
Abstract. Design erosion affects most, if not all,
software systems. As these systems age, it becomes
ever more difficult to make new changes until
eventually it is more feasible to replace (or at least
refactor) the software than it is to continue to the
regular maintenance. In earlier work we have
already identified a number of potential causes for
this phenomenon. The case study presented in this
paper, examines two eroded subsystems of a large
software product. We look at various aspects of
how the company involved has identified that the
systems were eroded and how they managed to
recover from that situation.

1. Introduction
In this paper, we present the preliminary results of
two case studies, which were conducted on two
subsystems within the same company. Due to the
preliminary and confidential nature of the case
study and its results, we will not elaborate any
further on the domain of the software or nature of
the company involved in this paper. However, a
full paper that will include these details is nearing
completion.

For the moment, it is enough to specify that the
company involved is a large multinational that, for
the past few decades, has developed a large
software product, which has been deployed on
numerous (thousands) of customer sites worldwide.
The software product, this company makes,
consists of a number of application modules and an
infrastructure layer that is common to these
application modules. In the first case study, we
examined the evolution of a component in the
infrastructure layer. In the second case study, one
of the application modules was examined. The
purpose of the case studies was to explore the
problems and issues encountered in large software
developing organizations, such as the company
involved in this study, with respect to design
erosion.

Design erosion is a problem that affects most, if not
all, large software systems. The phenomenon is
also known as architectural drift [5], software aging
[6] or architecture erosion [4]. Essentially the
problem is that as software evolves, the software is
incrementally changed to meet new requirements,
fix defects or optimize quality attributes (adaptive,
corrective and perfective maintenance [8]).
However, these requirements may conflict with

requirements in earlier iterations or may change the
assumptions under which design decisions in
earlier iterations were made. When faced with such
requirement conflicts, there are two strategies for
adapting the system to incorporate the changes:

• An optimal design strategy. No compromises
are made with respect to design quality and the
design of the software is enhanced in such a
way that the new requirements can be
incorporated without compromising the design
integrity. While this strategy typically results
in a good design, the associated cost may make
it infeasible for some changes.

• A minimal effort strategy. Often complicated
design changes can be avoided by stretching
the design rules of the existing design a bit.
While this may have consequences for the
quality of the design, this strategy can be very
effective in meeting the requirements on short
notice.

In [3], we concluded that it is inevitable that in real
world systems the first strategy is not always
feasible. Consequently, cost considerations or time
constraints sometimes force developers to take less
than ideal design decisions. Over time, these less
than ideal design decisions accumulate, resulting in
what we call design erosion. Eroded software
systems are typically hard to understand due to the
many sub-optimal design solutions that have
accumulated and complicated the design.
Consequently, additional changes become harder
and eventually may even become infeasible. When
this happens, the only ways to resolve the situation
are to either repair (e.g. using refactoring
techniques) or replace the software. Both types of
resolutions typically require a significant effort. In
[3] we list a number of real-world projects that
were affected by design erosion. In these examples,
the subsequent effort to repair/replace the software
spanned several years.

In a world that is increasingly relying on a growing
quantity of ever-larger software, design erosion
presents a serious problem. Affected software
cannot be easily replaced or repaired. Failing to do
so, however, may cause maintenance cost to rise
and limits the flexibility of the affected software.
Ultimately, eroded software may threaten the
existence of the company that produces it as well as
the existence of companies that use the software.

Design Erosion in Evolving Software Products
Jilles van Gurp, Jan Bosch, Sjaak Brinkkemper

University of Groningen, Vrije Universiteit Amsterdam

{jilles|jan.bosch}@cs.rug.nl, Sjaak@cs.vu.nl

The cases we report on in this case-study, concern
software subsystems that are part of a large
software system that have both been affected by
design erosion to such an extent that in both cases,
the company chose to undertake an effort to
address the issues, which in both cases implied
several person-years of work. In one of the cases,
this effort involved the refactoring of tens of
thousands of lines of code. In the other case, the
affected component had to be replaced by a new
one to address the issues. The old version,
representing a decade of evolutionary development
and refinements, had to be discarded.

In the remainder of this paper, we will first discuss
the research questions of this case study and our
research method. After that, we will present some
preliminary conclusions of the case-study. As
outlined above, at this point, we cannot go into
detail on the case studies themselves, however.

2. Research questions
The focus of our study is to explore how design
erosion issues are identified, resolved and
prevented in software developing organizations.
Specifically, our study addresses the following
research questions:

• Symptoms. What are the effects of design
erosion on a system?

• Identification. How does an organization
decide that their software is eroding and needs
to be repaired? How does the decision process
work?

• Causes. What are common causes for erosion?
• Resolution. What kinds of solutions are

applied to fix an eroded system? How and
when are decisions with respect to preservation
and repair taken?

• Prevention. What practices help prevent
erosion?

3. Methodology
In this section, we will outline the empirical
research approach we have applied in the case
studies and discuss its strengths and weaknesses. In
his editorial for the journal of empirical software
engineering [1], Victor Basili makes a plea for the
use of empirical studies to validate theories and
models that are the result of software engineering
research. In a more recent publication, [2], Basili
presents an overview of how empirical research has
benefited NASA’s Software Engineering Lab.
When doing empirical research, a distinction can
be made between qualitative empirical studies and
quantitative studies. The approach advocated by
Basili in [1] and [2], can be characterized as mostly
quantitative. As can be seen in [2], collecting
quantitative data is a labor-intensive process that

needs to be tightly integrated with the development
process. In a setting like NASA, where reliable,
dependable software is required this is feasible.
The results of the quantitative empirical research
are used to optimize the development processes.
However, in many other contexts this is much less
feasible.

Qualitative data, on the other hand, is relatively
easy to obtain and has the advantage of providing
more explanatory information [7], which in an
exploratory case study such as ours is very
desirable. As is noted in [7], neither quantitative
nor qualitative empirical research can prove a given
hypothesis. Empirical research can only be used to
support or refute a given hypothesis. A
combination of both quantitative and qualitative
studies is the best way of supporting a hypothesis
[7].

In this exploratory case study, we use interviews as
the primary tool of retrieving information.
Consequently, our research is mostly of a
qualitative nature. However, where possible, we
complement the qualitative data with quantitative
data provided by the interviewees (e.g. estimated
defect rates, number of lines of code, etc.). Due to
the confidentiality of such metrics within the
company, a full quantitative study was not feasible.
We have found that in general, software
development organizations are very reluctant in
providing or publishing such data.

In both case studies, the interviews followed the
same pattern. We first met with the interviewees
(software engineers, product architects, project
managers) in a group for an introductory meeting.
During this meeting, the purpose of the case study
was communicated and a brainstorm session was
held to select appropriate modules/components for
further study. This meeting was also used for
planning subsequent interviews. In the following
meetings, both group and individual interviews
were held during which more specific questions
about the design and evolution of the system were
asked.

In addition to interviews, we were given access to
various documents including for example
functional designs and requirements
documentation. Using these documents, we were
able to both verify/clarify certain statements of the
interviewees as well as prepare specific questions
in advance.

3.1 Case selection
Throughout both case studies, we have cooperated
with the company’s R&D department who were
very much interested in the results of the case study
for the sake of (a) providing an outsider analysis on
the architecting and engineering practices, and (b)
educating the product architects and software

engineers with the results. Using their expertise and
knowledge of the company’s product portfolio, two
representative sub-systems were selected for
further study and contacts with staff working on
these sub-systems were initiated. Before selecting
the cases, we had several meetings with the R&D
department during which we discussed the
organizational structure, the company’s product
architecture and the goals for the case study. In
addition, an estimate of the time that was needed
for both cases was made.

We used the following criteria for the selection of
the cases:

• The systems had to be old enough to have
endured design evolution.

• During the evolution, there must have been
significant changes in the requirements.

• It should be possible to interview both people
who were involved in the initial development
of the system and people who were involved in
restructuring the system for new requirements.

3.2 Validity
To ensure the correctness of our data and
conclusions, we have used two methods:

• Cross-checking. In both cases, we interviewed
multiple developers. This allowed us to
compare their answers and verify whether
there were any contradictions. In both cases we
were also given limited access to software
documentation, which allowed us further
validate the information we received.

• Feedback. An important part of qualitative
research is feedback. The data presented in this
article consists mostly of our interpretation of
interviews. Verifying whether this
interpretation is correct is therefore an
essential part of ensuring the validity of our
case study. After each meeting, a report
detailing our conclusions and interpretation
was communicated back without the
interviewees for feedback. The feedback has
made us confident that the interviewees share
our interpretation and conclusions.

However, there are a number of problems with our
research approach that may affect the validity of
our findings:

• Representativeness of the cases. By limiting
ourselves to one company and one software
product, we risk that this case study's
conclusions may not be applicable to other
domains and companies. Both the corporate
culture and the domain this particular company
is operating in affect our conclusions.
However, based on our experience with case-

studies in other companies, the corporate
culture in this company is representative for
many software developing companies. In
addition, despite coming from the same
company, the two cases we selected are
dissimilar, so, any conclusions that can be
generalized for these two cases may be
applicable to other domains as well.

• Quantitative data. As explained earlier, we
use a (mostly) qualitative approach.
Complementing our data with quantitative
metrics would certainly strengthen our
conclusions. However, there are a few reasons
why this study does so only to a limited extent.
First of all, many relevant metrics that would
need to be collected are generally considered
as sensitive information in software
development organizations. Consequently, we
did not have access to raw quantitative data.
However, the company does collect metrics
and provided some qualitative information
regarding e.g. defects to us that was based on
this data. Additionally, this is an exploratory
study. A quantitative study requires a more
precise formulation of hypotheses, relevant
quantifiable parameters and a model for the
interpretation of values for these parameters. A
study such as presented here may provide the
necessary input formulating hypotheses and
parameters for future quantitative studies.

• Cases are not comparable. We have
deliberately chosen to research two cases from
different domains to show that identification,
resolution and prevention of design erosion
works the same across domains. Therefore,
both cases use different types of technology
and involve people with different skills and
training. On the other hand, both teams operate
in a centrally managed release development
project to design and build the sub-systems as
part of one product. This makes it possible to
compare the results of both case studies,
notwithstanding some limitations.

4. Results & observations
In this section, we present the answers we found to
the five research questions in the introduction in
both our case studies. While we cannot go into
much detail on either of the case studies, it is
worthwhile to outline them in an abstract fashion.

• Case 1 examined the evolution of an
infrastructure component that had evolved in a
number of versions. In each version,
significant architectural changes were made to
this component. Recently, based on an internal
evaluation it was decided to replace this
component with a new component because the
old one had eroded so much that repairing it

and adding new features was no longer
feasible.

• Case 2 concerns an application module that
was originally designed at the request of a
particular customer. After an initial design
project, the realization phase was handled by a
relatively inexperienced development team.
However, the resulting software had all sorts
of problems. Eventually, the development was
transferred to a more experienced team. This
team subsequently decided to refactor and
restructure the software.

As mentioned in the introduction, a full paper with
much more detail is pending. In the remainder of
this section, we will simply refer to them as case 1
and case 2.

4.1 Symptoms
A first step in preserving the design of a software
system is to recognize the symptoms of an eroding
system. Both cases we examined, exhibited similar
symptoms of deterioration:

• Low quality code. In both cases, the
developers working with the system were
unhappy with the quality of the source code.
They complained about misuse of language
constructs, the lack of structure, inconsistent
use of code standards, etc.

• Uncertainty about specifications. There was
a great deal of uncertainty about the
specification of the system in both cases. The
designs were sketchy and incomplete. In the
case 1, application developers actually
depended on unspecified and even incorrect
behavior of the infrastructure component. In
case 2, changes were not properly documented
(as prescribed in the companies development
processes), effectively making the existing
designs obsolete.

• Regressions. In both cases, fixes for defects
often introduced new problems. Particularly in
case 1, where at one point there were about
100 known defects, this was an important
reason for discarding the old software. The
estimated cost of fixing these 100 defects in
combination with the near certainty of
additional defects provided enough motivation
for doing so.

• Deployment problems. In both cases, there
were problems with respect to the usage of the
system. In case 1, developers of application
modules were relying on the unspecified,
arguably incorrect, behavior of the component
whereas in case 2, the functional design was
no longer accurate because design changes
were not documented.

• Defect rates & cost. An interesting aspect
about the development process in the company
is that it includes a fine-grained process for
measuring defect rates and relating defects to
particular development artifacts. In both cases,
the developers we interviewed indicated that
the amount of defects that needed to be fixed
was substantially higher than in comparable
systems.

4.2 Identification
In order to repair an eroded system, it has to be
recognized first that the system is eroded and that it
is worthwhile to undertake an effort to repair it.
Obviously, in the systems we examined, the
developers came to this conclusion. A number of
factors may play a role in identifying erosion:

• Evaluation. In both cases, the decision to
redevelop/redesign the system was taken after
an internal evaluation of the software. In both
cases these evaluations were prompted by
problems with the existing software and a
general feeling the software was not in a good
condition (e.g. because of the symptoms
outlined above). Additionally, in both cases,
the defect rates that are routinely collected
within this company were abnormally high,
which provided additional evidence that both
software systems had quality problems.

• New requirements. New requirements may
call for enhancements that, given the quality of
the system at that point, are infeasible. In both
cases, it was the case that there were new
requirements that were proving to be hard to
realize in the existing systems.

• Change of staff. Developers, like most human
beings, may be reluctant in admitting their own
faults. In both cases, the developers that
identified the erosion and took the initiative for
the redevelopment of the software had not
been involved in the original development of
the software.

• Defect Metrics. In both cases, defect metrics
played an important role. The development
process includes a fine-grained process for
collecting such metrics and the decision to
redesign (case 1) or refactor (case 2) was
partially based on these metrics.

4.3 Causes
In order to effectively repair an eroded system, the
causes of the issues that are responsible for the
erosion need to be understood. . We have found
that both cases had a number of common issues.
Consequently, these issues are also likely to share
the same causes:

• Vaporized design decisions. In both cases, all
or most of the original developers were either

no longer working on the system or had left
the company entirely. Consequently, many of
the design decisions taken early in the
evolution of both systems were poorly
understood. Particularly the maintenance of
case 1 became more problematic after the
person who designed this component left the
company. In the other case, the designers were
on a different continent than the people who
were involved in the realization phase.

• Too little attention to design during
evolution. During the evolution of a system,
changes may occur that require that the
software design is altered. In both cases, we
found that little attention to the design was
paid during the evolution. In case 1 several,
major design changes had taken place during
its evolution. The resulting software had
become extremely complex. In case 2, time-
pressure had caused developers to bypass the
proper process for defect fixing (which
includes documenting the changes and
designing a fix).

• Quick fixes. During the evolution of a system,
defects are found and fixed (in [8] this is called
corrective maintenance). The proper way to fix
a defect is to analyze the defect, design a
solution, implement and test the solution.
Unfortunately, time-pressure or cost
considerations may prevent developers to
properly follow this process. Often this results
in quick fixes that addresses the issues but that
may also introduce additional issues.
Especially in case 2, it was identified that the
existing process for processing change
requests (which is the common way for fixing
defects) had not always been followed. In case
1 the design was so out of date that developers
did not bother to update it anymore.

• Experience. An interesting aspect in case 2
was that the development of the software was
transferred a number of times. One of the first
development groups was relatively
inexperienced and consequently, the quality of
their work was relatively low. The lack of
experience with development and the internal
development processes probably was an
important reason for the problems that
surfaced once the development was transferred
to a more experienced team.

• Time pressure. In the two cases we examined,
two components of the same software product.
While the components of this product are
developed separately, their development must
be synchronized with the release cycles of the
product. Consequently, if a particular change
cannot be realized in the timeframe between
two product releases, problems may arise. The
time-pressure associated with these releases
was an important factor in the initial

development of case 2. In order to make the
release, certain things were rushed an parts of
the code were incomplete.

4.4 Resolution
Once it has been determined that a system is
eroded, and once causes have been identified, an
attempt can be made to repair the system and
prevent further damage. The obvious things that
can be done and that we have observed in both
cases are:

• Redevelopment. Redevelopment of the
software is often the only real option in fixing
an eroded system. This approach was chosen
in case 1. Interestingly this decision was taken
based on an estimate of the cost of fixing all
the known defects (about 100).

• Restructuring. The people working on case 2,
on the other hand, chose to restructure the
existing system and reserved a significant
amount of time for it. As in case 1, this
decision was based on a cost estimation.

• Strong focus on design. As pointed out
earlier, the lack of up to date designs is usually
one of the problems with eroded systems. In
both cases, recovering/updating the designs
was an integral part of the attempt to address
the problems and key to the success of the
whole operation.

• Modularization and object orientation. In
both cases, the developers complained about
the fact that the source code was in bad shape
and that there were many dependencies
between the various modules and components
in the system. In both cases object oriented
like mechanisms such as encapsulation,
information hiding and delegation were
applied to improve the structure of the system.

• Take product release cycles into account. As
argued earlier, the development of individual
subsystems, such as the two cases we are
dealing with, must be synchronized with the
product release cycles. Typically, changes are
projected at a particular release and there is
little room for delays. Consequently, it must be
possible to make the necessary changes within
that timeframe. If not, an option is to break
down the work. This happened in case 1 where
the new component was planned and delivered
in two releases. In case 2, one of the problems
was that the developers adopted some quick
fixes in order to be able to integrate their
software in the product in time for the product
release.

4.5 Prevention
The developers of the systems we examined in this
paper have experienced first hand what it takes to

recover a deteriorated system. Naturally, they made
an effort to learn from the experience to adapt the
way they develop software in such away that future
problems can be avoided. In the cases we examined
a number of practices were adopted that appear to
be successful:

• Automatic regression testing. In order to
prevent that new defects are introduced during
defect fixing, automated tests can be used to
verify that the system still works. Regressions
were particularly a problem in case 1.
Therefore, the developers adopted the practice
of creating automatic tests while they were
redeveloping their component. By the time this
component was finished, a test suite of 800
tests was available. Also, the defect metrics
showed that there were almost no regressions
during the maintenance of the new system.

• No undocumented fixes. Both cases shared
the problem that in the past there had been
undocumented changes. This both makes it
hard to test the software and to use it correctly
(this was a problem in case 1). To address this,
all changes are now documented properly.
Also, in case 1, test cases are made to ensure
that the software works as advertised in the
documentation. Any deviation from the
specified behavior is considered as a defect
now.

• Stronger focus on process. Part of the
problems in case 2, and to a lesser extent case
1, can be attributed to the fact that the existing
development process was not enforced. This
caused all sorts of problems the processes were
designed to prevent.

5. Concluding remarks
In this position paper, we have briefly discussed the
results of two case-studies. As discussed in the
introduction, a full paper including details on how
and where the results outlined here were obtained
is pending.

An important conclusion of our earlier work was
that design erosion is inevitable. Consequently, our
case study did not focus on how to prevent design
erosion but on effective strategies for dealing with
design erosion. Both software systems in the two
cases we discuss in this paper are part of a software
product, which has existed in several versions. The
company involved identified that there were
problems with these subsystems and successfully
addressed these issues without causing any delays
in the product release schedule. In other words, the
process of identifying and resolving design erosion
works reasonably well in this company.

An interesting aspect of this case study is that, in
addition to the technical factors identified in our
earlier study [3], there are also a number of non-

technical factors that contribute to design erosion.
For example, in case 2, an important factor was that
the existing development process was not enforced.
Consequently, any measures for resolving or
preventing design erosion also have to consider
these non-technical factors.

Based on what we have seen in this case study and
in other software systems, we are strengthened in
our belief that design erosion is inevitable.
Software developing organizations should not be
judged by how effective they are in preventing
design erosion but in how effective they are in
identifying and resolving eroded software
components.

In future work we will present more details about
the case study presented here. Additionally, we
intend to write a ‘best practices’ paper.

6. References
[1] V. Basili, “Editorial”, Journal of Empirical

Software Engineering, Vol 1. no. 2, 1996.
[2] V. Basili, F. E. McGarry, R. Pajerski, M. V.

Zelkowitz, “Lessons learned from 25 years of
process improvement: The rise and fall of the
NASA Software Engineering Lab“,
proceedings of ICSE 2002, pp. 69-79, 2002.

[3] J. van Gurp, J. Bosch, “Design Erosion:
Problems & Causes”, Journal of Systems &
Software, 61(2), pp. 105-119, Elsevier, March
2002.

[4] C. B. Jaktman, J. Leaney, M. Liu, “Structural
Analysis of the Software Architecture - A
Maintenance Assessment Case Study”, in
Proceedings of the First Working IFIP
Conference on Software Architecture
(WICSA1), 1999.

[5] D. L. Parnas, “Software Aging”, in
Proceedings of ICSE 1994, 1994.

[6] D.E. Perry, A. L. Wolf, “Foundations for the
Study of Software Architecture”, in ACM
SIGSOFT Software Engineering Notes, vol 17
no 4, 1992..

[7] C.B. Seaman, “Qualitative Methods in
Empirical Studies of Software Engineering“,
IEEE Transactions of Software Engineering,
25(4), pp. 557-572, 1999.

[8] E. B. Swanson, “The dimensions of
maintenance“, proceedings of the 2nd
international conference on software
engineering, pp. 492-497, IEEE Computer
Society Press, Los Alamitos 1976.

