
Toward a Taxonomy of Clones in Source Code: A Case Study

Cory Kapser and Michael W. Godfrey
Software Architecture Group (SWAG)

School of Computer Science, University of Waterloo�
cjkapser, migod � @uwaterloo.ca

Abstract

Code cloning — that is, the gratuitous duplication of
source code within a software system — is an endemic prob-
lem in large, industrial systems [9, 7]. While there has been
much research into techniques for clone detection and anal-
ysis, there has been relatively little empirical study on char-
acterizing how, where, and why clones occur in industrial
software systems. In this paper, we present a preliminary
categorization scheme for code clones, and we discuss how
we have applied this taxonomy in a case study performed on
the file system subsystem of the Linux operating system. Our
case study yielded several interesting results, including that
cloning is rampant both within particular file system imple-
mentations and across different ones, and that as many as
13% of the 4407 functions that are more than six lines long
were involved in a clone-pair relationship.

1 Introduction

Code duplication, or code cloning, is generally believed
to be common in large industrial systems [9, 17, 20, 18,
15, 2, 7]. Various problems are associated with code dupli-
cation, including increased code size and increased main-
tenance costs. While clone detection is an area of active
research, and several tools exist to facilitate code clone de-
tection, there has been relatively little empirical research on
the types of clones that are found, or where they are found.

A code clone pair is a pair of source code segments that
are structurally or syntactically similar. One of the seg-
ments is usually a copy of the other, perhaps with minor
changes. Code cloning occurs when developers create two
identical or similar code artifacts inside a software system.
For example, developers may copy and paste code. Several
methods exist for detecting code clones in software, such as
simple string matching [9], using statistical fingerprints of
code segments [12], function metrics matching [17, 20, 18],
parameterized string matching [2, 15], and program graph
comparison [7]. Problems related to clone cloning will be
discussed in Section 2.

In the following case study, we begin to profile the code
cloning activity within a large software system that is in
widespread use in industry, the Linux operating system ker-
nel. In doing so, we hope to gain more insight into how
and why developers duplicate code, in an effort to aid the
development of code clone detection techniques and code
clone elimination strategies. We categorize different types
of cloning activity using attributes such as location and size
based on manual inspection of code clones found in the sys-
tem. We then provide empirical analysis of these categories,
and validation on our results using two different clone de-
tection techniques. In this study we produce a taxonomy of
code cloning which will help others examine code cloning,
and we present a case study of a real software system.

The rest of the paper is structured as follows: in Section
2, we describe code cloning in more detail, as well as our
study subject. In Section 3, we describe the tools we used
and the methodology of our study. In Section 4, we de-
scribe the code clone categories we observed in the Linux
file-system. In Section 5, we describe the empirical results
we obtained. Section 6 describes related work, and Section
7 summarizes our work and indicate some future research.

2 Background

In this section, we provide background on code cloning
as a problem in large software systems. We give examples
of reasons why code cloning occurs, as well as several ex-
amples of problems caused by code cloning.

In addition, we give an overview of our candidate soft-
ware system for this case study, the Linux kernel file-system
subsystem. We will provide a brief description of the Linux
file-system subsystem, as well as give reasons for choosing
the file-system subsystem for our case study.

2.1 Code Cloning

Code cloning is considered a serious problem in indus-
trial software [9, 12, 13, 8, 1, 17, 20, 18, 2, 15, 7]. It is
suspected that 5 to 10% of many large systems is duplicated

code [9, 3], and it has been documented to exist at rates of
over 50% in a particular COBOL system [9]. Code cloning
occurs for a variety of reasons[12, 20, 18, 15, 2, 7]: the short
term cost of forming the proper abstractions may outweigh
the cost of duplicating code; this occurs when the devel-
oper is aware of the existence of code that already performs
functionality similar to, or the same as, the functionality re-
quired. Developers may duplicate code because they are
under time constraints; these constraints may be imposed
by deadlines, or by LOC performance evaluation. Another
likely and reasonable circumstance where developers dupli-
cate code is they do not fully understand the problem, or the
solution, but they are aware of code that can do some or all
of the required functionality.

Several problems can develop as a result of code copy-
ing. The size of the source code, and ultimately the size
of the object code, may become significantly larger as a
result of excessive code cloning[2, 12]. Cloning code can
lead to unused, or “dead”, code in the system, which can
cause problems with code comprehensibility, readability,
and maintainability [12]. Duplication of code may also in-
troduce improperly initialized variables, which may lead to
unpredictable behavior of a system, especially if a two clone
segments share a common variable. Cloning may be an in-
dication of poor design [12]. Code duplication may indicate
design problems such as improper or missing inheritance, or
insufficient procedural abstraction[7]. Copying code may
also result in copying bugs within the code as well.These
effects contribute to “software aging” [12]; over time the
program becomes hard to change and possibly less reliable
and more inefficient.

2.2 Case Study Subject: Linux File System

Linux is a Unix-like operating system, written by Linus
Torvalds with assistance from a distributed team of pro-
grammers across the Internet. Linux aims towards POSIX
and Single UNIX Specification compliance. The version of
the Linux kernel we used for this study was 2.4.19, the most
recent stable version at the time of the writing.

We chose the Linux File System as the study subject
for our project because we hypothesized that many of the
supported file systems would contain clones among them
due to the similarity of their basic functionality. In ad-
dition, we know in advance that several components of
the file subsystem that were created with heavy influence
from existing file system types, namely ext2/ext3 and
autofs/autofs4.

The Linux file system subsystem is organized as a lay-
ered design, with the upper most layer being the Virtual File
System (VFS). The VFS provides a standard interface for
the operating system to use when interacting with various
file systems types. The underlying file system types, such

as ext2 and intermezzo, provide function pointers for
the VFS to use when interacting with the file system.

Because the various file systems must interact with, or
provide service to, the same upper layer, and are provid-
ing similar functionality, we expected to see at least some
cloning between file systems. After a preliminary inspec-
tion we expected to see a lot of cloning between ext2 and
ext3; jffs and jffs2; fat and msdos and umsdos
and vfat; autofs and autofs4. These systems were
either closely related in functionality or were known to have
evolved directly from the same code base.

The Linux file system subsystem consists of the
VFS infrastructure plus 42 file system implementations:
adfs, affs, autofs, autofs4, bfs, coda,
cramfs, devfs, devpts, efs, ext2, ext3,
fat, freevxfs, hfs, hpfs, inflate fs,
intermezzo, isofs, jbd, jffs, jffs2,
lockd, minix, msdos, ncpfs, nfs, nfsd,
nls, ntfs, openpromfs, partitions,
proc, qnx4, ramfs, reiserfs, romfs,
smbfs, sysv , udf, ufs, umsdos, vfat.
There are a total of 538 .c and .h files, and 279,118 lines
of code (including comments and blank lines).

3 Study Methods

In this section, we describe the two methods we used to
gather code clone information from the system. First, we
describe parameterized string matching, as implemented by
the tool CCFinder. Second, we describe our approach to
metrics-based clone detection, for which we used Under-
stand for C/C++ to obtain the raw metric information, as
well as a set of Python scripts that we created to perform
the clone analysis. Finally, we describe our methodology
for performing categorization and analysis.

3.1 Clone Detection

In this study we have primarily used the tool CCFinder,
developed by Toshihiro Kamiya et al [15]. The tool uses a
parameterized matching algorithm to search for code clones
within C/C++, Java, and COBOL files. This type of clone
detection is good at finding clones with name substitution
and line structure changes; the former can cause problems
for line by line matching algorithms. Baker introduced a
similar algorithm in [2].

The tool CCFinder begins by performing a lexical anal-
ysis of the source code, resulting in the creation of a list of
tokens as part of the syntax of the given programming lan-
guage. The tokens of all the files are concatenated into a
single string. As part of the code transformation, all white
space is removed from the string and comments as well.

Next, several language specific transformation rules are ap-
plied. Then type, variable, and constant identifiers are re-
placed by a special identifier (such as $P).

Once the source code has been transformed into this ab-
stract token stream, an exact match algorithm is performed
to find maximal matching strings within the transformed
code. This is done by constructing a suffix tree and locating
matching substrings within the tree, as proposed by Baker
[2, 3]

After the exact matches have been found, parameter
matching is performed. That is, starting from the beginning
of a pair of exactly matched transformed strings, CCFinder
begins parameter matching of the parameters on each line.
As the parameters are matched, if a conflict is found but a
sufficiently large number of lines have been matched, the
clone is reported, and parameter matching begins again af-
ter the line creating the conflict.

Once the clone detection phase is complete, the detected
clones are mapped back onto their source files. Then, this
information is used as input in the GeminiE user interface,
where clone classes are generated and the results of the
clone detection are presented. These clone classes are gen-
erated based on the fact that the clone relation is an equiva-
lence relation [15, 14]. The clone relation exists when two
code segments match according to parametric matching. A
clone class is the equivalence class of the clone pair rela-
tion, i.e., it is the maximal set of clones for which the clone
relation holds [15].

The results of the clone detection process are presented
in several ways in a graphical user interface [22]. The in-
terface provides a scatter plot showing the user the matches
between files, highlighted source code, and clone class met-
rics. Users can browse the detected clones pair by pair or by
clone class. For a small number of files, the scatter plot can
provide useful information, but when a large number of files
is present with many lines, i.e., 200,000 or more, significant
clones become difficult to detect through visual inspection
of the scatter plot. For this study, we found that we made
the most use of the tool by browsing the clone pairs individ-
ually, and by browsing the clones classes.

Before using the clone pairs extracted by this tool, we
filtered out many of the clones we felt were meaningless, to
improve the accuracy and relevancy of our results. Mean-
ingless clones are segments or code that match but are not
necessarily cloned code, or clones that were of no impor-
tance if they are duplicated code. For example, the inner
block of structure definitions and lists of function declara-
tions would we often considered meaningless clones. These
clones were often unrelated and only appeared because of
the detection process in parameterized string matching. Af-
ter the initial extraction of clone pairs, we were presented
with 5000 clone pairs, and 1809 clone classes. We deleted

1996 clones in an effort to remove at least a significant num-
ber of meaningless clone pairs. This left us with 1604 clone
classes, a decrease of only 200 clone classes. We do not
claim to have removed all of the meaningless clones, but
we believe that we have removed a significant number of
them.

3.2 Metrics-Based Clone Detection

Metrics-based clone detection methods use groups of
metrics to generate “fingerprints” for each function in the
source code. These metrics are often gathered using both
the program source, as in the case of number of lines of
comments, and from an Abstract Syntax Tree, as in the case
of cyclomatic complexity. Metrics-based clone detection
was introduced by Mayrand et al. in [20] and Kontogian-
nis et al. in [18]. Further studies using function metrics as a
basis of clone detection include [4, 6, 5, 8, 1, 17, 21].

In our case study we used the following set of metrics:

1. Line counts: total number of lines, count lines blank,
count of lines of code, count lines of declarations,
count lines of executable code, count lines of com-
ment.

2. Count number of parameters, number of global vari-
ables used.

3. Count number of parameters or global variables modi-
fied.

4. Cyclomatic complexity.

5. Maximum level of nesting.

These metrics are different than those used in other stud-
ies such as [20, 18] but as stated in [1], in large systems the
choice of metrics does not significantly affect the results.
We have used a subset of those metrics used in previous
work [20, 18]. From this we would expect that our returned
pairs be less precise, and more false positives to be present,
but this is not the case. Upon visual inspection of several
hundred of the clone pairs, false matches were very rare,
confirming that the choice of metrics does not affect the re-
sults.

As in [1, 8] we searched for functions that had identi-
cal metric fingerprints. This corresponds to ExactCopy and
DistrinctName classes which were defined in [20]. As in
[1, 8], we did not use function name as a parameter.

To perform function matching based on metrics, we gath-
ered our metrics using the tool Understand for C/C++. We
then wrote a small program that performed the function
matching grouping functions together one metric at a time.
Function comparisons based on metric fingerprints can be
done in �������
	�� time where n is the number of functions
and m is the number of metrics.

3.3 Classifying and Evaluating Clones

To classify the clone pairs, we used the results from the
clone detection using CCFinder. Because of the large vol-
ume of information presented to us, caused by the large
wealth of information given to CCFinder, it was difficult to
see any interesting trends that might occur amongst related
files. This is because the clones were distributed among
many files and many of the clone pairs appeared as blocks
of code and it was difficult to get a feel for the cloning ac-
tivity as a whole within the file system. To remedy this, we
researched the file systems included with the Linux kernel
to evaluate the relationships between them, and to pinpoint
places where cloning activity is likely to have occurred. We
also found some interesting relationships between several
file systems, which we did not expect, by graphically dis-
playing the amount of clone-pairs occurring between each
file-system.

After narrowing down where we would begin to look,
we manually viewed a large percentage of the clone pairs
found in that area of the system. As we saw trends, we
identified types of clones and began classifying many of the
clone pairs that fell into these various categories. Once we
had created many of the clone categories we have now, we
browsed clones within the entire file system to find if there
were clone categories we had not yet seen.

When we had a set of clone categories that we were sat-
isfied with, we wrote scripts to place the clone pairs into
the categories we had created. The criteria we based these
scripts on were as follows: for functions to be classed as
clones, 60% of their code must be common between the
two. Initialization clones must start within the first 5 lines
of a function and end within the first half of the code. Fi-
nalization clones must start in the last half of the function
and end in the last 5 lines. Blocks of code not in the same
function must not be in any of the above clone types. All
clone types are exclusive, so a clone pair that is part of a
cloned function relationship can not also be an initialization
clone.

After categorization, and for any other empirical results
we have presented, we performed manual inspection of a
large percentage of the clone pairs in the given experiment
to ensure that they were within the criteria that we specified
and that they were accurately found as clones.

3.4 A Basis for Comparison

As a way to compare the results given to us from the
two methods of clone detection, we manipulated the data
extracted from one to be close in form to the other. Because
full function matches were a smaller subset of CCFinder’s
returned clone pairs, we used only the function matches

found by CCFinder to compare to the function matches
found by metric based detection.

In doing so, we defined a criterion for which to decide
when a function was matched with another based on the
code segments matched between the two. For two functions
to match, more than 60% of their individual code must be
common between the two. This may be in the form of a sin-
gle segment of code duplicated between the two, or several
individual code segments.

Another issue to consider in comparing the two meth-
ods was the minimum size of code segments that could be
classed as a clone pair. We found that five lines often found
function matches that were too small for CCFinder to find,
because we had set CCFinder to find code segments of a
minimum size of 30 tokens. Several values of minimum
line numbers were tried, five, six, and seven and the results
of these are described in Section 5.3.

4 A Taxonomy of Clones

In the following subsections we present a taxonomy of
the types of clones we found during this case study using
the clone pairs from CCFinder; in the following section we
analyze our findings.

The categories of clones are described using the follow-
ing template: the first paragraph describes the structure of
the clone; the second paragraph describes problems caused
by this type of clone; the third paragraph describes reasons
why these clones may be introduced into the software; and
the fourth paragraph describes a possible solution to that
form of cloning activity.

4.1 Duplicated blocks within same function

Characterized as repeated blocks of code within the same
function, these blocks are of non-trivial size (such as 5 to
127 lines of code) and each copy expresses the same se-
mantic idea, generally with very few variables changed (of-
ten only one). We found that this type of clone occurs often
in the Linux file-system subsystem.

The major problem that this can cause is increased code
size; in particular it can cause functions to grow long and
unreadable. In addition, this type of cloning may lead to un-
intended diverging evolution of the code blocks if a devel-
oper changes one block, and not another. A bad initializa-
tion or ’value changed’ type of error can very easily happen
in this type of code, because it is likely variables are shared,
intentionally or unintentionally, by the individual blocks.

Situations where this typically occurred was in control
structures such as switch and if/else statements. The
cause of this may be that some developers do not antici-
pate a condition that may require a similar block, so they

do not think to make the block a function from the start.
Also, making the function that encapsulates the functional-
ity of this clone block may appear to be too much work, be-
cause of the number of local variables involved in the code
block. Another reason may be time: it is very fast to just
copy and paste the block just a few lines down, and the de-
veloper “knows” the code works, so it is a quick and dirty
solution. Performance may also be an issue, if many local
variables are required to be passed, stack creation and de-
struction may be time consuming.

A solution to this problem, as with many code clones,
would be to create a new function or macro to represent the
block, and call the function where these clones occur. Pa-
rameters to the function would be the few changed variables
that occur in the code block. One would expect this change
to be simple and straightforward to implement.

4.2 Similar functions, same file

This type of clone occurs when a programmer has two
functions performing very similar tasks, with minor vari-
ations. These types of clones are often characterized by
changing only a few function calls, variable initializations,
constants, or other minor things. We consider any functions
which both match 60% of their code to be cloned functions.

Consequences of this type of clone are increased code
size. Also fixing bugs may be harder because same error
may be spread across several functions, as well as the func-
tions may evolve on separate paths as various maintainers
update them.

Developers are likely to do this when the effort required
to parameterize the code block and create a more general
function appears to be too great when compared to sim-
ply copying the code. Also cloning the function may ac-
tually make the program conceptually simpler, because the
function names can be specific and meaningful. This type
of cloning we do not consider extremely harmful because
clones are not physically far apart, but it is recommended
that such cloning activity should be documented as it may
not be apparent to future maintainers which functions are
clones of each other.

Solutions for this can be very simple, or quite complex.
Possible solutions would be to introduce function pointers
to the parameter list, adding more parameters for initializa-
tion, etc.

4.3 Functions cloned between files within the
same directory

This type of clone occurs when the same functionality is
required among multiple files. The majority of code dupli-
cation that occurs within a directory (excluding duplication
with the same file) is related to duplicated functions, more

than 80% of clone pairs that occurred within the same di-
rectory (but not in the same file) were related to the dupli-
cation of functions. It often occurs with no changes at all
to the cloned segment of code, or minor changes such as
the function name and some variable or function calls. At
times, several constants may be changed, global variables
accessed and in these cases a solution is harder to find.

Consequences of this type of clone are code size in-
crease, and increased difficulty in error finding and cor-
recting. The copied code segments are no longer localized
in the same file and easily identified, but may be scattered
across as many as four or five files. At times, this type of
code duplication may contribute to source code that is eas-
ier to read. Functions will be easier to understand because
they will not include extra logic and flows of control which
would be required to restructure a function to encompass
the more general functionality required of it to eliminate
duplicates. This case is less frequent however, and quite of-
ten the use of function pointers or some minor conditional
operations would create a function which may perform the
desired task.

A simple solution to this is to create a common file to use
as a library, and migrate the function definitions and proto-
types of the cloned functions to this file. This will work best
in the case of exact copies, or clones with minor changes.

4.4 Functions cloned across directories

This type of clone may occur when the same function-
ality is common among several different components in the
software. As with functions cloned within a subsystem, it
may entail no changes at all to the cloned segment, or mi-
nor changes such as the function name and some variable or
function calls. We often saw this type of clone for generic
kinds of tasks such as parsing options or outputting errors.

Consequences of this type of clone are code size in-
crease, and may increase labor for error fixing. Also, it may
be the case that one developer created one component, and
is unaware of the clones existing in the rest of the system.
In this case, when an error is found, repairs may not even
have a chance to be propagated to the rest of the clones.

This type of cloning may occur when a new subsystem is
being created, and the design and implementation is based
on previous work of another subsystem.

Creating a set of library function may be the easiest solu-
tion, but if the function is cloned only between several files,
the effort put into creating a new library, and maintaining it,
to be shared by all components may be more work than it is
worth.

4.5 Cloned files (possibly with some changes)

This type of clone occurs when a new problem arises
with requirements that are very similar to those of an exist-
ing software system, and the source code is readily avail-
able. For example, when new file system is introduced to
the system, it may be possible to copy another’s file, and
make only minor changes. We saw a very good example
of this when we compared ext2 and ext3, in particular
buffer.c in both systems. This is a very rare occurrence
from what we have seen in the file-system subsystem, but
in other systems such as this SCSI subsystem this type of
cloning activity seems to be much more frequent [10].

Consequences of this type of cloning can be much more
severe than function cloning, because the clone has now in-
troduced a large number of lines of code that are common
between the two files, and must be changed together, es-
pecially when bug fixing. Because it is likely that there
will be some alterations to some of the code, it may not
be clear where or how to change the cloned file when re-
flecting changes that have been made to the original code.
Also, this is one of the worst-case scenarios for code size
increase. In addition, it is possible that side effects (such
as inefficient device usage and settings) can occur if the de-
veloper does not fully understand the code that he/she has
copied. This may lead to inefficiencies in the code and in-
stability. This type of cloning will occur when speed of
development may be a factor, or a developer may not com-
pletely understand the problem at hand. We have also seen
this when drivers are made for related hardware, although
not part of this study.

Solutions to this problem may not be as simple as other
cloning types. Because the two files are used on different
products or include different features, they may need evolve
separately from this point on. As well, changes that have
been made to the duplicated code may make it difficult to
re factor both subsystems completely just to remove to code
duplicates. That said, a workable solution may be to try to
take the common invariant code and place it into a common
library file which both subsystems could use. This solution
may lead to a slightly more complex architecture.

4.6 Blocks across files

This type of cloning is similar to the first one but it occurs
in different files within the same directories or across file
systems. Often, in the case of cloning blocks across direc-
tories, we see that the cloned block is in fact the remains of
what appears to be a cloned function. The function is often
changed to suit the developers own personal style and also
to meet the specific needs of his/her own project. Based on
our observations, we would argue that most clones that oc-
cur across files start out as whole function clones and then

are manipulated to fit the current project goals until what
remains are scattered blocks of code which can still be cap-
tured as code duplicates.

The main problem with this kind of clone is when the
developer wants to modify or change these blocks of code
or when they find bugs, it will be very difficult to fix and
change these blocks everywhere else, and it is possible
that the developer may be completely unaware of the other
clones. If any logic on which this block depends changes,
then all the blocks may be harmed, and it may be difficult
to find all the blocks affected.

The solution for this problem is relative to the size and
number of clones that occurs across files. In certain contexts
it might be proper to leave the clones as it is, such as in the
case of if or case statement, sometimes making function
calls may break the understanding of the logic of the code.
In other cases a common library should be made.

4.7 Initialization and finalization clones

This type of clone occurs within the same file or across
file systems when initializing data parameters or cleaning
up at end of function; we have found that the main portion of
the function can perform quite different tasks. This usually
occurs when using the same data types or when performing
the same tasks such as memory allocation and de-allocation
or variable initialization. Finalization clones often encom-
pass exit conditions and logging.

Problems with this type of clone are much less severe
than other clone types, and in many cases are unavoidable.
Certainly increased code size may be an issue, but other
problems related to code duplication do not seem as large
of a concern.

Solutions to this sort of problem may be the use of
macros or functions, but this seems too complex for some-
thing that is of such little issue.

5 Case Study Results

In this section, we discuss cloning activity in terms of
clone pairs, not numbers of lines cloned. We consider that
discussion about the number of lines that have been cloned
can be misleading and confusing. In the case of clones
within the same file, many clone pairs may overlap each
other, in contrast to clone pairs outside of the directory,
which in many cases do not intersect. The latter will seem-
ingly have a larger number of cloned lines than the former,
but in fact the degree of the cloning activity might actually
be higher in the former.

In regards to the total number of lines cloned, allowing
for lines to be counted more than once did not prove to be

any more beneficial than discussing clone pairs, so we chose
the former for simplicity.

The Linux file system contains 42 different file-system
implementations in C. There are 538 .c and .h files, with
a total of 279,118 lines of code. We detected 3116 clone-
pairs after filtering, giving us 33,707 unique lines, or 12% of
the source code, that were involved in code cloning activity.
The average length of the clone pairs is 13.5 lines, with a
median of 12 lines, an upper quartile of 15 lines and lower
of 8 lines. The minimum length is 1 line and the maximum
is 123 lines.

5.1 Families of Systems Based on Duplication

As illustrated in Figure 2, several families of file–
systems, or groups where code is similar, become appar-
ent. The most notable is the shared code between ext2
and ext3. Here we see 85 clones common between the
two file systems. After investigating the code, the reasons
are very obvious. Ext3 is based on ext2, and it appears
the development of ext3 started by copying all of ext2
into a new folder.

Two unexpected results appeared when viewing this
chart. The intermezzo file-system seems to be highly
related to the main file-system code. By inspecting the
code, we see that much of what was cloned involved get-
ting and setting the path, and various navigation codes.
The intermezzo was inspired by coda, although re–
engineered and restructured, and we see some significant
evidence of this by 11 clones appearing between the two.
We also see that the JFFS file-system has cloned much
from the inflate fs. Here we see that most of the clones
in this case are grouped into one file, although they are taken
from many files within inflate fs.

5.2 Frequency of Clone Types

As can be seen in by Figure 1, the major cloning trend is
to duplicate code from within the same subsystem. 78%
of code duplication occurs from within the same direc-
tory. Some notable exceptions to this trend are ext2/ext3
and AUTOFS/AUTOFS4. In these cases, ext3 was cre-
ated based on ext2, and AUTOFS4 was created based on
AUTOFS.

This result is significant. It suggests that problems asso-
ciated with code duplication such as copying bugs in most
cases will be restricted to within a single subsystem. This
also gives developers good reason to focus their efforts on
eliminating code duplication within subsystems first before
doing system wide repair.

Reasons for this are probably the most obvious ones. The
developer is most familiar with his/her own code, so is most
likely to use code from within their own system. As well,

because it is within the same system, it is more likely that
relevant and similar code exists in this system.

Table 1 shows the number of clones that occur in the
same file, in the same directory but not in the same file, and
in different directories. From this table, we can see that the
average size of a clone pair (the number of lines of code) is
nearly the same, but the number of clones that occur in the
same file is more than double the number of clones in the
same directory but different files, or in different directories.
We saw this again when analyzing the cloning activity on
the 3D bar charts as described above.

Table 2 summarizes the frequency of the various types
of clones. In this table, one should note that when we say
that a function has been cloned, we mean that more than
60% of the code between two functions has been cloned.
The number of duplicated functions in this table refers to
the number of duplicated function pairs, or in other words
pairs of functions that are in a clone relationship. In this
table, count refers the number of occurrences of that type of
clone, for example in the table we see 589 blocks of code
were cloned in the same function, and 244 functions were
cloned in the same file.

From Table 2, we see that over 30% of the clone pairs
that occur within the same file are blocks of code duplicated
within the same function. We also see that 244 function
pairs occur within the same file. This number can be decom-
posed somewhat. From these pairs, there are 293 unique
functions that take part in a code clone relationship. 341
clone pairs combined form this group of clones, of which
173 clone pairs encompass more that 60% of the functions
which have been cloned.

Within the same directory, we see that there are 653 func-
tion pairs that are in a clone relationship. 658 clone pairs
contribute to this, making more than 80% of the clone pairs
occurring in the same directory but not in the same file part
of a function clone relationship. 166 unique functions were
cloned, meaning that many of these function pairs are part
of larger clone classes.

Outside of a directory, there are 129 function pairs,
with 156 unique functions. 175 pairs contribute to these
full function matches. From this result, we see that func-
tion cloning decreases significantly, even though the actual
amount of cloning activity does not drop so dramatically.
We also see that functions are less likely to appear in clone
classes when cloned across directories.

In Table 3 we see that the metrics–based clone detection
validates our results that are based on parameterized string
matching. Regardless of the constraint of minimum lines of
functions, in all three cases, cloning of functions was most
often found within the directory but not the same file, fol-
lowed distantly by cloning of functions in the same file, and
then cloning functions from outside the directory, just as

Figure 1: Number of Clone Pairs Between File Systems

Figure 2: Number of Clone Pairs Between File Systems (excluding themselves)

Clones in Same File Clones in Same Directory Clones in Different Directories
of clone pairs 1628 806 682
Average LOC 12.7 14.5 14.3

Max LOC 63 71 123
Min LOC 2 4 1

Table 1: Profiles of cloning locality — All clones

Type Count Average Length
Same File

Blocks in Same Function 589 13
Duplicated Functions 244 26
Initialization Clones 28 14
Finalization Clones 82 13
Cloned Blocks 588 13

Same Directory
Duplicated Functions 658 16
Initialization Clones 2 14
Finalization Clones 11 10
Cloned Blocks 135 14

Different Directories
Duplicated Functions 129 27
Initialization Clones 6 12
Finalization Clones 45 11
Cloned Blocks 456 14

Table 2: Frequency of various clone categories — Parametric String Match

what can be seen in the previous section. It is interesting
to note how quickly the number of functions drops off as
the minimum number of lines of a function is increased. A
large portion of the functions that we lose are false matches,
although some are not.

Initialization clones and finalization clones were not as
frequent as were first expected they might be. The clones
we did find, however were significant. We expect to find
more of these clones in other parts of the Linux kernel, in
particular driver source code. A surprising result is that ini-
tialization clones appear to occur much less often than fi-
nalization clones. After inspection of code block clones, we
see that when code for initializing a function is copied, of-
ten local variables are added to the cloned list or removed
from it. This makes it difficult to classify many of the ini-
tialization clones automatically. Therefore, we take the fre-
quency of initialization clones as an underestimate. Better
approaches to automatically find this class of clone need to
be investigated further.

Cloned blocks of cloned code are difficult to character-
ize completely, as there are many circumstances leading to
the cloning of these blocks. However, we have found that

locality does correlate somewhat to the structure and rea-
sons of this type of clone. In the cases of clones in the same
file and same directory, these clones are often the product
of copying blocks contained within a control structure, such
as if/else statements. In some cases however, they are
what remains of what was once a initialization clone or a
finalization clone.

When we inspect clone blocks across directories, it is of-
ten the case that the blocks are the remains of copied func-
tions, changed enough that the functions no longer can be
classed as cloned functions technically, but by manual in-
spection these functions are still clearly in a form of clone
relation. These blocks raise interesting questions about the
evolution of clones.

In many cases, clone blocks represent function pairs
where 60% or more of one function has been copied to an-
other, and additional states have been added. These function
pairs, which we call partial-match function pairs, represent
an interesting form of code cloning. It would be difficult for
this form of function cloning to be detected by metrics based
clone detection algorithms, but they are certainly function
clones. In many cases, one function is entirely copied, and a

Metric Match String Match
Minimum Function Length (LOC) 5 6 7 N/A

Same File 141 110 108 244
Same Directory 1157 1152 619 658

Different Directory 116 80 38 129

Table 3: Number of function clones found in metrics based clone detection and parameterized string match

significant number of statements have been appended to the
end. In total, these partial function matches accounted for
72 same file clone blocks, 22 same directory clone blocks,
and 109 different directory blocks.

This case study shows that the taxonomy is not complete.
The presence of so many cloned blocks may be an indica-
tion that more categories of clones exist, and further inves-
tigation must be done.

5.3 Metrics vs. Parametric String Matching

In Table 4, we see the summary of results in compar-
ing the function pairs found by the metrics method to those
found by the parametric method. The first row presents
the number of function clones found in both the metrics
based clone detection and the string matching algorithm at
the same time. Then second and third row show the num-
ber of function clones found by each detection method ex-
clusively. In all cases, we see that between 708 and 716
function pairs were found by both methods. These function
pairs are in most cases very clearly clones of one another.
Also, in all cases, between 353 and 361 function pairs were
only found by the parameterized string based approach. In
these cases, the functions tend to be longer than average,
their average length being 30 lines of code. Often, lines
have been added and removed, or fan in or fan out metrics
have changed. This shows us that using exact match criteria
may not always be sufficient in searching for function pair
clones.

In the cases of functions pairs found only by metrics
we see two things. First, functions of sizes five LOC and
six LOC are often too small to be detected when using a
minimum criteria of 30 tokens in the parameterized string
approach. Secondly, small functions of sizes five, six and
seven LOC are often hard for parameterized string matching
to detect clones in when there are enough tokens present.
This is because if one token violates the parametric match,
then there is little chance that enough tokens were already
matched to make a clone that is large enough to report, and
there is also little chance of enough tokens remaining in the
function to find another clone. Often a function call that
takes a different number of parameters or changed mathe-
matical operators can cause the parameterized string match-

ing to miss matches in small functions.
In general, we found when using our metrics-based

clone detection tool, it was better at finding small function
matches than CCFinder, but CCFinder was better at find-
ing large function matches. When using CCFinder with
the Gemini GUI, we found that it was difficult to grasp the
total cloning activity in the system, but when clone pairs
were grouped by the taxonomy we have presented, inter-
esting cloning activity becomes more evident. We found
that metrics-based clone detection finds very close matches,
but CCFinder is able find function matches which exhibit
more change. As a preliminary result, we found that pa-
rameterized string matching presented more interesting and
useful clones to use than using ExactMatch metric-based
clone detection. Future work will investigate the compari-
son of these two approaches but allowing more flexibility in
the metrics-based matching.

6 Related Work

There are several types of clone detection techniques that
have been developed. Metrics-based clone detection tools
which detect clones of full blocks of code such as functions
based on various metrics extracted from them have been de-
veloped by Mayrand et al. [20] and Kontogiannis et al. [18].
Parameterized string matching is discussed by Baker et al.
[2, 3] and Kamiya et al. [15]. Baxter et al. [7] have devel-
oped a clone detection tool by performing subtree matching
on abstract syntax trees. Program dependence graphs have
been used by Krinke et al. [19] and Komondoor et al. [16]
in detecting duplicated code. Johnson [13, 12] proposed us-
ing a fingerprinting algorithm on substrings of the source
code. Kontogiannis et al. define two other methods to de-
tect clones in [18]:dynamic pattern matching which finds
the best alignment between two code fragments, and statis-
tical matching between abstract code descriptions patterns
and source code. Balazinska et al. [4, 6, 5] uses metrics
based clone detection to quickly find candidate clones and
uses an algorithm based on Kontaogiannis et al.’s dynamic
pattern matching algorithm.

Clone detection case studies on the Linux kernel have
been reported in [10, 8, 1]. In [8], Casazza et al. use met-

Minimum Number of Lines 5 6 7
Function pairs found by both 716 716 708

Found in Parametric Only 353 353 361
Found in Metrics Only 698 626 57

Table 4: Comparison of # of function clones found by the two clone detection algorithms

rics based clone detection to detect cloned functions within
the Linux kernel. They performed analysis across the ma-
jor subsystems, and then on the architecture dependent code
of the memory management subsystem and the kernel core.
To evaluate the degree to which cloning occurs, they define
a common ratio between two files, which is the percentage
of functions in one file which are cloned in another with re-
spect to the number of functions in the first. As noted in
[1], this common ratio must be used with great care and ab-
solute values need to used as well. The conclusions of this
study were that in general the addition of similar subsystems
was done through code reuse rather than code cloning, and
more recently introduced subsystems tended to have more
cloning activity. Antoniol et al. [1] did a similar study, eval-
uating the evolution of code cloning in the Linux. They too
used function metrics clone detection as their technique and
their conclusions were the same, adding that the structure
of the Linux kernel did not appear to be degrading due to
code cloning activity. In [11] a preliminary investigation of
cloning among Linux SCSI drivers was performed.

Kamiya et al. [15] performed tests on JDK to search for
clones within the system, and they studied the cloning be-
havior between Linux, FreeBSD, and NetBSD. While [15]
observes that clones in JDK seem to occur in near direc-
tories or files based on visual inspection of the scatter plot
their tool presents, no quantitative data analysis is discussed
concerning this point. None of the above studies have dis-
cussed the types of clones they have found, or discussed the
locality of code cloning in detail other than comparing the
level of cloning amongst subsystems.

A work similar to this also tries to categorize clones for
the purpose of software maintenance. In [4], Balazinska et
al. create a schema for classifying various cloned methods
based on the differences between the two functions which
are cloned. The results produced in [4] are used by Balazin-
ska et al. in [6, 5] to produce software aided re engineering
systems for code clone elimination. This differs from our
work in that our classification scheme is based on locality
as well as clone type, and copied functions are only one type
in our case, although in [4] they break this down into 18 cat-
egories. One of our main research goals is to determine how
much developers clone and from where. This question is not
answered by the clone classification scheme in [4]. In addi-
tion, this work ignores code clones which are not function

clones.

7 Summary and Conclusions

This preliminary study began as in-depth evaluation of
cloning in a large software system. In this study we
found that the Linux file-system subsystem has a significant
amount of code duplication within it, the majority being
localized within each individual file-system type, or sub-
subsystem, similar to the activity in JDK noted in [15]. We
also defined a preliminary taxonomy by which non-function
and function clones can be categorized. This will be used
in future research when characterizing cloning in all of the
Linux kernel.

Our first goal, to begin to produce a finely grained anal-
ysis of code cloning in a large scale software system has
begun, and future work will attempt to characterize more
subsystems, in particular the driver subsystem where source
code and functionality is vastly different from the Linux
file-system subsystem. This work will provide support for
generalizing these results, as well as more insight into the
growth of the Linux kernel as documented in [11].

During our study, we found that 3D visualization pro-
vides much convenient information. From the 3D bar charts
we were able to see very quickly related groups of sub-
systems, and also which subsystems were trouble spots for
cloning activity. Further investigation on the scalability of
the graph is needed, but at the current time we would sug-
gest that including the ability to visualize clone detection
results in such a way may be a very useful addition to main-
tenance environments involving clone detection.

8 Future Work

Research on this topic is ongoing. We intend to continue
this study, to fully characterize the Linux kernel in terms of
code clone activity. We will also investigate how other sub-
systems compare to these results. From preliminary testing,
many may be quite similar.

We will also evaluate our taxonomy throughout the
course of this study.

Additionally, we will study how code clones evolve over
time, in particular, we would like to test the hypothesis that
many code block clones start out as function clones, and as
time goes on, the functions evolve away from one another.
We will also investigate the possibility of using previous
releases for detecting clones in current releases.

Acknowledgments

We would like to thank Dr. Ettore Merlo for his on going
help and advice.

References

[1] G. Antoniol, U. Villano, E. Merlo, , and M. Di Penta. Ana-
lyzing cloning evolution in the linux kernel. In Information
and Software Technology 44(13), 2002.

[2] B.S. Baker. A program for identifying duplicated code.
In Proceedings of Computing Science and Statistics: 24th
Symp. Interface, pages 49–57, 1992.

[3] B.S. Baker. On finding duplication and near-duplication in
large software system, 1995.

[4] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Measuring clone based reengineering op-
portunities. In Proceedings of the Sixth International Soft-
ware Metrics Symposium, pages 292–303, 1999.

[5] Magdalena Balazinska, Ettore Merlo, Michel Dagenais,
Bruno Lague, and Kostas Kontogiannis. Partial redesign of
java software systems based on clone analysis. In The Pro-
ceedings of the 6th. Working Conference on Reverse Engi-
neering, pages 326–336, 1999.

[6] Magdalena Balazinska, Ettore Merlo, Michel Dagenais,
Bruno Lague, and Kostas Kontogiannis. Advanced clone
analysis to support object-oriented system refactoring. In
Proceedings of the 7th. Working Conference on Reverse En-
gineering, pages 98–107, 2000.

[7] Ira D. Baxter, Andrew Yahin, Leonardo M. De Moura,
Marcelo Sant’Anna, and Lorraine Bier. Clone detection us-
ing abstract syntax trees. In ICSM, pages 368–377, 1998.

[8] G. Casazza, G. Antoniol, U. Villano, E. Merlo, and M. Di
Penta. Identifying clones in the linux kernel. In First IEEE
International Workshop on Source Code Analysis and Ma-
nipulation, pages 92–100. IEEE Computer Society Press,
2001.

[9] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer.
A language independent approach for detecting duplicated
code. In Hongji Yang and Lee White, editors, Proceed-
ings ICSM’99 (International Conference on Software Main-
tenance), pages 109–118. IEEE, 1999.

[10] Michael W. Godfrey, Davor Svetinovic, and Qiang Tu.
Evolution, growth, and cloning in Linux: A case study.
A presentation at the 2000 CASCON workshop on

’Detecting duplicated and near duplicated structures in
largs software systems: Methods and applications’, on
November 16, 2000, chaired by Ettore Merlo; available
at http://plg.uwaterloo.ca/˜migod/ papers
/cascon00-linuxcloning.pdf.

[11] Michael W. Godfrey and Qiang Tu. Evolution in open source
software: A case study. In Proceedings of the 2000 Interna-
tional Conference on Software Maintenance, 2000.

[12] J. H. Johnson. Substring matching for clone detection and
change tracking. In Proceedings of the International Confer-
ence on Software Maintanence, pages 120–126, 1994.

[13] J.H. Johnson. Identifying redundancy in source code using
fingerprints. In Proceedings of CASCON 93, pages 171–183,
1993.

[14] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. A
token-based code clone detection tool - ccfinder and its em-
pirical evaluation. Technical report, 2000.

[15] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Ccfinder: A multilinguistic token-based code clone detec-
tion system for large scale source code. In Transactions on
Software Engineering 8(7), pages 654–670. IEEE Computer
Society Press, 2002.

[16] Raghavan Komondoor and Susan Horwitz. Using slicing to
identify duplication in source code. Lecture Notes in Com-
puter Science, 2126:40–??, 2001.

[17] K Kontogiannis. Evaluation experiments on the detection of
programming patterns using software metrics. In Proceed-
ings of Working Conference on Reverse Engineering, pages
44–55. IEEE Computer Society Press, 1997.

[18] K. Kontogiannis, R. De Mori, R. Bernstein, M. Galler, and
E. Merlo. Pattern matching for clone and concept detection,
1996.

[19] Jens Krinke. Identifying similar code with program depen-
dence graphs. In Proc. Eigth Working Conference on Reverse
Engineering, pages 301–309, 2001.

[20] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the au-
tomatic detection of function clones in a software system us-
ing metrics. In Proceedings of the International Conference
on Software Maintenance, pages 244–253. IEEE Computer
Society Press, 1996.

[21] Qiang Tu and Michael Godfrey. An integrated approach for
studying software architectural evolution. In Proceedings
of 2002 International Workshop on Program Comprehension
(IWPC-02), 2002.

[22] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Kat-
suro Inoue. Gemini: Maintenance support environment
based on code clone analysis. In Proceedings of the Eighth
IEEE Symposium on Software Metrics, pages 67–76. IEEE
Computer Society Press, 2002.

