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Abstract

The technique of refactoring – restructuring the source-code of an object-oriented program without changing its external
behavior – has been embraced by many object-oriented software developers as a way to accommodate changing require-
ments. The overall goal of refactoring is to improve the maintainability of software. Unfortunately, it is unclear how specific
quality factors are affected. Therefore, this paper proposes a formalism to describe the impact of a representative number of
refactorings on an AST representation of the source code, extended with cross-references. We elicitate how internal program
quality metrics can be formally defined on top of this program structure representation, and demonstrate how to project the
impact of refactorings on these internal program quality metric values in the form of potential drifts or improvements.

1 Introduction

Refactorings are software transformations that restructure an object-oriented program while preserving its behavior [9,
16, 17]. The key idea is to redistribute attributes and methods across the class hierarchy in order to prepare the software for
future extensions. If applied well, refactorings improve the design of software, make software easier to understand, help to
find bugs, and help to program faster [9].

However, the impact of a particular refactoring on the software quality varies. Some refactorings raise the level of abstrac-
tion (at the expense of increasing the program complexity), others may reduce the complexity (at the expense of decreasing
the performance, for example), etc. Therefore, our goal is to provide techniques and tools for software developers to help
them maintain and improve program quality through refactorings. The use of metrics in achieving this goal is advocated in
[6].

This paper takes a first step towards this goal, by proposing a formalism for describing the impact of refactorings on
program structure. Our representation of the program structure is borrowed from [13], which uses an abstract syntax tree
representation of the source-code, extended with cross-references to model type references, method calls, accesses, updates
and inheritance links. This abstract syntax tree representation allows us to reason about program structure in terms of nodes
interconnected with edges. The fact that dependencies between program entities are explicit in this representation makes it
easier to reason about the impact of refactorings from a quality perspective.

Object-oriented program quality metrics are typically used as internal quality factors [3]. Defining these metrics in terms
of the entities of the extended tree representation allows formal descriptions of structural changes on the tree (eg. refactorings)
to be projected into impacts on the particular metrics. In this way, the integration of the formal description of refactorings
and the formal definition of a representative set of object-oriented program quality metrics providesa-priori feedback on the
impact of any application of a particular refactoring on any particular internal program quality metric.

The goal of this mechanism is to construct (once and only once) refactoring impact tables. Such information facilitates
refactoring trade-offs, in that they make explicit which internal program quality metrics are affected when the refactoring
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would be applied. In other words, the contribution of this work is to make explicit thequality drift caused by the application
of refactorings.

This paper is structured as follows. Section 2 proposes the refactorings and case study we have selected for our experi-
ments. Section 3 introduces our extended tree representation of the program structure. Section 4 shows how we can describe
the impact of refactorings on the program structure. Section 5 uses this to analyse the impact of refactorings on object-
oriented program quality metrics, and discusses the current limitations and their solutions. Section 6 discusses related work,
and section 7 concludes.

2 Preliminaries

2.1 Selected refactorings

Fowler’s catalogue [9] lists seventy-two object-oriented refactorings and since then many others have been discovered.
To demonstrate the possibility of reasoning about refactoring in terms of their impact on program structure, we apply our
formalism to a number of selected refactorings: ExtractMethod, EncapsulateField and PullUpMethod. These refactorings
are quite typical for the categories of refactoring strategies they belong to - respectively Composing Methods, Organizing
Data and Dealing with Generalization - which are among the most popular refactoring strategies in todays refactoring tools
[IntelliJ IDEA, Eclipse, Together]. Hence they may serve as representatives for the complete set of primitive refactorings.

ExtractMethod extracts part of a method and factors it out into a new method.
EncapsulateFieldencapsulates public attributes by making them private and providing accessors. In other words, for each
public attribute a method is introduced for accessing (getting) and updating (setting) its value, and all direct references to the
attribute are replaced by calls to these methods.
PullUpMethod moves identical methods from subclasses into a common superclass.

2.2 Source code example

The example that we will use for our experiments consists of a simple Java package containing 4 classes:Packet, Machine
and two subclassesWorkstationand PrintServer. It is part of the implementation of a Local Area Network simulation
(LAN). Although the code is in Java, other implementation languages could serve just as well, since we restrict ourselves to
representing core object-oriented concepts only. For more information about this example, see [13].

01 public package LAN {
02 public class Machine {
03 public String name;
04 public Machine nextMachine;
05 public void accept(Packet p) {
06 System.out.println(name
07 + " is accepting "
08 + nextMachine.name);
09 this.send(p); }
10 protected void send(Packet p) {
11 System.out.println(name
12 + " is sending "
13 + nextMachine.name);
14 this.nextMachine.accept(p); }
15 }

16 public class Packet {
17 public String contents;
18 public Machine originator;
19 public Machine addressee;
20 }



21 public class PrintServer
22 extends Machine {
23 public void print(Packet p) {
24 System.out.println(p.contents); }
25 public void accept(Packet p) {
26 if(p.addressee == this)
27 this.print(p);
28 else super.accept(p); }
29 }

30 public class Workstation
31 extends Machine {
32 public void originate(Packet p) {
33 p.originator = this;
34 this.send(p); }
35 public void accept(Packet p) {
36 if(p.originator == this)
37 System.err.println("no dest");
38 else super.accept(p); }
39 }
40 }

We will describe the three refactor operations by example, and discuss their intuitive impact on quality.

ExtractMethod can be performed to extract the println-statement from methodsMachine.accept andMachine.send
to a separate methodlog(String). To do this, we have to introduce a new methodlog in theMachine class, with a single
parameter. We can then move the println-statement from theaccept or send method, and replace the String literal with a
reference to the parameter. Thereafter, we have to replace the println-statement in both theaccept andsend methods with a
method call to thelog method, passing to it the appropriate String literal. Intuitively, performing this refactoring generalises
the println-statement, which increases code reuse and reduces the impact of changes. When the output format needs changes,
we will only need to change thelog body, and not theaccept or send methods.

EncapsulateFieldcan be performed in order to shield the attributeMachine.nextMachine from direct references. This
causes the introduction of two methods in classMachine: a ’getter’ which accesses the attribute and returns it to the caller
and a ’setter’ which takes the new value of the attribute as a parameter and updates the attribute. The attribute itself is made
private. Intuitively, shielding the attribute from direct references reduces data coupling. This allows the attribute to change
its data format without affecting clients using the attribute value.

PullUpMethod can be applied toPrintServer.print(Packet), so that future subclasses ofMachine such as a File-
Server class can reuse this code. This requires the introduction of a method in superclassMachine, to which the body of the
PrintServer.print method will be moved, and the removal of the formerPrintServer.print method. Intuitively, pulling
up a method generalises specific behaviour, making it possible for subclasses to reuse and specialise the behaviour.

While the impact of these example applications of refactor operations is dependent on the situation in which they are
applied, the following section will explain how we can set up a formalism to describe this impact in a generic way, for all
situations.

3 Representing the program structure

The way in which we represent software is very straightforward: the source code is transformed into an abstract syntax
tree representation extended with cross-references.

3.1 Abstract syntax tree representation

The program syntax tree directly reflects the natural containment relationship. A system contains packages. A package
contains classes (or recursively another package). A class contains attributes and methods. A method contains expressions,
local attributes and parameters.



All the nodes in the abstract syntax tree have a specific type:S(ystem),PA(ckage),C(lass),M (ethod),A(ttribute), (actual)
P(arameter or return value),L (ocal variable),E(xpression).

Figures of the AST of the example have been omitted as the concept is well known in the context of software engineering.

3.2 Abstract Syntax Tree extensions

On top of this abstract syntax tree representation, we need to superimpose extensions to represent cross-reference relation-
ships between software entities (such as class inheritance, method calls, attribute accesses and updates, type information).
These are represented byedgesbetween the corresponding tree nodes.

As for nodes, the superimposed edges have a specific type:i(nheritance), (method)c(call), (attribute or local variable)
a(ccess), (attribute or local variable)u(pdate) andt(ype). The enrichment of the AST representation provided by these
cross-references makes it easier to reason about code from the context of refactoring.

3.3 Program structure notation

We will now introduce a number of notations in terms of the program structure representation that are needed in the
remainder of the paper to enable us to describe the impact of refactor operations.

Let r be an AST node,Si a set,ν a node type, andε a regular expression of edge types which adheres to the standard
regular expression rules used in the popular UNIX grep-tool.

Si denotes the complement ofSi.

T (r) denotes the set of all nodes in the subtree with rootr.

ET (c, ε) denotes the set of all edges incident toT (c) of typeε, which are part of the Extended Tree.

ET (c, ε)inc denotes those edges ofET (c, ε) which only have their target node inT (c).

ET (c, ε)out denotes those edges ofET (c, ε) which only have their source node inT (c).

ET (c, ε)int denotes those edges ofET (c, ε) which have both their sourceand target node inT (c).

#S1 denotes the number of elements in setS1.

ν(S1) denotes the set of all nodes of typeν contained in the setS1.

S1
ε−→ S2 denotes the set of edges of typeε whose source node belongs to node setS1 and whose target node belongs to node

setS2.

target(S1
ε−→ S2) denotes the set of target nodes of the given edge set.

∆(Si) denotes the change inSi due to the application of a refactoring.

For example,#A(T(Machine)) denotes the number ofA-nodes (i.e., attributes) recursively contained in the subtree with
rootMachine. Table 1 describes the AST representation of theT(Machine)subtree, including our extension.

As another example,#ET (r, [au])out denotes the number ofa- andu-edges (attribute accesses and updates) from a node
in the subtree ofr to a node outside the subtree ofr.

Table 1 describes the structure of the AST extension for the subtree T(Machine) by counting the superimposed cross-
reference edges. Empty fields in the table indicate the impossibility of those occurences of those specific edges. For example,
i-edges will never occur inside a class tree since inheritance only makes sense between two different classes. We will de-
scribe the AST and its extension subsequently. These AST descriptions (as illustrated in Table 1) will play a vital role in the
formalism explained in the next section.



ClassMachine contains two methods and three attributes (implicitthisattribute). Each of the two methods has one actual
parameter, and one local variable (temporary string-variable). The number of expressions is irrelevant for the purposes of
this paper, yet also provided on the left of Table 1.

ClassesWorkstation andPrintServer derive fromMachine, represented by two incoming inheritance references.
Attribute name and the local variable in each method are of typeString, which together with the two method parameters
of typePacket brings the number of outgoing type references to five. The only internal type reference is due to attribute
nextMachine of typeMachine. Each method ofMachine calls the addition operator twice, println once, and the other
method ofMachine, which together makes eight (2x4). Theaccept andsend method perform six and five internal accesses
respectively, and each a single outgoing access. No updates are performed. This summarises the AST extension on the right
of Table 1.

type ∆T (c)

M 2
A 3
P 2
L 2
E 24

typeε #ET (Machine, ε)int #ET (Machine, ε)inc #ET (Machine, ε)out

i 2 0
t 1 2 5
c 8
a 11 2
u 0 0 0

Table 1. Description of the AST (on the left, in terms of node types) and cross-references (on the
right) of class Machine.

4 Describing the impact of refactorings on program structure

In this section, the impact of our selected refactorings on program structure is described. We split up the effect description
in an impact on the AST representation, and an impact on its cross-references (from now on all together called the extended
tree representation).

ExtractMethod(setE:Set(E),m1:M, m2:String, c1:C)

First, ExtractMethod introduces a new methodm2 in classc1, for which possibly a number of actual parameters and a return
value are required. A return value form2 is necessary when exactly one (multiple is not allowed) local variable or actual
parameter ofm1 was updated by one of the expressions ofsetE. We calculate the number of new actual parameters of
m2 as the number of accessed local variables or actual parameters ofm1, even though Fowler [9] indicates not to create
actual parameters for those local variables or actual parameters ofm1 whose first reference is an update (and are therefore
immediately overwritten). The elaboration would contribute little to the overall goal of this paper and is left as an exercise
for the enthousiastic reader. Consequently, we introduce no new local variables for methodm2.

The set of expressionssetE is copied to the new methodm2, and replaced insidem1 by a method call tom2 (1 E-node),
with an actual parameter for each of then accessed local variables or actual parameters ofm1 (n E-nodes). In case a local
variable or actual parameter ofm1 was updated insetE, an extra expression is required to update that local variable or actual
parameter (1E-node). This summarises the impact on the AST of classc1 as described on the left in Table 2.

Second, the introduction of new actual parameters and return value for methodm2 causes the introduction of cross-
references to the types of those parameters, being either classc1 itself - introduces an internal type reference - or another
class - introduces an outgoing type reference. Naturally, ExtractMethod causesm1 to call m2 adding an extra internal call
reference. Passing the arguments for the method call and returning the return value causes an increase of the number of
internal access and update references, which summarises the right part of Table 2.

A superficial observation might lead to the interpretation that the application of ExtractMethod makes the program struc-
ture more complex in terms of our extended tree representation. Yet, these descriptions consist of both copying the expres-
sions to the new method and thereafter replacing the set of expressions. Multiple applications of ExtractMethod on identical
sets of expressions therefore only cause the former step to be performed once, while removing duplicate code by perform-
ing the latter step multiple types, as can be illustrated by extracting the println-statement from bothMachine.send and
Machine.accept in the example. Performing the last step multiple times removes code duplication.



type ∆T (c1)

M 1
A 0

P #target(T (setE)
[au]−−−→ T (m1))

L 0

E 1 + #target(T (setE)
a−→ T (m1))

+#target(T (setE)
u−→ T (m1))

ε ∆ET (c1, ε)int ∆ET (c1, ε)out

t #target(T (setE)
[au]t−−−→ {c1}) #target(T (setE)

[au]t−−−→ T (c1))
c 1 0

a #target(T (setE)
a−→ T (m1)) 0

u #target(T (setE)
u−→ T (m1)) 0

Table 2. Impact of ExtractMethod(setE, m1, newMethod, c1) refactoring on class c1.

EncapsulateField(c1:C,attr:A,getter:String,setter:String)

First, EncapsulateField introduces asetterandgettermethod, which respectively updates and accesses the attributeattr inside
classc1. Therefore, two methods and two parameters (actual parameter for setter and return value for setter ) are added. As
each new method consists of one expression (access or update), two expressions are added. This summarises the impact on
the AST of classc1, as described on the left in Table 3.

Second, the creation of the two new methods introduces a type edge from the actual parameter of thesetterand one from
the return value of thegettermethod to the type attribute, which can be either classc itself or another class. Then all former
accesses and updates to the attributeattr are replaced respectively by parameterless method calls to thegetterand method
calls to thesettermethod with the new value as an actual parameter. Finally, thegettermethod will update the return value
with an access to the attribute, and thesettermethod will update the attribute with an access to the actual parameter.

type ∆T (c)

M 2
A 0
P 2
L 0
E 2

ε ∆ET (c1, ε)int ∆ET (c1, ε)inc ∆ET (c1, ε)out ∆ET (c1, ε)

t 2 ∗#({attr} t−→ {c1}) 0 2 ∗#({attr} t−→ T (c1)) 0

c #(T (c1)
[au]−−−→ {attr}) #(T (c)

[au]−−−→ {attr}) 0 0

a −#(T (c1)
a−→ {attr}) + 2 −#(T (c)

a−→ {attr}) 0 −#(T (c)
a−→ {attr})

u −#(T (c1)
u−→ {attr}) + 2 −#(T (c)

u−→ {attr}) 0 −#(T (c)
u−→ {attr})

Table 3. Impact of EncapsulateF ield(c1, attr, getAttr, setAttr) refactoring on class c.

PullUpMethod(setM :Set(M), setC:Set(C),cs:C)

As PullUpMethod impacts subclassesci (with identical methodsmi) and superclasscs, we will describe each of them sepa-
rately and begin with the impact on the superclass.

First, PullUpMethod introduces a methodms in superclasscs with actual parameters and return value identical to those
of mi. The complete body of one of the identical methodsmi of subclassesci is copied to methodcs.ms, which includes the
local variables and expressions. This summarises the impact on the AST of superclasscs, as described at the top of Table 4.

Second, the copying of these expressions causes all cross-references to be copied as well, consisting of type references,
method calls, accesses and updates. This also means that former edges of the subclass method towards the superclass become
internal edges of the superclass, and former edges from the subclass method towards other classes to become outgoing edges
of the superclass. This impact is described at the bottom of Table 4.

The impact on any subclassci is identical, being the opposite of the impact on the superclass. The identical subclass
methodsmi are removed, causing all actual parameters, local variables and expressions to be removed as well. Analogue,
internal cross-references ofci.mi are erased. The remainder of Table 5 describes the transformation as explained for the
superclass.

Concluding, this section described the impact of the three refactorings on our extended AST representation of the source
code. In the next section, we will introduce the formalisation of object-oriented program quality metrics on top of the
extended tree representation.



type ∆T (c)

M 1
A 0
P #P (mi)
L #L(mi)
E #E(mi)

ε ∆ET (cs, ε)int ∆ET (cs, ε)inc ∆ET (cs, ε)out ∆ET (cs, ε)

t #(T (mi)
t−→ {cs}) −#(T (mi)

t−→ {cs}) #(T (mi)
t−→ (T (ci)\T (cs))) −#(T (mi)

t−→ (T (ci)\T (cs)))

c #(T (mi)
c−→ {cs}) −#(T (mi)

c−→ {cs}) #(T (mi)
c−→ (T (ci)\T (cs))) −#(T (mi)

c−→ (T (ci)\T (cs)))

a #(T (mi)
a−→ {cs}) −#(T (mi)

a−→ {cs}) #(T (mi)
a−→ (T (ci)\T (cs))) −#(T (mi)

a−→ (T (ci)\T (cs)))

u #(T (mi)
u−→ {cs}) −#(T (mi)

u−→ {cs}) #(T (mi)
u−→ (T (ci)\T (cs))) −#(T (mi)

u−→ (T (ci)\T (cs)))

Table 4. Impact of PullUpMethod(setM, setC, cs) refactoring on superclass cs.

type ∆T (ci)

M −1
A 0
P −#P (T (mi))
L −#L(T (mi))
E −#E(T (mi))

ε ∆ET (ci, ε)int ∆ET (ci, ε)out ∆ET (ci, ε)

t 0 −#(T (mi)
t−→ T (ci)) #(T (mi)

t−→ T (ci))

c 0 −#(T (mi)
c−→ T (ci)) #(T (mi)

c−→ T (ci))

a −#ET (mi, a)int −#(T (mi)
a−→ T (ci)) #(T (mi)

a−→ T (ci))

u −#ET (mi, u)int −#(T (mi)
u−→ T (ci)) #(T (mi)

u−→ T (ci))

Table 5. Impact of PullUpMethod(setM, setC,cs:C) refactoring on any subclass ci.

5 Analysing the impact on object-oriented program quality metrics

We will now illustrate how we can use our previous results to analyse the impact of refactorings on object-oriented software
metrics. This is crucial to assess the impact of refactorings on program quality, since software metrics are typically used as
internal quality factors [8].

The general idea is quite simple: we can formally specify object-oriented program quality metrics in terms of the extended
AST of the program structure presented earlier. As such, the impact of a refactoring on the program structure, as denoted in
the impact tables provided in the previous section, can be directly translated into the impact of a refactoring on the object-
oriented program quality metrics. This formalism for defining metrics is analogue to the one provided in [14], where a
graph-based formalisation of object-oriented software metrics is introduced.

5.1 Selected metrics

As the list of object-oriented program quality metrics is virtually endless (i.e. [26] alone describes more than 200 com-
plexity metrics), and the page limit for this paper is not, we will focus on those program metrics which are most commonly
used, being Number of Methods, Cyclomatic Complexity, Number of Children, Coupling Between Objects, Response For
a Class and Lack of Cohesion among Methods. It can be argued that some of these metrics are not so much measures of
program quality but of program size. Yet, as previous work from the context of formalizing object-oriented program quality
metrics [2] uses similar primitives to calculate design quality metrics, we are confident that the current set provides a sound
sample for the specific purpose of demonstrating the feasibility of using our formalism to investigate the quality drift caused
by the application of refactorings. Moreover, [3] validated the Number of Children, Coupling Between Objects and Response
For a Class metrics as quality indicators by investigating the relationship with fault probability.

Definitions for these metrics are:

Number of Methodscalculates the number of methods of a class. It is an indicator of the functional size of a class.
Cyclomatic Complexitycounts the number of possible paths through an algorithm. It is an indicator of the logical complexity
of a program, based on the number of flow graph edges and nodes [7].
Number of Children measures the immediate descendants of a class [5]. It is an indicator of the generality of the class.
Coupling Between Objectsis a measure for the number of collaborations for a class [18]. It is an indicator of the complexity
of the conceptual functionality implemented in the class.
Response For a Classis the number of both defined and inherited methods of a class, including methods of other classes
called by these methods [5]. It is an indicator of the vulnerability to change propagations of the class.



Lack of Cohesion among Methodsis an inverse cohesion measure (high value means low cohesion). Of the many variants
of LCOM, we use LCOM1 as defined by Henderson-Sellers [10] as the number of pairs of methods in a class having no
common attribute references. It is an indicator of how well the methods of the class fit together.

Table 6 formalises these metrics on top of our source representation. This will allow us to project the impact of refactor-
ings on program structure - as described in the previous section - in the area of software quality.

Metric Formula Metric( Machine)

NOM #M(T (c)) 2
CC insufficient model information /
NOC #ET (class, i)inc 2
CBO target(ET (class, t)out ∪ ET (class, [au][tm])out ∪ ET (class, cm)out) 4
RFC AssumesetM = M(target(ET (class, i∗)out) ∪ {class}) 3

thenRFC = #(setM ∪ {m2|∃m1 ∈ setM ∧m2 ∈ target(ET (m1, c)out)})

LCOM #{{m1, m2}|m1, m2 ∈ M(T (c)) ∧m1 6= m2 ∧ target(T (m1)
[au]−−−→ T (c)) ∩ target(T (m2)

[au]−−−→ T (c)) = ∅} 0

Table 6. Formalization of selected metrics on top of our source representation, calculated for the
Machine class from the example of section 2.2.

The formalizations provided in Table 6 are defined in terms of our extended tree representation, which is a formal de-
scription of program structure. This allows an analysis of the impact of refactorings on internal program quality metrics, by
translating the structural changes to the program structure, as described in the impact tables of section 4, into changes on the
various metrics.

5.2 Analysing the impact of refactorings

For the purpose of clarifying whether the internal quality (represented by the metric) increases or decreases, we need to
analyse in which direction this drift could occur. Therefore, we categorise the effects on a metric value in the following three
categories (analogue to the work presented in [23]):

Impact Symbol Range of effect on metric value
nil 0 [0,0]
positive + [0,+∞[
negative - ]-∞,0]

A nil impact represents a structural change whichwill never affect the value of the internal program quality metric. A
positiveimpact represents a structural change whichmight increasethe value of the internal program quality metric or leave
it unchanged, yet can never decrease it. Lastly, anegativeimpact represents a structural change whichmight decreasethe
value of the internal program quality metric or leave it unchanged, yet can never increase it.

In order to illustrate our technique of analysing the impact of refactoring on internal program quality metrics, we elaborate
on the most interesting metrics.

As the metric formalizations, denoted in Table 6, are constructed out of a number of different terms, we can analyse the
impact of a refactoring on the metric value by analysing its impact on these various terms. To do this, we split out the different
terms, and use the impact tables provided in section 4 to identify the impact category (nil, positive or negative).

Table 7 analyses the impact of the refactorings on the Coupling Between Objects metric value by clarifying the potential
influence of each refactoring on the different terms of the metric formalization (analogue tables are provided for Response For
a Class and Lack of Cohesion among Methods in tables 8 and 9). When the impact of a refactoring is positive for at least one
term, and negative for none (nil impacts allowed), the total impact of the refactoring on the metric value is a positive impact
(potentially cause the metric value to increase). Conversily, when the impact of a refactoring is negative for at least one
term, and positive for none (nil impacts allowed), the total impact of the refactoring on the metric value is a negative impact



Refactoring ∆target(ET (c, t)out) ∆ET (c, cm)out ∆ET (c, [au][tm])out CBO impact

ExtractMethod + 0 0 +
EncapsulateField 0 0 0 0
PullUpMethod-Superclass + + + +
PullUpMethod-Subclass - - - -

Table 7. Analysis of factors which could cause drift of the CBO metric value.

Refactoring M(T (c)) ∆target(ET (c, i∗)out) ∆target(ET (c, c)out) RFC impact

ExtractMethod + 0 0 +
EncapsulateField + 0 0 +
PullUpMethod-Superclass + 0 + +
PullUpMethod-Subclass - 0 - -

Table 8. Analysis of factors which could cause drift of the RFC metric value.

Refactoring M(T (c)) ∆target(ET (c, [au])int) RFC impact

ExtractMethod + + +
EncapsulateField + 0 +
PullUpMethod-Superclass + + +
PullUpMethod-Subclass - - -

Table 9. Analysis of factors which could cause drift of the LCOM metric value.

(potentially causes the metric value to decrease). Two exceptions arise in the reasoning about the impact of a refactoring on
a metric value.

First, the selection of the target-nodes of a set of edges inside the metric formalization makes the analysis more complex.
It requires semantical reasoning about whether the removal of an edge from a set of edges setE also reduces target(setE).
This is an important issue as most of our metric formalizations explicitly depend on the target of a set of edges. I.e. while
EncapsulateField increases the number of type-edges departing from the class subtree, it does not affect the target of this set
of edges (the classes of which an instance was referenced). This semantic information is lacking from the impact tables as
they provide a quantititative description of the change to the cardinality of the entities of the extended tree representation. In
the next section, we will describe how to make the analysis of impacts in these situations more easy.

Second, when a refactoring has a different impact on the various terms of a metric value (positive for some, negative
for others), a deeper semantical analysis is required, possibly even up to the level of inspection of the specific source code
context. This limitation is also discussed in detail in the next section.

The result of this impact analysis is summarised in Table 10. We verified the impact catalogue by applying the refactorings
on the LAN example and comparing post- and pre-refactoring measurements, as done in [11]. The drift noticed in these
comparisons confirmed our formal analysis.

This impact catalogue can be used as an a-priori feedback on the efficiency of applying specific refactorings, from the
perspective of various internal program quality metrics. In example, the table clarifies that applying the Pull Up Method
refactoring has an impact which is opposite for the superclass and the subclass. While it potentially decreases the metric
values for the internal program quality metrics Number of Method, Coupling Between Objects, Response For a Class and
Lack of Cohesion among Methods of the subclass, it potentially increases these metric values of the superclass. This is
a detailed description for the fact that the quality drift on the superclass, caused by moving a method up the inheritance
hierarchy, is the inverse of the quality drift on the subclass. This allows us to envision that when we want to improve the
quality of the subclass, this could possibly cause a deterioration of the superclass quality.

The next section discusses the current limitations of using this technique to tackle the question of quality drift caused by
the application of refactoring, and elaborates on a their solutions.



Refactoring NOM NOC CBO RFC LCOM

EncapsulateField + 0 0 + +
PullUpMethod subclass - 0 - - -
PullUpMethod superclass + 0 + + +
ExtractMethod + 0 0 + +

Table 10. Refactoring impact table indicating the impact of a particular refactoring on a particular
class quality metric

5.3 Limitations and solutions

Our technique for analysing the impact of refactorings on internal program quality metrics allows the clarification of
the drift of specific internal program quality metrics, as caused by the application of particular refactorings. While some
early results were presented which demonstrated the feasibility of applying this technique for a number of refactorings and a
number of internal program quality metrics, it is clear that the applicability of the technique has a number of limitations.

First, our representation for program structure is a limiting factor, as the impact analysis can only use the information
contained in this program representation. We found an example of an internal program quality metric on which the impact of
refactorings could not be analysed due to lacking model information (no control flow information in our program structure
representation). A solution to this problem could be to simply extend our model, yet this will inevitably make our model
more complex. Moreover, the metamodels used in related research on the formalization of metrics demonstrates that most
of the measures of the current metric suites can be operationally defined on a program structure representation similar to
ours [1, 4, 19, 13]. A detailed investigation of how this limitation reduces the number of internal program quality metrics on
which the impact can be analysed requires a deeper study on the operational definitions of currently known program quality
metrics.

Second, our formal descriptions of the structural changes on the program structure, expressed in terms of an extended
tree representation, lacks semantical information about the sources and targets of the cross-reference edges which are added
or removed during the refactoring. This information is currently implicitly contained in the informal description of the
refactorings. Therefore, one of the lessons we learned is that a complete formal description of the structural changes caused
by the application of a refactoring is required in order to automate the impact analysis process, i.e. using logic engines such
as Prolog. While necessary for the next step of analysis of a more extended set of refactorings, the scale of our current work,
serving the purpose of a proof-of-concept, did not require automated analysis.

Summarizing, we identified solutions for the two major limitations of our technique, which will simplify the analysis of
the impact of refactorings on internal program quality metrics, making it possible to automate the impact analysis process.
Such an automation is essential to cope with the massive amount of combinations between refactorings and internal program
quality metrics.

6 Related work

Formalisations of software metrics have been provided from the mathematical perspective [1, 4, 19, 13] and the formal
specifications perspective, in example Z [15] and OCL [2]. Our formalism is analogue to the mathematical approach of [1],
yet they do not provide a formal metamodel specification but rely directly on the cardinality of informally described model
features. We feel that the formal metamodel specification helps us in reasoning about program transformations. None of
these metamodels incorporated information not contained in the model for program structure presented in this work (except
information about modifiers such as abstract, final, public, protected, private).

In previous work, we introduced the existing research field of refactoring, and proposed an extensive list of directions for
future research [12]. Most recently, an extension to the UML 1.4 metamodel for the purpose of facilitating refactoring at the
UML level while remaining consistent with the source-code was proposed by members of our research group [25].

An experience report on metric collection during a refactoring phase is provided in [22]. A formalization of program trans-
formations is introduced in [13], which formed the basis of this work. The same graph-rewriting foundation for describing
refactorings is used in [24], which introduces a hierarchical representation for visualizing program structure.



The work which lies most closely to ours is provided in [23], in which the impact of meta-pattern transformations on
an object-oriented metrics suite is provided. Our work is similar in that they are also interested in a-priori feedback on the
impact of source-code transformation, and therefore also provide an impact catalogue of source code transformations on
object-oriented metrics. Our work is different in that we focus on the impact analysis technique itself and therefore formalise
the process of analysing the impact of catalogued refactorings provided by Fowler on internal program quality metrics, while
they focus on the reengineering strategy of resolving design flaws through the application of meta-patterns.

A quantitative evaluation method to measure the maintainability enhancement effect of program refactoring is presented
in [11]. They analysed three phases in the process of program refactoring, of which their contribution is towards the phase
of validation of the refactoring effect. They analyse the effect of a number of refactorings on coupling metrics by pre- and
post-refactoring measurements.

Detection of refactoring-candidates using visualisation techniques is introduced in [21]. Automatic detection of transfor-
mations is described in [20], in which rules for candidate selection are defined in terms of metric thresholds.

7 Conclusion and Future Work

Our technique for analysing the impact of refactorings on internal program quality metrics allows the clarification of the
drift or improvement of specific internal program quality metrics, as caused by the application of particular refactorings.
The results presented in this work demonstrated the feasibility of applying this technique for a number of refactorings and
a number of internal program quality metrics. The limitations of our current approach were identified and solutions were
discussed to resolve them.

In this paper, we presented both a formalism for describing and a technique for analysing the impact of refactorings on
internal program quality metrics as indicators of quality factors. As a case study, the technique was applied to a number of
representative refactorings from the refactoring categories Composing Methods, Organizing Data and Dealing with Gener-
alization [9], and a number of commonly used internal program quality metrics (Number of Methods, Number of Children,
Coupling Between Objects, Response For a Class, Lack of Cohesion among Methods).

The resulting classification of the impact in positive or negative contributions to internal quality metrics delivers a-priori
feedback to software maintainers, enabling them to predict the quality drift caused by the application of (a series of) refac-
torings.

Our technique, improved by the suggestions to counter the limitations, remains to be applied to a more extended set of
refactor operations and object-oriented program quality metrics, to form a catalogue of the impact of refactorings on internal
quality metrics. Guided by this impact-catalogue on internal quality metrics, we plan experiments to gather empirical data
about the impact of refactoring on external program quality metrics (performance, mean time between repair,...).
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