Using software trails to rebuild the evolution of
software

Daniel German
Department of Computer Science
University of Victoria
dmgerman@uvic.ca

Abstract

This paper describes a method to recover the evolution ditaae sys-
tem using itssoftware trails: information left behind by the contributors to
the development process of the product, such as mailing &b sites,
version control logs, software releases, documentatiwhttze source code.
This paper demonstrates the use of this method by recovéerayolution of
Ximian Evolution, a mail client for Unix. By extracting useful facts stored
in these software trails, and correlating them, it was fisdio provide a
detailed view of the history of this project.

1 Introduction

Investigating and recovering the evolution of a softwarggmt requires a combi-
nation of skills: it is necessary to understand the softvpaogluct, its features, its
components and how these have evolved; it is necessary tadicmer, and cata-
log valuable facts about the history of the project; it ioaksquired to look at the
developing team, in order to better understand the softpareess they have used,
their interrelations and communication, their decisidiirtg and their skills; it also
required to start piecing together all this informatiompgmsing potential hypoth-
esis that are then proved or disproved. One can equate theofar “software
evolutionist” to the morphing of a software architect, adign, an ethnologist, an
anthropologist, a paleontologist, and a private investiga

In rare cases, the evolution of a software product is recbbgean insider. This
software evolutionist has access, presumably, to all tisopeel and available
information, and has the potential to accurately recordigsory as it unfolds.
Unfortunately few software projects have this type of restdhistorian, and it
is usually an outsider who has to the work. This externalvsa evolutionist
could track the project for some time, looking from the adgsat how the project
continually evolves. Sometimes her work is done post-muorteoking at the
remnants of the project, like an anthropologist lookingdinies of how an ancient
civilization functioned.

An outsider evolutionist depends on the available inforomabf a project to
tell its history. This paper defines “software trails” asqage of information left
behind by the contributors of a software project. Examplesoftware trails are

configuration management systems logs, email messagasndatation, record-
ings of conversations, product releases, and of coursesaimee code and other
required files themselves.

Software trails have the potential of keeping a “communitymory of the
software development. Linus Torvalds, for example, hasatgally said that he
would not have a telephone conversation to discuss theafaweint of the Linux
kernel, because he wants every decision to be recorded &eniyg. The open
source community recognizes that, given the volatility ofecdevelopers and an
unforeseen future, keeping this information can providpartant facts critical for
the long term survival of a project, taking it from one set ef’élopers to the next
one and from one maintainer to another. Arguably, the besh gource success
stories tend to keep very detailed software trails. Thes#stcan be used for
two purposes: to educate future developers on the chasiierof the product,
and to assist in recovering the history and evolution of tleelpct. Closed source
software projects are also interested in keeping this mgrastthey know that their
developing teams evolve with time and they cannot be dep¢rateone person
maintaining this information in her head.

From the point of view of the software evolutionist, the safte trails left
behind by a project are a gold mine, ready to be exploiteds Tbimes at a cost:
the amount of information available can be overwhelmings ttecessary to assist
the software evolutionist in the process of recoveringaloging and correlating
the information available, in order to help her look at thay“picture”, but at the
same time, provide enough detail about a particular eveheihistory of a project.

2 Recovering the evolution of a project from its software
trails

This paper proposes a method of recovering the evolutiorsoftavare system by
analyzing the software trails left behind during its depet@nt. For example, how
the version control management system logs, messages afedsonic mailing
lists and the defect control system logs can be correlateettieve important de-
cisions and events, and to trace how the software has evsined its conception.
This method is composed of four steps:

1. Define SchemaCreate a schema that represents the information avaitable
the software trails, including any relationships betwdwmnt. For example,
that a developer has a list of different email addresses ts@dst to the
mailing lists; that a particular defect was fixed by a giveredeper with a
given set of software changes; that a software change iesladielta of the
change, and a version number; etc.

2. Gather Software Trails: Retrieve the available software trails and map them
into this schema. Often the logs of these trails are not eagpatse nor
translate. In some cases heuristics need to be developeabplhed.

3. Extend Information: The available software trails can be extended by fur-
ther analysis, enhancing them by extracting new facts atioig new rela-
tions as it is found appropriate. For example, many opencsodevelopers

do not use configuration management software, and the gerelsually
states informally (in the version control log) that a given af changes cor-
responds to a defect fix; the version control log has to besparsorder to
find something that “might look” like its corresponding detfaumber.

4. Analyze: The final step is to look through this data and try to find iesting
events in its development that can tell the history of thggmto This is a
difficult problem. As the software evolves and grows biggsr.available
information grows at the same time, making it difficult foetavolutionist
to find the “more” relevant information that tells an inteieg fact about the
history of the project.

Given the informal nature of some of this trails (and the thett it is a re-
verse engineering process, where the evolutionist has mairtgy on what were
the actual events, and she is just merely trying to recocisthem from the trails
available) the experience and insight of the evolutionist amount of time that she
invests in the analysis of the information available will’éan important impact
in the quality of the results.

In order to demonstrate the above methodology, this papes the software
trails of Ximian Evolution to recover its evolution. Evolution is a mail client
(similar in scope to Microsoft Outlook) that is starting taig popularity in the
Unix world (Ximian was bought by Novell in August, 200Fvolution developers
have left software trails in mailing lists, Web sites, its £¥epository logs (CVS
is one the most widely used version control systems), doatatien, inside and
outside the code, and Bugzilla, its bug tracking system.

3 Methodology

The following software trails were used in the recovery & évolution ofEvolu-
tion:

e \ersion source code releases. As of May, 2003 there have3¥edifferent
releases. These come in the form of tar files that contairhalhecessary
files to build and run the product. They are made availabléh®people who
are interested in recompiling the product to suit theiripalar installation.
Five of these releases are considered major (0.0, 1.0, 1.2.0, and 1.3.1).
Evolution has adopted a numbering scheme similar to the Linux kersel, u
ing odd numbers in the second component of a release latwl ésul, or 3
in1.1.1 and 1.3.1 respectively) to denote “unstable” iedhat are consid-
ered to be riskier (buggier) than the stable ones (like 1d1aR.0). Source
code releases can be seen as a coarse grain view of the evalfifi project.
A collection of scripts and tools such as “exuberant ctaggf ‘stripcmt”
were used for fact extraction (similar to the fact extraciio [GTO0O]).

e CVSlogs. CVS keeps track of who modifies which file, and theespond-
ing delta associated with the modification. This change @akmas a “file
revision”. CVS keeps information such as who made the rewjsivhen the
actual diff of the revision, number of lines added, and numdddines re-
moved. softChange [GMO03] was used to recover the informdtiom these

3

logs and to enhance it. For instance, CVS does not keep tfagkioh files
are modified at the same time. softChange analyses the lodgehuilds
these groups of files, which are then called Modification Rstgi(MRs). A
modification request is a request by a contributor to comrgitap of files
at the same time. The belief is that if two files are part of thems MR, it
is because they are somehow interrelated. Contrary toscode releases,
CVS logs provide a very fine grained view to the evolution & tinoject. A
shapshot of the CVS log was taken on May 21, 2003.

e Mailing lists. Evolution maintains at least two mailing list, but some of
the information related to it can also be found in the GNOMB&lima lists.
GNOME (GNU Network Object Model Environment) is a free sadte col-
lection of libraries and end-user applications that pre\adgraphical “desk-
top” for Unix systems. The project started in 1996 as a valeneffort, and
has evolved into a large system that involves paid and naheuentributors,
and it is currently shipped with almost every Linux disttibn. GNOME
is the parent project dEvolution. Mailing lists tend to serve as a record of
important decisions related to a project. Another use ofingalists is to
announce the availability of new releases (including a samrof the new
features found in it).

e ChangeLogs. The main source of documentation is the ChageAs the
GNU Changelog standards indicate, the ChangelLog explainsdarlier
versions of software were different from the current versio

For the purpose of this paper, softChange was extended araerrelational
data, which was then imported intopast gr esql database (the dump of the
database measures 0.5 Gbytes, although some tables aqedlaiaant information
to help speed up queries —a copy of the database is availabieqoest and it is
available for download ati ew. ¢s. uvi c. ca/ evol uti on,along with the rest
of the data used in this analysis). The analysis of the dasedaae ad-hoc, writing
SQL queries. The results of these queries were then plosied gnuplot.

4 Evolution

During the beginning of 1999, Bertrand Guiheneuf starteckimg on a new mail
client for the GNOME project [Gui00]. One of his goals was teate a better
mail client than Balsa (then GNOME mail client) and to use &uwm (GNOME
CORBA implementation) to display the different contentagpn email messages.
He decided to start the project by implementing a mail s®déwgary, which he
called camel. In Guiheneuf’s view, Balsa was not good enough. He planned,
however, to phase in the development of camel by incorpayats storage library
into Balsa (and other potential mail clients) using CORBAI[@D].

The GNOME Mailer project was formally started in April 16, 1999 with a
mail message from the GNOME project leader Miguel de Icaza discussed
the need for a more powerful mail client [dI99a]. One impottessue that de
Icaza addressed in this message was why not to further gesalalready started
project (such as Balsa). His answer was “there is too muclydrpain existing

mail applications that we do not want to carry into the futufehis message was
probably triggered by Guiheneuf’s posting (two weeks befode Icaza proceeded
to outline the main architecture that this client shouldehéwhich was further
refined in [d199Db]):

e Storage This module was to be composed of two parts: a) it will inelad
library to understand and interact with a variety of mairage formats and
sending email protocols (imap, pop, spool mail, UNIX madbMH); and
b) contain a query engine to filter, move and delete mail.

e TheFolder and Summary Displaywould be the main GUI to email mes-
sages and folders.

e TheMessage Displaywould be responsible for displaying a particular mail
message.

e TheMessage Compositiowould implement an editor that would allow the
user to create and edit mail messages.

¢ Interface with thecalendar andaddressbook(which in de Icaza’s opinion
needed to be redesigned).

De Icaza, following Guiheneuf’s ideas (and the trend of GNBEIM general),
proposed to use CORBA for communication between these rasduid other ap-
plications that would help display different content typethe message display (at
the time, there was a move towards making most GNOME apjaitaiCORBA
aware). This module list would also serve as a way to dividentbrk into pieces in
which different developers could concentrate and work dependently as possi-
ble. A mailing list was created for the project, and during thonth of April 1999
more than 500 messages were exchanged, most of them redatequirements
analysis for the new project.

Guiheneuf would become the first maintainer of the new GNOM#& &, con-
tinuing the development of camel as its storage module. lguat1999, the name
Evolution was proposed by him, and it was quickly accepted by the GNOEc
munity?.

In October 1999, Miguel de Icaza created Helixcode (now dimhia commer-
cial venture aimed at continuing the development of GNOM&niping to generate
income by selling services around it. Ximian proceeded ke tander its wing the
development oEvolution and has committed several employees to work on it.

In 4 yearsEvolution has grown into a powerful product that is starting to
be widely used in the open source communiBvolution recently received the
“2003 LinuxWorld Open Source Product Excellence Award” lve ttategory of
“Best Front Office Solution”. One of the objectives Bf/olution is to provide
a free software product with functionality similar to Mis@ft Outlook or Lotus
Notes[Per01]. Table 1 lists the main events in the histohefproject.

1Guiheneuf proposed e-volution, which was quickly alteredvolution. The name was later
changed tdevolution and finally to its current official name XimiaBvolution.

4.1 Releases

Milestones Date
Coding of camel starts 1999-01-01
Evolution starts 1999-04-16
Ximian is established 1999-10-01
Version 0.0 2000-05-10
Version 1.0 2001-11-21
Version 1.1.1 2002-09-09
Version 1.2.0 2002-11-07
LinuxWorld “Best

Front Office Solution” award 2003-01-23
Version 1.3.1 2003-02-28

Table 1: Main milestones of the project

Figure 1 shows the growth in the size of the source code edeai&volution. It

was discovered that the total size of the release (sum ofzbesall files) and the
total size of the source code (sum of the size of all source &eb) did not show
a clear correlation. Further investigation demonstratedl the main culprit for the
increase of the size of the release is its internation&zaftranslation files with
extensions .po and .gmo). The latest version, for examptalst 64 MBytes of
which 37 Mbytes (57%) are internationalization files, conapeto only 11 Mbytes
of source code (17%Evolution is currently translated into 34 different languages
(this does not include regional variants; for exameolution includes interna-
tionalization files for Portuguese and its Brazilian vatjainother surprise is to
discover that the next largest contributor to the size ofease is ChangelLogs: 4.6
Mbytes (7%). ChangelLogs will be revisited in section 4.3.2.

70

Size of version ——

Size of source code .
Size of translations -

Size of ChangeLogs

Major releases

60

50

40

30 -

Size (in MBytes)

20

10

goaga fal

@ B BB aBE
A

00/07

02/01 02/07 03/01

Month

01/01 01/07

Figure 1: Size of releases over time. The plot shows alsmthédizes (in Mbytes)
for source code, internationalization files, and ChangsLdggether these 3 types
of files account for more than 80% of the size of the latestiorrs

The number of files shows a different picture. The averagpgation of source
files in the releases is 46% (6.16 std deviation). In contrdust proportion of

translation files is 2.7% (0.29 stddev), and 1.1% (0.03 stdéte Changelogs.
Translation files and ChangelLogs are therefore few, butlaege, when compared
to source code files.

Figure 2 shows, for a given release, the number of sourcefiteggtotal LOCS
and total cleanLOCS (number of LOCS when comments and enmgty have been
removed). The average size of a source file has been stabksa@rsions, at 639
(25 stddev) LOCS per .c and 101 (7.6 stddev) LOCS per .h filee groportion
of cleanLOCS to LOCS has also remained stable across versar’2.5% (1.4
stddev) for .c files, and 60% (2.6 stddev) for .h files.

550000

T T 1400
LOCS —+—
clean LOCS
500000 Total number of files -~ . 1 1275
Major releases e ,,*\xﬁ**
450000 | ya 1 1150
I e o
400000 | s {1025 F
Pl ©
8
350000 |- / 1900 3
y— 0
x / -
300000 Fava 1778 2
/ Qo
12/ 1S
250000 7 4 650 g
¥
200000 | % 4 525
150000 - 4 400

00/07 01/01 01/07 02/01 02/07 03/01
Month

Figure 2: LOCS of releases over time. The plot shows the tataiber of files,
and the number of clean LOCS (LOCS without comments nor etingy).

100000 T T
New LOCS ——
New Source Files (right axis)
Major releases
'releasesfiles.txt’ using 1:5
80000 4 200
60000 h 4 150
i
I 1)
/4 2
] [Al [
8 40000 - [{100 g
2 i E
3 \ 8
z | Z
20000 - ‘\ | 180 2
| il
| \ \ J | 3
[| \ \ 7 . | { i
| | v\\\\ A |l
oL - / Atk /o> o
\ | v Vil
| W |
E Vol
-20000 + 1450
00/07 01/01 01/07 02/01 02/07 03/01
Month

Figure 3: Changes in LOCS and number of files, per version

The actual change in LOCS from one version to another showtanesting

story. Figure 3 shows the increment in the LOCS and numbeteasf fiver time.
Of special interest are the negative increments in eithe€&©@r source files, sug-
gesting removal of source code. For example, in versionrélégsed 2000/10/23)
15.5 kLOCS and 67 source code files were removed with respabetprevious
version (0.5.1). Between these two releases 157 sourcefiteslavere deleted
and 90 created (45 kLOCS were deleted and 24k LOCS addedjheFanaly-
sis of the available software trails showed that for thigask it was decided to
move several widgets (frofavolution’s GUI) to the Gal project. Gal, according
to its official description is “the GNOME Application Librgra collection of wid-
gets and other helper functions originally extracted fi&wolution and gnumeric
(GNOME spreedsheet)”. In fact, the first version of Gal (A& released in Oct.
5, 2000 [d100], 5 days beforevolution 0.6 (and the sudden drop in LOCS).

4.2 Development Activity

One important question that arises when looking at the inerg in the size of
Evolution is how does it correlate to the actual activity of the devetsf The
CVS logs provides some useful information that can be usedtéonpt to answer
this question.

MRs

1200

1000

800

600

400

200

code MRs
Major releases
Minor releases

"MRs ——

Release 0.0 Release 1.0

r

Ximian starts operations // N / \» / \ /\ /

—

/

Release 1.2

Release 1.1.1 | Release 1.3.1

[N M 1\
N/

120000

100000

80000

< 60000

™~ 40000

4 20000

I P P N N

98/01 98/07 99/01 99/07 00/01

00/07 01/01 01/07 02/01 02/07 03/01

Date

Figure 4: Evolution of the project in number of MRs

Figure 4 shows the number of MRs per month Exolution. The plot also
shows the different releases in the project. There are alevderesting observa-
tions from this graph. First, the development activity walstively flat during the
first year of the development, and it is not until Ximian isfdnat there is a surge
in the number of MRs. The number of MRs surges just beforeaseld..0. After
that, the number of MRs remains more stable, but still shaedkg that correspond
to releases. Because it is not possible to have access totttad aumber of hours
spent per developer in the project, it is not possible tordete the development
effort spent per MRs, and therefore, if less MRs mean leseldper-time, or if
some MRs required more time. In the same figure, the numberRdé Mat in-
volve source code (codeMRs) is also shown. The proportiodéMRs to MRs
has decreased during 2003 (approximately 38% of the MRs timvalve source
code).

Why has the proportion of codeMRs dropped? The exploratitimedogs drew
the following conclusions. From all MRs in 2003, 86% cor@sged to changes in
source code (61%), translations (13%) and changes to nestéfiles with exten-
sion .am and .in, 18%) Metafiles are used by the automake and autoconf tools to

2Some MRs included changes to Metafiles and source code, ameld&s included changes to
metafiles and translations

create other files. The most common use of these Metafiles éation of Make-
files (the developer creates an .am or .in file, and autocahbatomake create the
corresponding Makefile). Metafiles rely heavily on macrodi@ME provides a
module called macros with the majority of these definitions)

A surge in the activity related to Metafiles and translatioras to blame for
the drop in the proportion of codeMRs. The question thabfedld was, what
prompted the surge in Metafile activity? In those MRs 70% efrévisions corre-
sponded to Makefile.am files; and 12% of the revisions coomded to changes to
confi gure. i n,the main autoconf file that drives the configuratioricgblution
when a user wants to compile it. Inspection of the Changelkegms to suggest a
conscious effort to cleanup the Metafiles.

The surge in changes to the translations is attributed tewaqurs significant
change in the Ul. Once the development team decides to mdkexea&” in the fea-
tures of a release, translators start making changes tothesponding translation
files.

Another question prompted by figure 4 is why does it show #gtivefore
January, 19997 It appears that some code that was in devahbpprevious to
Evolution was later incorporated into it (one widget and some calenelated
code). It is also suspected that some revisions contaididndates, suggesting
that during a period of time the machine’s clock was set tananrirect time.

1200 " T T . 120000
~ MRs ——— Release 1.0 Release 1.2
1000 | New LOCS (right axis) 4 100000
Major releases Release 1.1.1. Release 1.3.1
800 Major releases " 1 80000
» /\
4 ‘
£ 600 / A 1 60000
© \ /N
° 400 + ™~ W A \ 4 40000
8 / NI S ‘x K :
V > \ - /\ A
200 |~ | /T 20000
¢} 10
-200 -20000
00/01 00/07 01/01 01/07 02/01 02/07 03/01

Date
Figure 5: Changes in LOCS and number of files, per version

Figure 5 shows codeMRs and how they relate to the actual grimnthe size
of the source code in the releases. Even in periods whereotteltase does not
increase (like the first half of 2002) the number of MRs id Hilge. This suggests
a period in which debugging took precedence over developofarew features.

4.2.1 Characteristics of MRs

It is also interesting to see the typical characteristicaroMR. Figure 6 shows the
number of files per MR. Most of them contain a small humber e&filwhich is
a healthy sign. The log for the largest MR (which contains 88, in 2001/06/23)
reads “Update the copyrights, replacing Helix Code with Mimand helixcode.com
with ximian.com all over the place.”. That day a total of 70@diwere mod-
ified. Similarly, the largest number of files modified in a $engay was 1417
(2001/10/27) and the reason was “update the licensingrirdtion to require ver-

LOCS added in release

sion 2 of the GPL (instead of version 2 or any later versiofhese two expla-
nations highlight a particular feature of MRs Hlvolution: developers take good
care of explaining in each MR the reason for the change (Cit8valdevelopers
to add a log message to each MR). The average log for an MR islg@cters
(561 stddev, 170 median), with a minimum length of 1 (only 84yiIgnd 18K for
the longest log (which involved the merging of a branch torttaen CVS tree).

From a total of 18K MRs, only 87% include two or more files inAtprelim-
inary analysis shows that most of these MRs are of two typefilea which were
overlooked in a previous MR and committed minutes later; landhinor correc-
tions, such as fixing spelling mistakes. Further analysigesded to corroborate
this hypothesis.

10000 T T T T — : .
A\ Number of Files in MRs —+—
\ Number of Files in code MRs

1000 ¢

100 ¢

Number of MRs (log scale)

10

1 L L L L L L v b e
1 2 4 8 16 32 64 128 256 512 1024
Number of files in MR (log scale)

Figure 6: Most MRs contain a small number of files

4.2.2 Contributors

There is acommon belief that open source projects are deeloy a large number
of individuals. While that is true, it is important to recaogm that the contribution
of the majority of these individuals is very small. In openuse projects, con-
tributors can be divided into two main groups: those withteveiccess to the CVS
repository (and can make their contributions to the CVS sipry themselves)
and those who do not have write access to the repository. 10/ it is not dif-
ficult to get write access to the repository. Once somebodyshhmitted several
contributions, this person can apply for CVS write accesssINOME, more than
500 people have CVS write accéss

By looking at the changes committed by contributors with GM8e access,
we can see that like many other open source projects, theritgagd the cod-
ing is done by a small number of individuals. Zawinsky, at ¢ingee one of the
core Mozilla contributors, commented on this phenomendfnydu have a project
that has five people who write 80% of the code, and a hundregi@&do have
contributed bug fixes or a few hundred lines of code here ametls that a 105-
programmer project?’—as cited in [Jon02].

Evolution contains contributions by 201 different userids (to whitis paper
will refer as contributors). Few of these, however, conttéls a significant portion

3The author has write access to the GNOME CVS repository.

10

Dévelopér activi‘ty

01fF ——

0.01

0.001

0.0001 -

Proportion of total MRs (log scale)

le-05

8 16 32 64 128
Developers (log scale)

1 2 4
Figure 7: Proportion of MRs per contributor. Each contrdsuivas assigned a

number from 1 to 201, which corresponds to the X axis.

of the MRs. Figure 7 shows the proportion of MRs per contobiéach contribu-
tor was assigned a number from 1 to 201, which correspondeet tixis). Only

18 contributors accounted each for more than 1% of the toR&MThe largest
contributor is responsible for 16% of the MRs, while at thieeptside of the spec-
trum 32 contributors had only one MR only. Furthermore, altof 48% of the

MRs were contributed by only 5 contributors, while 142 cimitors contributed

just 5% of the MRs (80 contributed a total of 1% of the MRs).

Table 2 shows the 11 most active developers, as a propottialh MRs. The
top 10 appear to be Ximian employees or consultants (sed htimates.ximian.com/).
This fact corroborates the hypothesis that private congsafsuch as RedHat,
Ximian, and Eazel) have had a very important effect on thesldgment of the
GNOME project [Ger02]. In that respect it is similar to the At project where
core contributors were employees of Netscape (see [MFHO02])

Userid | Prop. | Accum.
fejj 0.16 0.16
ettore 0.10 0.26
danw 0.09 0.35
zucchi 0.06 0.42
clahey 0.06 0.48
ipr 0.05 0.53
toshok 0.05 0.58
federico| 0.03 0.61
peterw 0.02 0.63
iain 0.02 0.65
other 0.35 1.00

Table 2: Most active developers, as a proportion of total MRs

How regularly were contributors participating in the paife The number of
different contributors by year is depicted in table 3. Aff@anuary 2000, in any
given month there is an average of 32 contributors (8.3 stddmimum 15, max-
imum 47) per month to the project.

11

Year Number of Contributors

1998 37
1999 54
2000 95
2001 98
2002 79
2003 56

Table 3: Contributors to the project by year. It takes intocamt only those con-
tributors with CVS write access.
4.3 Revisions

Every time a file is modified, CVS creates a record of who maslitiewhen, and
the “delta” of the modification. This modification is known @€VS lingo as a
“revision”.

4.3.1 Types of Files

. Number of
Extension | Prop. | Accum. files in CVS
.C 0.41 0.41 1195
ChangelLog| 0.22 0.62 43
.h 0.13 0.75 1063
.am 0.05 0.81 174
.po 0.04 0.85 71
Jics 0.02 0.87 396
.sgml 0.02 0.90 228
in 0.02 0.92 136
.png 0.01 0.93 405
other 0.07 1.00

Table 4: Revisions and number of files per file extension. G file and .c) and
ChangelLog modifications account for 75% of total revisions.

Table 4 shows the proportion of revisions per extension e of file) and it
tells an interesting story. Given that C is the language ofaghfor Evolution, it is
not surprising to see .c and .h files at the top, along with Geaaogs (ChangelLogs
are discussed in detail in section 4.3.2). Metafiles (.am.am)dand translations
follow. The next file extension .ics corresponds to files thatude information
about a particular location in the world, particularly its¢ zone. There were
1903 revisions made to 396 .ics files, for an average of 4.8gdmper file.

Files with extension .sgml are documentation files. As widmgnopen source
projects, the documentation is written in SGML using thelmk DTD. Finally,
.png files correspond to artwork.

12

4.3.2 ChangelLogs

Changelog files are an important source of information alloeitdevelopment
and evolution of a project. Thevolution developers are fairly consistent in their
modifications to the ChangelLog files. From all MRs involvingranore files, 93%
include a madification to a ChangeLogvolution developers seem to make sure
that they document their changes in the corresponding @Ghangg. Table 5 shows
the 10 most modified files, 8 of them are ChangelLogs. Changelavgl CVS logs)
can provide insight on patches submitted by developersowita CVS account, as
developers are expected to be careful to give credit to thehpaubmitter in the
corresponding ChangelLog entry (which are not taken intowutcfor this paper).

4.3.3 Source Code Hot Spots

There have been a total of 41120 revisions to 2258 source filede Figure 8
shows the proportion of revisions per source code file. 54 &zount for 25% of
the total number of revisions, while 764 account for only 5Pthem.

E T N T
S 0012 - Revisions to Files —— |
2]
4 N
o -
= 001 \
2
()
E 0.008 N
c \
X
E 0
< ~
2 0.004 - 5 g
>
2
5 0002 \]
=%
<]
o 0 L L
1 10 100 1000

Files (log scale)

Figure 8: Proportion of revisions per source code file. Edehwias assigned a
number from 1 to 2258, which corresponds to the X axis.

4.4 Modularization

The success of an open source project depends on the abilisymaintainers to
divide it into small parts in which contributors can work vininimal communi-
cation between each other and with minimal impact on the wbdthers [LTOOQ].
From the beginning of the project, there has been a conseittespt to divide
Evolution into modules that fulfill the previous characteristics. Mt are rep-
resented in the code base as subdirectories. Figure 9 shevdifferent modules
and the number of MRs for each of them, representing the thagttivity in each
module.

Figure 10 shows the size of the seven largest modul&s/giution in terms
of LOCS. With the exception of libical and widgets, modulesd to grow in size.
Before 2002, both libical and widgets show a lot of varidpiln both their sizes

“Many of these files are no longer in the latest release, astthey been removed during the
development process. Nonetheless, CVS keeps informatiaut gheir modification.

13

File Prop. | Accum.
mail/ChangeLog 0.04 0.04
calendar/Changelog 0.03 0.06
camel/ChangelLog 0.03 0.09
addressbook/ChangelLqg 0.02 0.11
shell/ChangeLog 0.02 0.13
ChangelLog 0.02 0.14
po/Changelog 0.02 0.16
configure.in 0.01 0.17
composer/ChangelLog 0.01 0.18
mail/mail/callbacks.c 0.01 0.18

Table 5: Top 10 most modified files. ChangelLogs clearly takeld¢hd. As its
name implies, mail-callbacks.c contains the callbackfiefrhail client, hence the
frequency at which it is modified. These 10 files account fatal tof 18% of all
file revisions.

‘ MRs‘per Module ———

mail - P

camel | A .

calendar + T 1

addressbook |+ 1
shell /

widgets 1

composer // 1

e-util - ¥ g

filter r / 1

my-evolution 1

tests /

libical

libibex

executive-summary

wombat

importers

im

libversit

notes

tools

libwombat

cmdline

ebook L L L L L

500 1000 1500 2000 2500 3000

Number of MRs for each Module

“+44
1

1T 1 T T
1

o

Figure 9: MRs per module. Most of the activity is concentiatefew modules.

14

and the number of files in them. After Version 1.0, the siz&wblution has been
growing at a very small pace.

camel ——
calendar
100 mail [
addressbook = /

shell
libical
widgets -~
80 I Major releases "y
) /
. N =)
E o
40t
¥ : + o g

20 .

LOCs

S SO PSR ST SR S
00/07 01/01 01/07 02/01 02/07 03/01
Date

Figure 10: LOCS in selected modules, per version

Other interesting questions are: Do contributors tend tacentrate in one
module? How many core contributors does a given module h@ab® 6 shows
that information for the five most active modulestfolution. In order to account
only for people who are still active in the development, thisle only shows data
related to MRs which happened in 2002. It is not surprisinget® that one or two
contributors are responsible for at least two thirds of tHedvh each module.

Finally, how well do modules isolate developers from the plaxity of other
modules? One potential way to measure this dependency gatgza the number
of codeMRs that require changes in more than one modulerd-igushows a com-
pelling story: only 3% of the MRs include more than one modElarther analysis
of the changes is required to determine what is the propodi@hanges that were
actual code changes compared to changes in comments (sthah @sange in li-
cense, described in section 4.2.1).

10000 | | Number of Modules ina MR —— |

1000 ¢

10

Number of codeMRs (log scale)

1 L L L L L L L L L L L L L P}
0123456 7 8 910111213141516
Number of Modules in a codeMR

Figure 11: Number of different modules that appear in a cd@eMrhe proportion
of codeMRs that involve more than one module is very small)(3%

15

Mod Progs Id Prop Acc

shell 17 ettore 0.65 0.65
danw 0.11 0.76
toshok 0.05 0.81
clahey 0.04 0.84
zucchi 0.03 0.87
mail 19 fejj 0.52 0.52
rodo 0.13 0.65
zucchi 0.12 0.77
ettore 0.07 0.83
danw 0.06 0.89
calendar 17 jpr 0.40 0.40
rodrigo 0.32 0.72
ettore 0.07 0.79
danw 0.06 0.85
damon 0.03 0.88
camel 9 fejj 0.66 0.66
zucchi 0.25 0.91
danw 0.03 0.94
peterw 0.03 0.97
ettore 0.01 0.99
addressbook 19 toshok 0.57 0.57
clahey 0.13 0.70
ettore 0.09 0.79
danw 0.07 0.87
fejj 0.03 0.90

Table 6: Top 5 programmers of some the most active modulésgd@f02. The
first column shows the name of the module, the second showsttienumber of
programmers who contributed to it in that year, the thirdwehthe userid of the
top 5 programmers and the proportion of their MRs with restethe total during
the year.

16

5 Further observations

The results described in this paper show that the methodideddn section 2 can
be applied to recover the evolution of a software projectraliiee amount of soft-
ware trails is significant. Several observations can be rahdat this experience.

e One software trail does not tell the whole story. It is paramtao cross-
reference software trails to really understand what thegmaethe evolution
of the project. For example, the size of software releas&svolution has
been growing in linear fashion, while the growth in the sitéh® source
code is relatively flat; also, many developers have beelicfaating in the
project, but most of them with very few contributions.

e Schema definition. The schema used in this study kept chgnigipart due
to the incorporation of new trails, and in part because ndarimation and
relations kept being discovered. It is expected that, astyipie of analysis
becomes more pervasive, standard schemas can be develtgedill have
2 advantages: a) it will promote the creation of tools thahegasoftware
trails, extend them, and analyze them; and b) the evoldtionill better
understand the nature and interrelation of the availahiéstbefore starting
to do her work.

¢ One of the main challenges of analyzing software trailsas thany of them
are informal in nature. For example, email messages coatiirge amount
of information pertaining to the way the project has evolviedt they are
difficult to analyze in an automatic fashion. Correlatinffetent trails is
also an error prone task, in which heuristics have to be dpeel and tested.
It might be the case that a heuristic performs differentlglifferent projects.

¢ Information overload and the need for analysis and visatdin tools. The
amount of available information makes it indispensables® tools that can
filter it and visualize it. Again, as schemas are standaddizéferent re-
search teams could provide different tools that speciatizaining and vi-
sualizing certain types of trails. In this paper, SQL wassembecause it
provides a sophisticated query language (further extermugubstgreSQL
with its support for regular expressions in thieer e clause). SQL was very
helpful in filtering and tabulating information, that coulten be plotted (our
research team has since developed a tool to automaticalyecmany of the
plots displayed herein using SVG using the Web as its intejfalt is also
interesting thakEvolution itself proved very useful in analyzing thgvolu-
tion mailing lists, given that it provides a powerful query laage for email
messages.

e Quality of software trails. It is important to state that mditdevelopment
teams generate “good” software trails. In the experiendbefuthor, there
is a point in a software project in which software trails star “mature”
and this point is likely a correlation of the success of thaigut, the level
of interaction that developers have to have, and their rtgtand in the
case of commercial projects, the influence of management.instance,
there is very little information abow@volution when only one developer was

17

contributing to it, but as the developers grew in number (a@chme more
experienced) their trails improved in quality. The Freet®afe Foundation
has an important effect in the quality of trails, as it putdis a collection of
guidelines that free software developers should follow.

6 Conclusions and Future Work

This paper demonstrated a methodology to recover the éwolof a software
project using its software trails. Software trails, suchvasion releases, version
control logs and mailing lists were used to recover the diaiuof Ximian Evo-
lution, a free (as defined by the GPL) mail client for Unix. The anialyf these
software trails allowed the discovery of interesting feat®ut the history of the
project: its growth, the interaction between its contrilsgt the frequency and size
of the contributions, and important milestones in its degaient.

There are several potential avenues for future researcho€them is to create
tools that analyze and enhance the facts extracted. Forpea@VS’'s MRs can
be analyzed in an attempt to guess the type of modificationttieadeveloper
intended: a comment, a bug fix, a new feature, or refactofimgexample. This
will allow the evolutionist to quickly categorize changaslaoncentrate on those
of interest.

Another area of research is the visualization of this infation. As the project
grows older, its trails grow in number. It is necessary t@at@dools that analyze
and display the gathered facts to the user and allow its Nisti@n in a highly
dynamic manner. Metrics are also an important area of relsedr is needed to
guantify the information extracted from software trailg,itscan be compared with
other software projects. For example, how can the “disj@ss” of contributors of
different modules to different software projects be quiatiand compared?

Finally, studies on other software projects (similar todhe done in this paper)
are needed. These studies will provide information necgdedetter understand
the characterization of software trails. Furthermoresé¢hstudies will allow re-
searchers to compare the evolution of different softwaogepts; and to a certain
extend some of the practices used by their correspondinglaewent teams.

Acknowledments

This research has been supported by the National SciendeEragineering Re-
search Council of Canada, and the British Columbia Advar8y=siems Institute.
The author would like to thank Audris Mockus (co-author oftG@bange) for his
invaluable help in a preliminary analysis BWolution and the reviewers of this
paper for their helpful comments.

References
[dI99a] Miguel de Icaza. Writing a GNOME mail client.

http://mail.gnome.org/archives/gnome-announceg80-
April/msg00029.html, April 1999.

18

[d199b]

[d100]

[Ger02]

[GMO3]

[GTOO]

[Gui9g]

[Gui00]

[Jon02]

[LTOO]

[MFHO2]

[Per01]

Miguel de Icaza. Writng a GNOME mail client.
http://canvas.gnome.org:65348/mailing-lists/arcbigaome-mailer-
list/1999-April/0018.shtml, April 1999.

Miguel de Icaza. G Apps Lib 01 is out.
http://mail.gnome.org/archives/gnome-announce2it0-
October/msg00005.html, October 2000.

Daniel M. German. The evolution of the GNOME ProjdatProceed-
ings of the 2nd Workshop on Open Source Software Engineering, May
2002.

Daniel M. German and Audris Mockus. Automating theddarement
of Open Source Projects. Rroceedings of the 3rd Workshop on Open
Source Software Engineering, May 2003.

Michael W. Godfrey and Qiang Tu. Evolution in Open SmuSoft-
ware: A Case Study. IRroc. of the 2000 Intl. Conference on Software
Maintenance, pages 131-142, 2000.

Bertrand Guiheneuf. Gnome Mail clients (Re: Is Bals
alive?). http://mail.gnome.org/archives/gnome-deial1999-
April/msg00042.html, April 1999.

Bertrand Guiheneuf. Candidate (Bertrand Guihéneu
http://mail.gnome.org/archives/foundation-annou2gep-
October/msg00009.html, Oct 2000.

Paul Jones. Brooks' law and open source: The mormérger? does
the open source development method defy the adage aboug itothie
kitchen? IBM developerWorks, August 20, 2002.

Josh Lerner and Jean Triole. The Simple Economics pérOSource.
Working Paper 7600, National Bureau of Economic ReseardrcMm
2000.

Audris Mockus, Roy T. Fielding, and James Herbsléio case stud-
ies of open source software development: Apache and moZiGM
Transactions on Software Engineering and Methodology, 11(3):1-38,
July 2002.

Ettore Perazzoli. Ximian Evolution: The GNOME Gpatare Suite.
http://developer.ximian.com/articles/ whitepapersletron/, 2001.

19

