
Using software trails to rebuild the evolution of
software

Daniel German
Department of Computer Science

University of Victoria
dmgerman@uvic.ca

Abstract

This paper describes a method to recover the evolution of a software sys-
tem using itssoftware trails: information left behind by the contributors to
the development process of the product, such as mailing lists, Web sites,
version control logs, software releases, documentation, and the source code.
This paper demonstrates the use of this method by recoveringthe evolution of
Ximian Evolution, a mail client for Unix. By extracting useful facts stored
in these software trails, and correlating them, it was possible to provide a
detailed view of the history of this project.

1 Introduction

Investigating and recovering the evolution of a software project requires a combi-
nation of skills: it is necessary to understand the softwareproduct, its features, its
components and how these have evolved; it is necessary to find, recover, and cata-
log valuable facts about the history of the project; it is also required to look at the
developing team, in order to better understand the softwareprocess they have used,
their interrelations and communication, their decision taking and their skills; it also
required to start piecing together all this information, proposing potential hypoth-
esis that are then proved or disproved. One can equate the work of a “software
evolutionist” to the morphing of a software architect, a historian, an ethnologist, an
anthropologist, a paleontologist, and a private investigator.

In rare cases, the evolution of a software product is recorded by an insider. This
software evolutionist has access, presumably, to all the personnel and available
information, and has the potential to accurately record itshistory as it unfolds.
Unfortunately few software projects have this type of resident historian, and it
is usually an outsider who has to the work. This external software evolutionist
could track the project for some time, looking from the outside at how the project
continually evolves. Sometimes her work is done post-mortem, looking at the
remnants of the project, like an anthropologist looking forclues of how an ancient
civilization functioned.

An outsider evolutionist depends on the available information of a project to
tell its history. This paper defines “software trails” as pieces of information left
behind by the contributors of a software project. Examples of software trails are

1

configuration management systems logs, email messages, documentation, record-
ings of conversations, product releases, and of course, thesource code and other
required files themselves.

Software trails have the potential of keeping a “community”memory of the
software development. Linus Torvalds, for example, has repeatedly said that he
would not have a telephone conversation to discuss the development of the Linux
kernel, because he wants every decision to be recorded for posterity. The open
source community recognizes that, given the volatility of core developers and an
unforeseen future, keeping this information can provide important facts critical for
the long term survival of a project, taking it from one set of developers to the next
one and from one maintainer to another. Arguably, the best open source success
stories tend to keep very detailed software trails. These trails can be used for
two purposes: to educate future developers on the characteristics of the product,
and to assist in recovering the history and evolution of the product. Closed source
software projects are also interested in keeping this memory, as they know that their
developing teams evolve with time and they cannot be dependent on one person
maintaining this information in her head.

From the point of view of the software evolutionist, the software trails left
behind by a project are a gold mine, ready to be exploited. This comes at a cost:
the amount of information available can be overwhelming. Itis necessary to assist
the software evolutionist in the process of recovering, cataloging and correlating
the information available, in order to help her look at the “big picture”, but at the
same time, provide enough detail about a particular event inthe history of a project.

2 Recovering the evolution of a project from its software
trails

This paper proposes a method of recovering the evolution of asoftware system by
analyzing the software trails left behind during its development. For example, how
the version control management system logs, messages in itselectronic mailing
lists and the defect control system logs can be correlated toretrieve important de-
cisions and events, and to trace how the software has evolvedsince its conception.
This method is composed of four steps:

1. Define Schema: Create a schema that represents the information availablein
the software trails, including any relationships between them. For example,
that a developer has a list of different email addresses usedto post to the
mailing lists; that a particular defect was fixed by a given developer with a
given set of software changes; that a software change includes a delta of the
change, and a version number; etc.

2. Gather Software Trails: Retrieve the available software trails and map them
into this schema. Often the logs of these trails are not easy to parse nor
translate. In some cases heuristics need to be developed andapplied.

3. Extend Information : The available software trails can be extended by fur-
ther analysis, enhancing them by extracting new facts or creating new rela-
tions as it is found appropriate. For example, many open source developers

2

do not use configuration management software, and the developer usually
states informally (in the version control log) that a given set of changes cor-
responds to a defect fix; the version control log has to be parsed in order to
find something that “might look” like its corresponding defect number.

4. Analyze: The final step is to look through this data and try to find interesting
events in its development that can tell the history of the project. This is a
difficult problem. As the software evolves and grows bigger,its available
information grows at the same time, making it difficult for the evolutionist
to find the “more” relevant information that tells an interesting fact about the
history of the project.

Given the informal nature of some of this trails (and the factthat it is a re-
verse engineering process, where the evolutionist has no certainty on what were
the actual events, and she is just merely trying to reconstruct them from the trails
available) the experience and insight of the evolutionist and amount of time that she
invests in the analysis of the information available will have an important impact
in the quality of the results.

In order to demonstrate the above methodology, this paper uses the software
trails of Ximian Evolution to recover its evolution.Evolution is a mail client
(similar in scope to Microsoft Outlook) that is starting to gain popularity in the
Unix world (Ximian was bought by Novell in August, 2003).Evolution developers
have left software trails in mailing lists, Web sites, its CVS repository logs (CVS
is one the most widely used version control systems), documentation, inside and
outside the code, and Bugzilla, its bug tracking system.

3 Methodology

The following software trails were used in the recovery of the evolution ofEvolu-
tion:

• Version source code releases. As of May, 2003 there have been37 different
releases. These come in the form of tar files that contain all the necessary
files to build and run the product. They are made available forthe people who
are interested in recompiling the product to suit their particular installation.
Five of these releases are considered major (0.0, 1.0, 1.1.1, 1.2.0, and 1.3.1).
Evolution has adopted a numbering scheme similar to the Linux kernel, us-
ing odd numbers in the second component of a release label (such as 1, or 3
in 1.1.1 and 1.3.1 respectively) to denote “unstable” releases that are consid-
ered to be riskier (buggier) than the stable ones (like 1.0 and 1.2.0). Source
code releases can be seen as a coarse grain view of the evolution of a project.
A collection of scripts and tools such as “exuberant ctags” and “stripcmt”
were used for fact extraction (similar to the fact extraction in [GT00]).

• CVS logs. CVS keeps track of who modifies which file, and the correspond-
ing delta associated with the modification. This change is known as a “file
revision”. CVS keeps information such as who made the revision, when the
actual diff of the revision, number of lines added, and number of lines re-
moved. softChange [GM03] was used to recover the information from these

3

logs and to enhance it. For instance, CVS does not keep track of which files
are modified at the same time. softChange analyses the logs, and rebuilds
these groups of files, which are then called Modification Requests (MRs). A
modification request is a request by a contributor to commit agroup of files
at the same time. The belief is that if two files are part of the same MR, it
is because they are somehow interrelated. Contrary to source code releases,
CVS logs provide a very fine grained view to the evolution of the project. A
snapshot of the CVS log was taken on May 21, 2003.

• Mailing lists. Evolution maintains at least two mailing list, but some of
the information related to it can also be found in the GNOME mailing lists.
GNOME (GNU Network Object Model Environment) is a free software col-
lection of libraries and end-user applications that provide a graphical “desk-
top” for Unix systems. The project started in 1996 as a volunteer effort, and
has evolved into a large system that involves paid and non-paid contributors,
and it is currently shipped with almost every Linux distribution. GNOME
is the parent project ofEvolution. Mailing lists tend to serve as a record of
important decisions related to a project. Another use of mailing lists is to
announce the availability of new releases (including a summary of the new
features found in it).

• ChangeLogs. The main source of documentation is the ChangeLog. As the
GNU ChangeLog standards indicate, the ChangeLog explains how earlier
versions of software were different from the current version.

For the purpose of this paper, softChange was extended to generate relational
data, which was then imported into apostgresql database (the dump of the
database measures 0.5 Gbytes, although some tables containredundant information
to help speed up queries –a copy of the database is available on request and it is
available for download atview.cs.uvic.ca/evolution, along with the rest
of the data used in this analysis). The analysis of the data was done ad-hoc, writing
SQL queries. The results of these queries were then plotted using gnuplot.

4 Evolution

During the beginning of 1999, Bertrand Guiheneuf started working on a new mail
client for the GNOME project [Gui00]. One of his goals was to create a better
mail client than Balsa (then GNOME mail client) and to use Bonobo (GNOME
CORBA implementation) to display the different content types in email messages.
He decided to start the project by implementing a mail storage library, which he
called camel. In Guiheneuf’s view, Balsa was not good enough. He planned,
however, to phase in the development of camel by incorporating its storage library
into Balsa (and other potential mail clients) using CORBA [Gui99].

The GNOME Mailer project was formally started in April 16, 1999 with a
mail message from the GNOME project leader Miguel de Icaza that discussed
the need for a more powerful mail client [dI99a]. One important issue that de
Icaza addressed in this message was why not to further develop an already started
project (such as Balsa). His answer was “there is too much baggage in existing

4

mail applications that we do not want to carry into the future”. This message was
probably triggered by Guiheneuf’s posting (two weeks before). de Icaza proceeded
to outline the main architecture that this client should have (which was further
refined in [dI99b]):

• Storage. This module was to be composed of two parts: a) it will include a
library to understand and interact with a variety of mail storage formats and
sending email protocols (imap, pop, spool mail, UNIX mailbox, MH); and
b) contain a query engine to filter, move and delete mail.

• TheFolder and Summary Displaywould be the main GUI to email mes-
sages and folders.

• TheMessage Displaywould be responsible for displaying a particular mail
message.

• TheMessage Compositionwould implement an editor that would allow the
user to create and edit mail messages.

• Interface with thecalendar andaddressbook(which in de Icaza’s opinion
needed to be redesigned).

De Icaza, following Guiheneuf’s ideas (and the trend of GNOME in general),
proposed to use CORBA for communication between these modules and other ap-
plications that would help display different content typesin the message display (at
the time, there was a move towards making most GNOME applications CORBA
aware). This module list would also serve as a way to divide the work into pieces in
which different developers could concentrate and work as independently as possi-
ble. A mailing list was created for the project, and during the month of April 1999
more than 500 messages were exchanged, most of them related to requirements
analysis for the new project.

Guiheneuf would become the first maintainer of the new GNOME Mailer, con-
tinuing the development of camel as its storage module. In August 1999, the name
Evolution was proposed by him, and it was quickly accepted by the GNOME com-
munity1.

In October 1999, Miguel de Icaza created Helixcode (now Ximian), a commer-
cial venture aimed at continuing the development of GNOME, planning to generate
income by selling services around it. Ximian proceeded to take under its wing the
development ofEvolution and has committed several employees to work on it.

In 4 yearsEvolution has grown into a powerful product that is starting to
be widely used in the open source community.Evolution recently received the
“2003 LinuxWorld Open Source Product Excellence Award” in the category of
“Best Front Office Solution”. One of the objectives ofEvolution is to provide
a free software product with functionality similar to Microsoft Outlook or Lotus
Notes[Per01]. Table 1 lists the main events in the history ofthe project.

1Guiheneuf proposed e-volution, which was quickly altered to evolution. The name was later
changed toEvolution and finally to its current official name XimianEvolution.

5

Milestones Date
Coding of camel starts 1999-01-01
Evolution starts 1999-04-16
Ximian is established 1999-10-01
Version 0.0 2000-05-10
Version 1.0 2001-11-21
Version 1.1.1 2002-09-09
Version 1.2.0 2002-11-07
LinuxWorld “Best
Front Office Solution” award 2003-01-23
Version 1.3.1 2003-02-28

Table 1: Main milestones of the project

4.1 Releases

Figure 1 shows the growth in the size of the source code releases ofEvolution. It
was discovered that the total size of the release (sum of the size of all files) and the
total size of the source code (sum of the size of all source code files) did not show
a clear correlation. Further investigation demonstrated that the main culprit for the
increase of the size of the release is its internationalization (translation files with
extensions .po and .gmo). The latest version, for example, totals 64 MBytes of
which 37 Mbytes (57%) are internationalization files, compared to only 11 Mbytes
of source code (17%).Evolution is currently translated into 34 different languages
(this does not include regional variants; for example,Evolution includes interna-
tionalization files for Portuguese and its Brazilian variant). Another surprise is to
discover that the next largest contributor to the size of a release is ChangeLogs: 4.6
Mbytes (7%). ChangeLogs will be revisited in section 4.3.2.

 0

 10

 20

 30

 40

 50

 60

 70

00/07 01/01 01/07 02/01 02/07 03/01

S
iz

e
(in

 M
B

yt
es

)

Month

Size of version
Size of source code
Size of translations

Size of ChangeLogs
Major releases

Figure 1: Size of releases over time. The plot shows also the total sizes (in Mbytes)
for source code, internationalization files, and ChangeLogs. Together these 3 types
of files account for more than 80% of the size of the latest version.

The number of files shows a different picture. The average proportion of source
files in the releases is 46% (6.16 std deviation). In contrast, the proportion of

6

translation files is 2.7% (0.29 stddev), and 1.1% (0.03 stddev) for ChangeLogs.
Translation files and ChangeLogs are therefore few, but verylarge, when compared
to source code files.

Figure 2 shows, for a given release, the number of source codefiles, total LOCS
and total cleanLOCS (number of LOCS when comments and empty lines have been
removed). The average size of a source file has been stable across versions, at 639
(25 stddev) LOCS per .c and 101 (7.6 stddev) LOCS per .h file. The proportion
of cleanLOCS to LOCS has also remained stable across versions, at 72.5% (1.4
stddev) for .c files, and 60% (2.6 stddev) for .h files.

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

00/07 01/01 01/07 02/01 02/07 03/01

 400

 525

 650

 775

 900

 1025

 1150

 1275

 1400

N
um

be
r

of
 S

ou
rc

e
F

ile
s

Month

LOCS
clean LOCS

Total number of files
Major releases

Figure 2: LOCS of releases over time. The plot shows the totalnumber of files,
and the number of clean LOCS (LOCS without comments nor emptylines).

-20000

 0

 20000

 40000

 60000

 80000

 100000

00/07 01/01 01/07 02/01 02/07 03/01

-50

 0

 50

 100

 150

 200

N
ew

 L
O

C
S

N
ew

 S
ou

rc
e

F
ile

s

Month

New LOCS
New Source Files (right axis)

Major releases
’releasesfiles.txt’ using 1:5

Figure 3: Changes in LOCS and number of files, per version

The actual change in LOCS from one version to another show an interesting

7

story. Figure 3 shows the increment in the LOCS and number of files over time.
Of special interest are the negative increments in either LOCS or source files, sug-
gesting removal of source code. For example, in version 0.6 (released 2000/10/23)
15.5 kLOCS and 67 source code files were removed with respect to the previous
version (0.5.1). Between these two releases 157 source codefiles were deleted
and 90 created (45 kLOCS were deleted and 24k LOCS added). Further analy-
sis of the available software trails showed that for this release it was decided to
move several widgets (fromEvolution’s GUI) to the Gal project. Gal, according
to its official description is “the GNOME Application Library, a collection of wid-
gets and other helper functions originally extracted fromEvolution and gnumeric
(GNOME spreedsheet)”. In fact, the first version of Gal (0.1)was released in Oct.
5, 2000 [dI00], 5 days beforeEvolution 0.6 (and the sudden drop in LOCS).

4.2 Development Activity

One important question that arises when looking at the increment in the size of
Evolution is how does it correlate to the actual activity of the developers? The
CVS logs provides some useful information that can be used toattempt to answer
this question.

 0

 200

 400

 600

 800

 1000

 1200

98/01 98/07 99/01 99/07 00/01 00/07 01/01 01/07 02/01 02/07 03/01
 0

 20000

 40000

 60000

 80000

 100000

 120000

M
R

s

Date

Ximian starts operations

Release 0.0 Release 1.0 Release 1.2

Release 1.1.1 Release 1.3.1

MRs
code MRs

Major releases
Minor releases

Figure 4: Evolution of the project in number of MRs

Figure 4 shows the number of MRs per month forEvolution. The plot also
shows the different releases in the project. There are several interesting observa-
tions from this graph. First, the development activity was relatively flat during the
first year of the development, and it is not until Ximian is born that there is a surge
in the number of MRs. The number of MRs surges just before release 1.0. After
that, the number of MRs remains more stable, but still shows peaks that correspond
to releases. Because it is not possible to have access to the actual number of hours
spent per developer in the project, it is not possible to determine the development
effort spent per MRs, and therefore, if less MRs mean less developer-time, or if
some MRs required more time. In the same figure, the number of MRs that in-
volve source code (codeMRs) is also shown. The proportion ofcodeMRs to MRs
has decreased during 2003 (approximately 38% of the MRs do not involve source
code).

Why has the proportion of codeMRs dropped? The exploration of the logs drew
the following conclusions. From all MRs in 2003, 86% corresponded to changes in
source code (61%), translations (13%) and changes to metafiles (files with exten-
sion .am and .in, 18%)2. Metafiles are used by the automake and autoconf tools to

2Some MRs included changes to Metafiles and source code, and some MRs included changes to
metafiles and translations

8

create other files. The most common use of these Metafiles is the creation of Make-
files (the developer creates an .am or .in file, and autoconf and automake create the
corresponding Makefile). Metafiles rely heavily on macros (GNOME provides a
module called macros with the majority of these definitions).

A surge in the activity related to Metafiles and translationswas to blame for
the drop in the proportion of codeMRs. The question that followed was, what
prompted the surge in Metafile activity? In those MRs 70% of the revisions corre-
sponded to Makefile.am files; and 12% of the revisions corresponded to changes to
configure.in, the main autoconf file that drives the configuration ofEvolution
when a user wants to compile it. Inspection of the ChangeLogsseems to suggest a
conscious effort to cleanup the Metafiles.

The surge in changes to the translations is attributed to a previous significant
change in the UI. Once the development team decides to make a “freeze” in the fea-
tures of a release, translators start making changes to the corresponding translation
files.

Another question prompted by figure 4 is why does it show activity before
January, 1999? It appears that some code that was in development previous to
Evolution was later incorporated into it (one widget and some calendarrelated
code). It is also suspected that some revisions contain invalid dates, suggesting
that during a period of time the machine’s clock was set to an incorrect time.

-200

 0

 200

 400

 600

 800

 1000

 1200

00/01 00/07 01/01 01/07 02/01 02/07 03/01
-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

co
de

 M
R

s

LO
C

S
 a

dd
ed

 in
 r

el
ea

se
Date

Release 1.0 Release 1.2

Release 1.1.1 Release 1.3.1

MRs
New LOCS (right axis)

Major releases
Major releases

Figure 5: Changes in LOCS and number of files, per version

Figure 5 shows codeMRs and how they relate to the actual growth in the size
of the source code in the releases. Even in periods where the code base does not
increase (like the first half of 2002) the number of MRs is still large. This suggests
a period in which debugging took precedence over development of new features.

4.2.1 Characteristics of MRs

It is also interesting to see the typical characteristics ofan MR. Figure 6 shows the
number of files per MR. Most of them contain a small number of files, which is
a healthy sign. The log for the largest MR (which contains 650files, in 2001/06/23)
reads “Update the copyrights, replacing Helix Code with Ximian and helixcode.com
with ximian.com all over the place.”. That day a total of 709 files were mod-
ified. Similarly, the largest number of files modified in a single day was 1417
(2001/10/27) and the reason was “update the licensing information to require ver-

9

sion 2 of the GPL (instead of version 2 or any later version)”.These two expla-
nations highlight a particular feature of MRs inEvolution: developers take good
care of explaining in each MR the reason for the change (CVS allows developers
to add a log message to each MR). The average log for an MR is 300characters
(561 stddev, 170 median), with a minimum length of 1 (only 8 MRs) and 18K for
the longest log (which involved the merging of a branch to themain CVS tree).

From a total of 18K MRs, only 87% include two or more files in it.A prelim-
inary analysis shows that most of these MRs are of two types: a) files which were
overlooked in a previous MR and committed minutes later; andb) minor correc-
tions, such as fixing spelling mistakes. Further analysis isneeded to corroborate
this hypothesis.

 1

 10

 100

 1000

 10000

 1 2 4 8 16 32 64 128 256 512 1024

N
um

be
r

of
 M

R
s

(lo
g

sc
al

e)

Number of files in MR (log scale)

Number of Files in MRs
Number of Files in code MRs

Figure 6: Most MRs contain a small number of files

4.2.2 Contributors

There is a common belief that open source projects are developed by a large number
of individuals. While that is true, it is important to recognize that the contribution
of the majority of these individuals is very small. In open source projects, con-
tributors can be divided into two main groups: those with write access to the CVS
repository (and can make their contributions to the CVS repository themselves)
and those who do not have write access to the repository. In GNOME it is not dif-
ficult to get write access to the repository. Once somebody has submitted several
contributions, this person can apply for CVS write access. In GNOME, more than
500 people have CVS write access3.

By looking at the changes committed by contributors with CVSwrite access,
we can see that like many other open source projects, the majority of the cod-
ing is done by a small number of individuals. Zawinsky, at onetime one of the
core Mozilla contributors, commented on this phenomenon: “If you have a project
that has five people who write 80% of the code, and a hundred people who have
contributed bug fixes or a few hundred lines of code here and there, is that a 105-
programmer project?”—as cited in [Jon02].

Evolution contains contributions by 201 different userids (to which,this paper
will refer as contributors). Few of these, however, contributes a significant portion

3The author has write access to the GNOME CVS repository.

10

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 4 8 16 32 64 128

P
ro

po
rt

io
n

of
 to

ta
l M

R
s

(lo
g

sc
al

e)

Developers (log scale)

Developer activity

Figure 7: Proportion of MRs per contributor. Each contributor was assigned a
number from 1 to 201, which corresponds to the X axis.

of the MRs. Figure 7 shows the proportion of MRs per contributor (each contribu-
tor was assigned a number from 1 to 201, which corresponds to the X axis). Only
18 contributors accounted each for more than 1% of the total MRs. The largest
contributor is responsible for 16% of the MRs, while at the other side of the spec-
trum 32 contributors had only one MR only. Furthermore, a total of 48% of the
MRs were contributed by only 5 contributors, while 142 contributors contributed
just 5% of the MRs (80 contributed a total of 1% of the MRs).

Table 2 shows the 11 most active developers, as a proportion of all MRs. The
top 10 appear to be Ximian employees or consultants (see http://primates.ximian.com/).
This fact corroborates the hypothesis that private companies (such as RedHat,
Ximian, and Eazel) have had a very important effect on the development of the
GNOME project [Ger02]. In that respect it is similar to the Mozilla project where
core contributors were employees of Netscape (see [MFH02]).

Userid Prop. Accum.
fejj 0.16 0.16
ettore 0.10 0.26
danw 0.09 0.35
zucchi 0.06 0.42
clahey 0.06 0.48
jpr 0.05 0.53
toshok 0.05 0.58
federico 0.03 0.61
peterw 0.02 0.63
iain 0.02 0.65
other 0.35 1.00

Table 2: Most active developers, as a proportion of total MRs

How regularly were contributors participating in the project? The number of
different contributors by year is depicted in table 3. AfterJanuary 2000, in any
given month there is an average of 32 contributors (8.3 stddev, minimum 15, max-
imum 47) per month to the project.

11

Year Number of Contributors
1998 37
1999 54
2000 95
2001 98
2002 79
2003 56

Table 3: Contributors to the project by year. It takes into account only those con-
tributors with CVS write access.

4.3 Revisions

Every time a file is modified, CVS creates a record of who modifies it, when, and
the “delta” of the modification. This modification is known inCVS lingo as a
“revision”.

4.3.1 Types of Files

Extension Prop. Accum. Number of
files in CVS

.c 0.41 0.41 1195
ChangeLog 0.22 0.62 43
.h 0.13 0.75 1063
.am 0.05 0.81 174
.po 0.04 0.85 71
.ics 0.02 0.87 396
.sgml 0.02 0.90 228
.in 0.02 0.92 136
.png 0.01 0.93 405
other 0.07 1.00

Table 4: Revisions and number of files per file extension. C files (.h and .c) and
ChangeLog modifications account for 75% of total revisions.

Table 4 shows the proportion of revisions per extension (i.e. type of file) and it
tells an interesting story. Given that C is the language of choice forEvolution, it is
not surprising to see .c and .h files at the top, along with ChangeLogs (ChangeLogs
are discussed in detail in section 4.3.2). Metafiles (.am and.in) and translations
follow. The next file extension .ics corresponds to files thatinclude information
about a particular location in the world, particularly its time zone. There were
1903 revisions made to 396 .ics files, for an average of 4.8 changes per file.

Files with extension .sgml are documentation files. As with many open source
projects, the documentation is written in SGML using the docbook DTD. Finally,
.png files correspond to artwork.

12

4.3.2 ChangeLogs

ChangeLog files are an important source of information aboutthe development
and evolution of a project. TheEvolution developers are fairly consistent in their
modifications to the ChangeLog files. From all MRs involving 2or more files, 93%
include a modification to a ChangeLog.Evolution developers seem to make sure
that they document their changes in the corresponding ChangeLogs. Table 5 shows
the 10 most modified files, 8 of them are ChangeLogs. ChangeLogs (and CVS logs)
can provide insight on patches submitted by developers without a CVS account, as
developers are expected to be careful to give credit to the patch submitter in the
corresponding ChangeLog entry (which are not taken into account for this paper).

4.3.3 Source Code Hot Spots

There have been a total of 41120 revisions to 2258 source codefiles4. Figure 8
shows the proportion of revisions per source code file. 51 files account for 25% of
the total number of revisions, while 764 account for only 5% of them.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 1 10 100 1000

P
ro

p.
 o

f r
ev

. t
o

a
gi

ve
n

co
de

 fi
le

 (
lo

g
sc

al
e)

Files (log scale)

Revisions to Files

Figure 8: Proportion of revisions per source code file. Each file was assigned a
number from 1 to 2258, which corresponds to the X axis.

4.4 Modularization

The success of an open source project depends on the ability of its maintainers to
divide it into small parts in which contributors can work with minimal communi-
cation between each other and with minimal impact on the workof others [LT00].
From the beginning of the project, there has been a consciousattempt to divide
Evolution into modules that fulfill the previous characteristics. Modules are rep-
resented in the code base as subdirectories. Figure 9 shows the different modules
and the number of MRs for each of them, representing the levelof activity in each
module.

Figure 10 shows the size of the seven largest modules inEvolution in terms
of LOCS. With the exception of libical and widgets, modules tend to grow in size.
Before 2002, both libical and widgets show a lot of variability in both their sizes

4Many of these files are no longer in the latest release, as theyhave been removed during the
development process. Nonetheless, CVS keeps information about their modification.

13

File Prop. Accum.
mail/ChangeLog 0.04 0.04
calendar/ChangeLog 0.03 0.06
camel/ChangeLog 0.03 0.09
addressbook/ChangeLog 0.02 0.11
shell/ChangeLog 0.02 0.13
ChangeLog 0.02 0.14
po/ChangeLog 0.02 0.16
configure.in 0.01 0.17
composer/ChangeLog 0.01 0.18
mail/mail/callbacks.c 0.01 0.18

Table 5: Top 10 most modified files. ChangeLogs clearly take the lead. As its
name implies, mail-callbacks.c contains the callbacks of the mail client, hence the
frequency at which it is modified. These 10 files account for a total of 18% of all
file revisions.

mail
camel

calendar
addressbook

shell
widgets

composer
e-util
filter

my-evolution
tests

libical
libibex

executive-summary
wombat

importers
im

libversit
notes
tools

libwombat
cmdline

ebook
 0 500 1000 1500 2000 2500 3000

Number of MRs for each Module

MRs per Module

Figure 9: MRs per module. Most of the activity is concentrated in few modules.

14

and the number of files in them. After Version 1.0, the size ofEvolution has been
growing at a very small pace.

 0

 20

 40

 60

 80

 100

00/07 01/01 01/07 02/01 02/07 03/01

LO
C

S

Date

camel
calendar

mail
addressbook

shell
libical

widgets
Major releases

Figure 10: LOCS in selected modules, per version

Other interesting questions are: Do contributors tend to concentrate in one
module? How many core contributors does a given module have?Table 6 shows
that information for the five most active modules ofEvolution. In order to account
only for people who are still active in the development, thistable only shows data
related to MRs which happened in 2002. It is not surprising tosee that one or two
contributors are responsible for at least two thirds of the MRs in each module.

Finally, how well do modules isolate developers from the complexity of other
modules? One potential way to measure this dependency is to analyze the number
of codeMRs that require changes in more than one module. Figure 11 shows a com-
pelling story: only 3% of the MRs include more than one module. Further analysis
of the changes is required to determine what is the proportion of changes that were
actual code changes compared to changes in comments (such asthe change in li-
cense, described in section 4.2.1).

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r

of
 c

od
eM

R
s

(lo
g

sc
al

e)

Number of Modules in a codeMR

Number of Modules in a MR

Figure 11: Number of different modules that appear in a codeMRs. The proportion
of codeMRs that involve more than one module is very small (3%).

15

Mod Progs Id Prop Acc

shell 17 ettore 0.65 0.65
danw 0.11 0.76
toshok 0.05 0.81
clahey 0.04 0.84
zucchi 0.03 0.87

mail 19 fejj 0.52 0.52
rodo 0.13 0.65
zucchi 0.12 0.77
ettore 0.07 0.83
danw 0.06 0.89

calendar 17 jpr 0.40 0.40
rodrigo 0.32 0.72
ettore 0.07 0.79
danw 0.06 0.85
damon 0.03 0.88

camel 9 fejj 0.66 0.66
zucchi 0.25 0.91
danw 0.03 0.94
peterw 0.03 0.97
ettore 0.01 0.99

addressbook 19 toshok 0.57 0.57
clahey 0.13 0.70
ettore 0.09 0.79
danw 0.07 0.87
fejj 0.03 0.90

Table 6: Top 5 programmers of some the most active modules during 2002. The
first column shows the name of the module, the second shows thetotal number of
programmers who contributed to it in that year, the third shows the userid of the
top 5 programmers and the proportion of their MRs with respect to the total during
the year.

16

5 Further observations

The results described in this paper show that the method described in section 2 can
be applied to recover the evolution of a software project where the amount of soft-
ware trails is significant. Several observations can be madeabout this experience.

• One software trail does not tell the whole story. It is paramount to cross-
reference software trails to really understand what they mean in the evolution
of the project. For example, the size of software releases inEvolution has
been growing in linear fashion, while the growth in the size of the source
code is relatively flat; also, many developers have been participating in the
project, but most of them with very few contributions.

• Schema definition. The schema used in this study kept changing, in part due
to the incorporation of new trails, and in part because new information and
relations kept being discovered. It is expected that, as this type of analysis
becomes more pervasive, standard schemas can be developed.This will have
2 advantages: a) it will promote the creation of tools that gather software
trails, extend them, and analyze them; and b) the evolutionist will better
understand the nature and interrelation of the available trails before starting
to do her work.

• One of the main challenges of analyzing software trails is that many of them
are informal in nature. For example, email messages containa large amount
of information pertaining to the way the project has evolved, but they are
difficult to analyze in an automatic fashion. Correlating different trails is
also an error prone task, in which heuristics have to be developed and tested.
It might be the case that a heuristic performs differently indifferent projects.

• Information overload and the need for analysis and visualization tools. The
amount of available information makes it indispensable to use tools that can
filter it and visualize it. Again, as schemas are standardized, different re-
search teams could provide different tools that specializein mining and vi-
sualizing certain types of trails. In this paper, SQL was chosen because it
provides a sophisticated query language (further extendedin postgreSQL
with its support for regular expressions in thewhere clause). SQL was very
helpful in filtering and tabulating information, that couldthen be plotted (our
research team has since developed a tool to automatically create many of the
plots displayed herein using SVG using the Web as its interface). It is also
interesting thatEvolution itself proved very useful in analyzing theEvolu-
tion mailing lists, given that it provides a powerful query language for email
messages.

• Quality of software trails. It is important to state that notall development
teams generate “good” software trails. In the experience ofthe author, there
is a point in a software project in which software trails start to “mature”
and this point is likely a correlation of the success of the project, the level
of interaction that developers have to have, and their maturity, and in the
case of commercial projects, the influence of management. For instance,
there is very little information aboutEvolution when only one developer was

17

contributing to it, but as the developers grew in number (andbecame more
experienced) their trails improved in quality. The Free Software Foundation
has an important effect in the quality of trails, as it publishes a collection of
guidelines that free software developers should follow.

6 Conclusions and Future Work

This paper demonstrated a methodology to recover the evolution of a software
project using its software trails. Software trails, such asversion releases, version
control logs and mailing lists were used to recover the evolution of Ximian Evo-
lution, a free (as defined by the GPL) mail client for Unix. The analysis of these
software trails allowed the discovery of interesting factsabout the history of the
project: its growth, the interaction between its contributors, the frequency and size
of the contributions, and important milestones in its development.

There are several potential avenues for future research. One of them is to create
tools that analyze and enhance the facts extracted. For example, CVS’s MRs can
be analyzed in an attempt to guess the type of modification that the developer
intended: a comment, a bug fix, a new feature, or refactoring,for example. This
will allow the evolutionist to quickly categorize changes and concentrate on those
of interest.

Another area of research is the visualization of this information. As the project
grows older, its trails grow in number. It is necessary to create tools that analyze
and display the gathered facts to the user and allow its visualization in a highly
dynamic manner. Metrics are also an important area of research. It is needed to
quantify the information extracted from software trails, so it can be compared with
other software projects. For example, how can the “disjointness” of contributors of
different modules to different software projects be quantified and compared?

Finally, studies on other software projects (similar to theone done in this paper)
are needed. These studies will provide information necessary to better understand
the characterization of software trails. Furthermore, these studies will allow re-
searchers to compare the evolution of different software projects; and to a certain
extend some of the practices used by their corresponding development teams.

Acknowledments

This research has been supported by the National Sciences and Engineering Re-
search Council of Canada, and the British Columbia AdvancedSystems Institute.
The author would like to thank Audris Mockus (co-author of softChange) for his
invaluable help in a preliminary analysis ofEvolution and the reviewers of this
paper for their helpful comments.

References

[dI99a] Miguel de Icaza. Writing a GNOME mail client.
http://mail.gnome.org/archives/gnome-announce-list/1999-
April/msg00029.html, April 1999.

18

[dI99b] Miguel de Icaza. Writing a GNOME mail client.
http://canvas.gnome.org:65348/mailing-lists/archives/gnome-mailer-
list/1999-April/0018.shtml, April 1999.

[dI00] Miguel de Icaza. G Apps Lib 0.1 is out.
http://mail.gnome.org/archives/gnome-announce-list/2000-
October/msg00005.html, October 2000.

[Ger02] Daniel M. German. The evolution of the GNOME Project. In Proceed-
ings of the 2nd Workshop on Open Source Software Engineering, May
2002.

[GM03] Daniel M. German and Audris Mockus. Automating the Measurement
of Open Source Projects. InProceedings of the 3rd Workshop on Open
Source Software Engineering, May 2003.

[GT00] Michael W. Godfrey and Qiang Tu. Evolution in Open Source Soft-
ware: A Case Study. InProc. of the 2000 Intl. Conference on Software
Maintenance, pages 131–142, 2000.

[Gui99] Bertrand Guiheneuf. Gnome Mail clients (Re: Is Balsa
alive?). http://mail.gnome.org/archives/gnome-devel-list/1999-
April/msg00042.html, April 1999.

[Gui00] Bertrand Guiheneuf. Candidate (Bertrand Guiheneuf).
http://mail.gnome.org/archives/foundation-announce/2000-
October/msg00009.html, Oct 2000.

[Jon02] Paul Jones. Brooks’ law and open source: The more themerrier? does
the open source development method defy the adage about cooks in the
kitchen? IBM developerWorks, August 20, 2002.

[LT00] Josh Lerner and Jean Triole. The Simple Economics of Open Source.
Working Paper 7600, National Bureau of Economic Research, March
2000.

[MFH02] Audris Mockus, Roy T. Fielding, and James Herbsleb.Two case stud-
ies of open source software development: Apache and mozilla. ACM
Transactions on Software Engineering and Methodology, 11(3):1–38,
July 2002.

[Per01] Ettore Perazzoli. Ximian Evolution: The GNOME Groupware Suite.
http://developer.ximian.com/articles/ whitepapers/evolution/, 2001.

19

