, and can
form a basis for design recovery tools. We use logic meta-programming as a vehicle for
expressing perspectives – but our work shows that it can also be used to express invariants
over dynamic information. Conformance checking using dynamic information is thus an
area for future work.

De Hondt [Hon98] demonstrated the use of ad-hoc grouping of software entities,soft-
ware classification, in organizing software in a flexible manner in a development envi-
ronment and in recovering views from static information. Our work on perspectives also
demonstrates the utility of such groupings, as in the mapping of software elements to
components,virtual classificationsas suggested in the Classification Browser approach
[Hon98], in recovering software design.

Our work provides another example of the usefulness of partial design recovery
[Mur96] based on incomplete information. Dynamic information is incomplete because
it is based on a specific usage scenario, and so does not exercise all execution paths in the
system. The approach is partial in that we focus on only a small part of the system, by
instrumenting selectively and by defining perspectives to specify the kind of information
we are interested in.

7.2 Discussion

In this section we address some of the usability considerations of our approach.

The recovery process.The advantages of an approach which hands over so much respon-
sibility to the developer is that it lets the developer decide what kind of information he or
she wants to see. But ‘deciding what I want to see’ might not be easy – so the burden of
interpreting a view and formulating the next perspective might also overwhelm a devel-
oper. To overcome this problem it is important to elaborate guidelines on the use of such
an approach; a first step was made in this dissertation in abstracting from the case studies
to common patterns of usage of our prototype tools. In concept view recovery, for exam-
ple, we first exploit the static organization of the software to obtain initial views, where
simple invocation and creation connectors are central in conveying an overview. For col-
laboration view recovery we provided some guidelines for setting the pattern matching
criteria and described a general querying process in which we start by looking at the in-
vocation relationships between the classes we are interested in and then go on to identify
and query collaboration patterns in which these classes participate. More work is required
here to assess which perspectives are useful in which context, and to associate guidelines
to different kinds of maintenance questions.

Visualization. In this research we wanted to avoid the use of visualization techniques.
We were interested to see how far we could go in design recovery without relying on a

142 7. CONCLUSIONS

visualization form specific to object-oriented systems, such as sequence diagrams. But
when trying to understand the low-level interaction of objects we decided to integrate
a sequence diagram tool to view instances of collaboration patterns, and we sometimes
missed not having an overview of the whole trace. So the absence of such a possibility
might limit the usefulness of our approach for answering certain questions.

There is clearly a tradeoff to be made between extracting compact abstractions of be-
havior and seeing all the low-level interactions in the trace. Our approach can provide
high-level views and still allow a developer access to fine-grained information about col-
laborations. But no single tool or approach will satisfy all the requirements for design
recovery. Rather, guidance is needed as to which tools and approaches are best for which
maintenance tasks.

In the spectrum of tools which deal with dynamic information our approach sits some-
where between the two extremes ofmacroscopicapproaches which summarize program
behavior through metrics andmicroscopicapproaches [PLVW98] which retain and dis-
play each message send event. It provides an example of the feasibility and utility of
using dynamic information to extract high-level abstractions and relationships without vi-
sualization techniques. As such, our approach is related to frequency spectrum analysis,
coverage concept analysis [Bal99], dynamic differencing [RBDL97] and dynamic dis-
covery of program invariants [ECGN99]. Design recovery approaches for object-oriented
software might benefit from looking at these different kinds of dynamic analyses.

Scalability. We have argued that our approach can scale to handle large software sys-
tems by discussing the mechanisms it provides for dealing with big systems. Our basic
assumption is that a developer will never need to understand everything about a system,
and will not use this approach on a system when he or she has absolutely no idea where to
begin an investigation. Some initial information about a software system can be obtained
from looking at the static structure of the code, by browsing or using a tool. Case studies
conducted for the Reflexion Model technique [Mur96] showed that developers were al-
ways able to come up with some initial hypothesis about the structure of the system they
wanted to investigate.

Starting out with these assumptions about the use of the approach, the key in handling
a large software system is to focus the investigation. This is done first, by instrumenting
only those parts of the software that we want to understand, and second, by choosing
the size of the view that will be presented. For concept view recovery this is done by
creating component abstractions which cluster together many software elements. For
collaboration view recovery this is done by choosing the size of collaboration pattern
to investigate. Here we assume that in seeking to understand collaborations of classes
in a software system we look for interactions where only a small subset of the classes
participate. We have not, however, exercised our tool prototypes on a very large software
system, so it remains to be shown that such an approach can indeed scale up as well in
terms of efficiency and in terms of the design recovery process itself.

7.3. FUTURE WORK 143

7.3 Future Work

We have already pointed to some general directions for future work in the two previous
sections. Here we consider future work on the extension or use of our tools for concept
view recovery and collaboration view recovery.

Our work demonstrated the feasibility of using an iterative approach based on perspec-
tives for the recovery of compact and focused views from dynamic information. Much
work remains to be done, however, in making these techniques usable in a broader con-
text. We consider here some issues that should be addressed:

A vision for a tool. Though we have developed two separate tools for concept view re-
covery and collaboration view recovery, we see the two techniques as two complementary
parts of the same approach, and as such it is clear that they could be integrated into one
tool.

The usability of a tool is determined in a large part by the user interface it presents.
Our goal, however, has been to demonstrate the kind of functionality that a design recov-
ery tool should have rather than to investigate user interface issues. We envision a tool
which integrates the techniques we propose with a more interactive interface. For exam-
ple, elements of a view as obtained in concept view recovery (directed graph with nodes
and edges) respond to context-sensitive clicking. Nodes and edges can both be queried
about the elements they contain and collaboration queries, as in collaboration view recov-
ery, can be launched on edges or on nodes.

Other usability issues such as the question of defining a domain specific query lan-
guage and optimizing the time and space performance of queries must also be addressed.
In order to better address scalability in concept view recovery, a domain specification ele-
ment could be added to allow the developer more control over the elements which appear
in a view.

Handling views. In concept view recovery a view is currently treated as purely visual.
A view is, however, a directed graph and as such graph analysis algorithms could be
applied to it to deduce properties. In order to analyze recovered views for the detection
of architectural patterns,e.g., layering, the semantics of such views must be taken into
account. So far, we have left it up to the developer to interpret the extracted views in
terms of the semantics he or she assigned to the component and connector abstractions.
More work is therefore needed to evaluate how the graphs generated can be used for
detecting architectural invariants.

Using the tools. The case studies presented in this dissertation demonstrate a certain
pattern of usage. However, further experiments and case studies are needed to assess
which views are most useful and what kind of extensibility is most desired. This would
lead to enlarging the core of predefined perspectives.

One interesting use of our approach is that of tracking the evolution of a software ar-
chitecture. Some initial experiments [Ric99] show how extracted views can be compared
to locate design changes. We are also planning to use collaboration view recovery for the
extraction of roles as an aid to refactoring classes into mixins.

144 7. CONCLUSIONS

Bibliography

[Ach02] Franz Achermann.Forms, Agents and Channels - Defining Composition
Abstraction with Style. PhD thesis, University of Berne, January 2002.

[All97] Robert J. Allen.A Formal Approach to Software Architecture. Ph.D. thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh, May
1997.

[And97] Egil P. Andersen.Conceptual Modeling of Objects: a Role Modelling Ap-
proach. PhD thesis, University of Oslo, November 1997.

[ANS83] ANSI/IEEE Standard 729-1983, New York.IEEE Standard Glossary of
Software Engineering Terminology, 1983.

[Bal99] Thomas Ball. The concept of dynamic analysis. InProceedings of
ESEC/FSE’99, number 1687 in LNCS, pages 216–234, 1999.

[BC89] Kent Beck and Ward Cunningham. A laboratory for teaching object-
oriented thinking. InProceedings OOPSLA ’89, volume 24 ofACM SIG-
PLAN Notices, pages 1–6, 1989.

[BE96] T. Ball and S. Eick. Software visualization in the large.IEEE Computer,
pages 33–43, 1996.

[Bec97] Kent Beck.Smalltalk Best Practice Patterns. Prentice-Hall, 1997.

[Bec00] Kent Beck.Extreme Programming Explained: Embrace Change. Addison
Wesley, 2000.

[BFJR98] John Brant, Brian Foote, Ralph Johnson, and Don Roberts. Wrappers to
the Rescue. InProceedings ECOOP’98, volume 1445 ofLNCS, pages
396–417. Springer-Verlag, 1998.

[Big89] T.J. Biggerstaff. Design recovery for maintenance and reuse.IEEE Com-
puter, pages 36–49, October 1989.

[BJ94] Kent Beck and Ralph Johnson. Patterns generate architectures. In
M. Tokoro and R. Pareschi, editors,Proceedings ECOOP’94, volume 821
of LNCS, pages 139–149, Bologna, Italy, July 1994. Springer-Verlag.

146 BIBLIOGRAPHY

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stad.Pattern-Oriented Software Architecture – A System of Pat-
terns. Wiley, 1996.

[Boe88] Barry W. Boehm. A spiral model of software development and enhance-
ment. IEEE Computer, 21(5):61–72, 1988.

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Modeling
Language User Guide. Addison Wesley, 1999.

[Bro96] Kyle Brown. Design Reverse-Engineering and Automated Design Pattern
Detection in Smalltalk. Masters thesis, North Carolina State University,
1996.

[BRSW00] Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf. Role ob-
ject. In Niel Harrison, Brian Foote, and Hans Rohnert, editors,Pattern
Language of Program Design 4, pages 15–32. Addison Wesley, 2000.

[CC90] Elliot J. Chikofsky and James H. Cross, II. Reverse engineering and design
recovery: A taxonomy.IEEE Software, pages 13–17, January 1990.

[CCdCL98] Gerardo Canfora, Aniello Cimitile, Ugo de Carlini, and Andrea De Lucia.
An extensible system for source code analysis.Transactions on Software
Engineering, 24(9):721–740, September 1998.

[Ciu99] Oliver Ciupke. Automatic detection of design problems in object-oriented
reengineering. InProceedings of TOOLS 30 (USA), pages 18–32, 1999.

[CM93] M. Consens and A. Mendelzon. Hy+: A hygraph-based query and visual-
isation system. InProceeding of the 1993 ACM SIGMOD International
Conference on Management Data, SIGMOD Record Volume 22, No. 2,
pages 511–516, 1993.

[CMR92] M. Consens, A. Mendelzon, and A. Ryman. Visualizing and querying soft-
ware structures. InProceedings of the 14th International Conference on
Software Engineering, pages 138–156, 1992.

[Cop92] James O. Coplien.Advanced C++: Programming Styles and Idioms. Ad-
dison Wesley, 1992.

[DBSB91] P. Devanbu, R. Brachman, P. Selfridge, and B. Ballard. Lassie: A
knowledge-based software information system.CACM, 34(5):34–49, May
1991.

[DD99] Serge Demeyer and St´ephane Ducasse. Metrics, do they really help? In
Jacques Malenfant, editor,Proceedings LMO’99 (Languages et Modèlesà
Objets), pages 69–82. HERMES Science Publications, Paris, 1999.

BIBLIOGRAPHY 147

[DDL99] Serge Demeyer, St´ephane Ducasse, and Michele Lanza. A hybrid reverse
engineering platform combining metrics and program visualization. In
Francoise Balmas, Mike Blaha, and Spencer Rugaber, editors,Proceed-
ings WCRE’99 (6th Working Conference on Reverse Engineering). IEEE,
October 1999.

[DDN02] Serge Demeyer, St´ephane Ducasse, and Oscar Nierstrasz.Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002. to appear, spring 2002.

[DDT99] Serge Demeyer, St´ephane Ducasse, and Sander Tichelaar. Why unified is
not universal. UML shortcomings for coping with round-trip engineering.
In Bernhard Rumpe, editor,Proceedings UML’99 (The Second Interna-
tional Conference on The Unified Modeling Language), volume 1723 of
LNCS, Kaiserslautern, Germany, October 1999. Springer-Verlag.

[DL01] Stéphane Ducasse and Michele Lanza. Towards a methodology for the
understanding of object-oriented systems.Technique et science informa-
tiques, 20(4):539–566, 2001.

[DLT00] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. Moose: an exten-
sible language-independent environment for reengineering object-oriented
systems. InProceedings of the Second International Symposium on Con-
structing Software Engineering Tools (CoSET 2000), June 2000.

[DR97] Stéphane Ducasse and Tamar Richner. Executable connectors: Towards
reusable design elements. InProceedings of ESEC/FSE’97, LNCS, volume
1301, pages 483–500, 1997.

[DTD01] Serge Demeyer, Sander Tichelaar, and St´ephane Ducasse. FAMIX 2.1 -
the FAMOOS information exchange model. Technical report, University
of Bern, 2001.

[Duc99] Stéphane Ducasse. Evaluating message passing control techniques in
smalltalk. Journal of Object-Oriented Programming (JOOP), 12(6):39–
44, June 1999.

[ECGN99] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
Dynamically discovering likely program invariants to support program evo-
lution. In Proceedings of ICSE’99, May 1999.

[EK99] Alexander Egyed and Phillipe B. Kruchten. Rose/architect: a tool to vi-
sualize architecture. InProc. 32nd Annual Hawaii Conference on Systems
Sciences, 1999.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison Wesley,
1999.

148 BIBLIOGRAPHY

[Fow97] Martin Fowler.UML Distilled. Addison Wesley, 1997.

[FP96] Norman Fenton and Shari Lawrence Pfleeger.Software Metrics: A Rig-
orous and Practical Approach. International Thomson Computer Press,
London, UK, second edition, 1996.

[FTAM96] Roberto Fiutem, Paolo Tonella, Giuliano Antoniol, and Ettore Merlo. A
cliché-based environment to support architectural reverse engineering. In
Proceedings ICSM ’96. IEEE, November 1996.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design
Patterns. Addison Wesley, Reading, Mass., 1995.

[GR95] Adele Goldberg and Kenneth S. Rubin.Succeeding With Objects: Decision
Frameworks for Project Management. Addison Wesley, Reading, Mass.,
1995.

[Gra92] J.E. Grass. Object-oriented design archeology with CIA++.Computing
Systems, 5(1):5–67, 1992.

[GSR96] Georg Gottlob, Michael Schrefl, and Brigitte R¨ock. Extending object-
oriented systems with roles.ACM Transactions on Information Systems,
14(3):268–296, July 1996.

[HHG90] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts:
Specifying behavioural compositions in object-oriented systems. InPro-
ceedings OOPSLA/ECOOP’90, volume 25, pages 169–180, October 1990.

[Hil99] Rich Hilliard. Using the UML for architectural description. In Robert
France Bernard Rumpe, editor,Proceedings 2nd International UML Con-
ference, UML ’99, volume 1723 ofLNCS, pages 32 – 48. Springer-Verlag,
October 1999.

[Hon98] Koen De Hondt.A Novel Approach to Architectural Recovery in Evolv-
ing Object-Oriented Systems. Ph.D. thesis, Vrije Universiteit Brus-
sel,Departement of Computer Science, Brussels - Belgium, December
1998.

[HYR96] D.R. Harris, A.S. Yeh, and H.B. Reubenstein. Extracting architectural fea-
tures from source code.Automated Software Engineering, 3(1-2):109–139,
1996.

[IEE99] IEEE Architecture Working Group.IEEE P1471/D5.0 Information Tech-
nology - Draft Recommended Practice for Architecural Description, Au-
gust 1999.

BIBLIOGRAPHY 149

[Joh92] Ralph E. Johnson. Documenting frameworks using patterns. InProceed-
ings OOPSLA ’92, ACM SIGPLAN Notices, pages 63–76, October 1992.
Published as Proceedings OOPSLA ’92, ACM SIGPLAN Notices, volume
27, number 10.

[JR97] D. Jerding and Spencer Rugaber. Using Visualization for Architectural
Localization and Extraction. In Ira Baxter, Alex Quilici, and Chris Verhoef,
editors,Proceedings Fourth Working Conference on Reverse Engineering,
pages 56 – 65. IEEE Computer Society, 1997.

[JSB97] Dean J. Jerding, John T. Stansko, and Thomas Ball. Visualizing interac-
tions in program executions. InProceedings of ICSE’97, pages 360–370,
1997.

[KC98] Rick Kazman and S. Jeromy Carriere. View extraction and view fusion in
architectural understanding. InProceedings of the 5th International Con-
ference on Software Reuse, Victoria, B.C., 1998.

[Ken99] Elizabeth Kendall. Role model design and implementations with Aspect-
Oriented programming. InProceedings of OOPSLA’99, ACM Sigplan No-
tices, pages 353–369, November 1999.

[KLM +97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Pro-
gramming. In Mehmet Aksit and Satoshi Matsuoka, editors,Proceedings
ECOOP’97, volume 1241 ofLNCS, pages 220–242, Jyvaskyla, Finland,
June 1997. Springer-Verlag.

[KM96] Kai Koskimies and H. Mössenb¨ock. Scene: Using scenario diagrams and
active test for illustrating object-oriented programs. InProceedings of
ICSE-18, pages 366–375. IEEE, March 1996.

[KN] Eleftherios Koutsofios and Stephen C. North.Drawing graphs with dot.
AT & T Bell Laboratories, Murray Hill, NJ.

[KP88] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-
controller user interface paradigm in Smalltalk-80.Journal of Object-
Oriented Programming, 1(3):26–49, August 1988.

[KP96] Christian Kramer and Lutz Prechelt. Design recovery by automated search
for structural design patterns in object-oriented software. InProceedingsof
WCRE ’96. IEEE, November 1996.

[Kru95] Philippe B. Kruchten. The 4+1 view model of architecture.IEEE Software,
12(6):42–50, November 1995.

150 BIBLIOGRAPHY

[KSRP99] Rudolf K. Keller, Reinhard Schauer, S´ebastien Robitaille, and Patrick Pag´e.
Pattern-based reverse engineering of design components. InProceedings
of ICSE’99, May 1999.

[KSTM98] Kai Koskimies, Tarja Syst¨a, Jyrki Tuomi, and Tatu M¨annistoö. Auto-
mated support for modeling oo software.IEEE Software, 15(1):87–94,
January/February 1998.

[Lan99] Michele Lanza. Combining metrics and graphs for object oriented reverse
engineering. Diploma thesis, University of Bern, October 1999.

[LB85] M. M. Lehman and L. Belady.Program Evolution - Processes of Software
Change. London Academic Press, 1985.

[LD02] Michele Lanza and St´ephane Ducasse. Understanding software evolution
using a combination of software visualization and software metrics. In
Proceedings of LMO 2002, pages 135–149, 2002.

[LH96] L. Larsen and M.J. Harrold. Slicing object-oriented software. InProceed-
ings ICSE ’96, pages 495–505. IEEE, 1996.

[LHS97] Raimondas Lencevicius, Urs H¨olzle, and Ambuj K. Singh. Query-based
debugging of object-oriented programs. InProceedings OOPSLA ’97,
ACM SIGPLAN, pages 304–317, October 1997.

[LN95a] Danny B. Lange and Yuichi Nakamura. Interactive visualization of design
patterns can help in framework understanding. InProceedings of OOP-
SLA’95, pages 342–357. ACM Press, 1995.

[LN95b] D.B. Lange and Y. Nakamura. Program explorer: A program visualizer for
C++. In Proceedings of Usenix Conference on Object-Oriented Technolo-
gies, pages 39–54, 1995.

[LOML01] Karl Lieberherr, Johan Ovlinger, Mira Mezini, and David Lorenz. Modular
programming with aspectual collaborations. Technical Report NU-CCS-
2001-04, College of Computer Science, Northeastern University, Boston,
MA, March 2001.

[Luc97] Carine Lucas.Documenting Reuse and Evolution with Reuse Contracts.
PhD thesis, Programming Technology Lab, Vrije Universiteit Brussel,
Brussels, Belgium, 1997.

[Mar98] Radu Marinescu. Using object-oriented metrics for automatic design flaws
in large scale systems. In Serge Demeyer and Jan Bosch, editors,Object-
Oriented Technology (ECOOP’98 Workshop Reader), volume 1543 of
LNCS, pages 252–253. Springer-Verlag, 1998.

BIBLIOGRAPHY 151

[MDEK95] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeffrey Kramer. Speci-
fying distributed software architectures. InProceedings ESEC ’95, volume
989 ofLNCS, pages 137–153. Springer-Verlag, September 1995.

[Men00] Kim Mens.Automating Architectural Conformance Checking by means of
Logic Meta Programming. PhD thesis, Vrije Universiteit Brussel, 2000.

[ML98] Mira Mezini and Karl Lieberherr. Adaptive plug-and-play components for
evolutionary software development. InProceedings OOPSLA ’98 ACM
SIGPLAN Notices, pages 97–116, October 1998.

[MN97] Gail C. Murphy and David Notkin. Reengineering with reflexion models:
A case study.IEEE Computer, 8:29–36, 1997.

[MORT96] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Richard N.
Taylor. Using object-oriented typing to support architectural design in the
C2 style. InProceedings of the Fourth ACM SIGSOFT FSE Symposium
(FSE4), pages 24–32, San Francisco, CA, October 1996.

[MT97] Nenad Medvidovic and Richard N. Taylor. A framework for classify-
ing and comparing architecture description languages. InProceedings of
ESEC/FSE’97, pages 60–76, Z¨urich, Switzerland, September 1997.

[Mur96] Gail C. Murphy.Lightweight Structural Summarization as an Aid to Soft-
ware Evolution. PhD thesis, University of Washington, 1996.

[MWD99] Kim Mens, Roel Wuyts, and Theo D’Hondt. Declaratively codifying soft-
ware architectures using virtual software classifications. InProceedings of
TOOLS-Europe 99, pages 33–45, June 1999.

[MWT95] Hausi A. Müller, Kenny Wong, and Scott R. Tilley. Understanding soft-
ware systems using reverse engineering technology. In V.S. Alagar and
R. Missaoui, editors,Object-Oriented Technology for Database and Soft-
ware Systems, pages 240–252. World Scientific, 1995.

[Opd92] William F. Opdyke.Refactoring Object-Oriented Frameworks. Ph.D. the-
sis, University of Illinois, 1992.

[OQC97] Georg Odenthal and Klaus Quibeldey-Cirkel. Using patterns for design
and documentation. InProceedings of ECOOP’97, volume 1241 ofLNCS,
pages 511–529. Springer-Verlag, June 1997.

[PHKV93] Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides. Visu-
alizing the behavior of object-oriented systems. InProceedings OOPSLA
’93, ACM SIGPLAN Notices, pages 326–337, October 1993.

152 BIBLIOGRAPHY

[PLVW98] Wim De Pauw, David Lorenz, John Vlissides, and Mark Wegman. Execu-
tion patterns in object-oriented visualization. InProceedings Conference
on Object-Oriented Technologies and Systems (COOTS ’98), pages 219–
234. USENIX, 1998.

[Pro95] Programming Systems Group, Swedish Institute of Computer Science,
Sweden.SICStus Prolog User’s Manual, 1995.

[Rat98] Rational Software Corporation.Rational Rose 98: Roundtrip Engineering
with C++, 1998.

[RBDL97] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The use of
program profiling for software maintenance with applications to the year
2000 problem. InProceedings of ESEC/FSE’97, LNCS 1301, pages 432–
449, 1997.

[RBJ97] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for
Smalltalk.Theory and Practice of Object Systems (TAPOS), 3(4):253–263,
1997.

[RD99] Tamar Richner and St´ephane Ducasse. Recovering high-level views of
object-oriented applications from static and dynamic information. In
Hongji Yang and Lee White, editors,Proceedings ICSM’99 (International
Conference on Software Maintenance), pages 13–22. IEEE, September
1999.

[RD01] Tamar Richner and St´ephane Ducasse. Using dynamic information for the
iterative recovery of collaborations and roles. Technical Report IAM-01-
007, University of Bern, Institute of Computer Science and Applied Math-
ematics, December 2001.

[Ree96] Trygve Reenskaug.Working with Objects: The OOram Software Engineer-
ing Method. Manning Publications, 1996.

[RG98] Dirk Riehle and Thomas Gross. Role model based framework design and
integration. InProceedings OOPSLA ’98 ACM SIGPLAN Notices, pages
117–133, October 1998.

[Ric99] Tamar Richner. Using recovered views to track architectural evolution. In
ECOOP’99 Workshop Reader, number 1743 in LNCS. Springer-Verlag,
June 1999.

[Rie98] Dirk Riehle. Bureaucracy. In Robert Martin, Dirk Riehle, and Frank
Buschmann, editors,Pattern Languages of Program Design 3, pages 163–
185. Addison Wesley, 1998.

BIBLIOGRAPHY 153

[Rie00] Dirk Riehle.Framework Design: a Role Modelling Approach. PhD thesis,
Swiss Federal Institute of Technology, Zurich, 2000.

[RK99] Ferenc D´osa Rácz and Kai Koskimies. Tool-supported compression of uml
class diagrams. In Bernhard Rumpe, editor,Proceedings UML’99 (The
Second International Conference on The Unified Modeling Language),
LNCS 1723, pages 172–187, Kaiserslautern, Germany, October 1999.
Springer-Verlag.

[SB98] Yannis Smaragdakis and Don Batory. Implementing layered design with
mixin layers. In Eric Jul, editor,Proceedings ECOOP’98, volume 1445 of
LNCS, pages 550–570, Brussels, Belgium, July 1998.

[Sef96] Mohlalefi Sefika.Design Conformance Management of Software Systems:
an Architecture-Oriented Approach. PhD thesis, University of Illinois,
1996.

[SG96] Mary Shaw and David Garlan.Software Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, 1996.

[SKM01] Tarja Systä, Kai Koskimies, and Hausi M¨uller. Shimba – an environment
for reverse engineering java software systems.Software – Practice and
Experience, 1(1), January 2001.

[SNH95] Dilip Soni, Robert L. Nord, and Christine Hofmeister. Software architec-
ture in industrial applications. InProceedings ICSE ’95, pages 196–207,
Seattle, April 1995. ACM Press.

[Som92] Ian Sommerville.Software Engineering. Addison Wesley, 1992.

[SS86] Leon Sterling and Ehud Shapiro.The Art of Prolog: Advanced Program-
ming Techniques. MIT Press, 1986.

[SSC96] Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell. Monitoring compli-
cance of a software system with its high-level design models. InProceed-
ings ICSE-18, pages 387–396, March 1996.

[SWM97] Margaret-Anne D. Storey, Kenny Wong, and Hausi A. M¨uller. How do pro-
gram understanding tools affect how programmers understand programs?
In Ira Baxter, Alex Quilici, and Chris Verhoef, editors,Proceedings Fourth
Working Conference on Reverse Engineering, pages 12–21. IEEE Com-
puter Society, 1997.

[SZ99] Wilhelm Schäfer and Albert Z¨undorf. Round trip engineering with Design
Patterns, UML, Java and C++. ESEC/FSE 99 Tutorial Notes, September
1999.

154 BIBLIOGRAPHY

[TAFM97] Paolo Tonella, Giuliano Antoniol, Roberto Fiutem, and Ettore Merlo. Flow
insensitive c++ pointers and polymorphism analysis and its application to
slicing. InProceedings ICSE ’97. IEEE, May 1997.

[Tak96] TakeFive Software GmbH.SNiFF+, 1996.

[Tic01] Sander Tichelaar.Modeling Object-Oriented Software for Reverse Engi-
neering and Refactoring. PhD thesis, University of Berne, December 2001.

[vMV95] Anneliese von Mayrhauser and A. Marie Vans. Program comprehension
during software maintenance and evolution.IEEE Computer, 28(8):44–55,
1995.

[VN96] Michael VanHilst and David Notkin. Using Role Components to Imple-
ment Collaboration-Based Designs. InProceedings OOPSLA’96, pages
359–369. ACM Press, 1996.

[War00] Colin Ware.Information Visualization. Morgan Kaufmann, 2000.

[WBW89] Rebecca Wirfs-Brock and Brian Wilkerson. Object-oriented design: A
responsibility-driven approach. InProceedings OOPSLA ’89, pages 71–
76, October 1989. ACM SIGPLAN Notices, volume 24, number 10.

[WMFB+98] Robert J. Walker, Gail C. Murphy, Bjorn Freeman-Benson, Darin Wright,
Darin Swanson, and Jeremy Isaak. Visualizing dynamic software sys-
tem information through high-level models. InProceedings OOPSLA ’98,
ACM SIGPLAN, pages 271–283. ACM, October 1998.

[WMH93] Norman Wilde, Paul Matthews, and Ross Hutt. Maintaining object-
oriented software.IEEE Software (Special Issue on ”Making O-O Work”),
10(1):75–80, January 1993.

[WTMS95] Kenny Wong, Scott R. Tilley, Hausi A. M¨uller, and Margaret-Anne D.
Storey. Structural redocumentation: A case study.IEEE Software,
12(1):46–54, January 1995.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure object-oriented sys-
tems. InProceedings of the TOOLS USA ’98 Conference, pages 112–124.
IEEE Computer Society Press, 1998.

[Wuy01] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis,
Vrije Universiteit Brussel, 2001.

[ZSW94] Kaizhong Zhang, Dennis Shasha, and Jason L. Wang. Approximate tree
matching in the presence of variable length don’t cares.Journal of Algo-
rithms, 16(1):33–66, January 1994.

155

Curriculum Vitae

Name Tamar Richner-Hanna

Birth Date October 15, 1957

Nationality Swiss,Canadian

Education

1983 M.Sc. Computer Science, University of Toronto

1981 B.Sc. Computer Science, University of Toronto

Work Experience

1994-2002 Doctoral researcher1, Institut für Informatik und angewandte Mathematik,
Universität Bern

1987-1992 Research Collaborator,École Polytechnique F´edérale de Lausanne

1986-1987 System Engineer, Services Informatiques, Universit´e de Gènéve

1984-1986 Member of Scientific Staff, Bell Northern Research, Toronto

1983-1984 Software Developer, Daedalian Systems, Toronto

1979-1983 Teaching Assistant, Department of Computer Science, University of Toronto

1Eight years!? No, with two long absences, a total of five years and four months.

	Title page
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Approach and Contributions
	1.2 Structure of Dissertation

	2 Design Recovery for OO Systems: a Survey
	2.1 Reverse Engineering and Design Recovery: an Overview
	2.2 Design Recovery for OO Software
	2.3 Our Work: Scope and Requirements
	2.4 Conclusions

	3 The Iterative QUery-Based Approach
	3.1 The Iterative Process of Design Recovery
	3.2 The Source Model
	3.3 Using Perspectives to Recover Design Views
	3.4 Conclusions

	4 Concept View Recovery: the Declarative Framework
	4.1 A Declarative Framework for Perspectives
	4.2 The Perspective Layer
	4.3 Tool Support: Gaudi
	4.4 Discussion of the Declarative Framework
	4.5 Conclusions

	5 Concept View Recovery: Case Studies
	5.1 Understanding Tools in HotDraw
	5.2 Looking for a Facade in the Refactoring Browser
	5.3 Evaluation and Discussion
	5.4 Revisiting the Requirements
	5.5 Conclusions

	6 Collaboration View Recovery
	6.1 Collaboration-based Design
	6.2 Reverse Engineering Collaborations and Roles
	6.3 Extracting Collaboration Views
	6.4 Tool Support: The Collaboration Browser
	6.5 Validation of the Approach: Case Studies
	6.6 Evaluation and Discussion
	6.7 Revisiting the Requirements
	6.8 Conclusions

	7 Conclusions
	7.1 Contributions
	7.2 Discussion
	7.3 Future Work

	Bibliography
	Curriculum Vitae

