
Madhavji & Tassé Page 1 of 6

A Case for Establishing Evolutionary Policies
and their Support Mechanisms, with Examples †

Nazim H. Madhavji Josée Tassé

University of Western Ontario, Canada University of New Brunswick, Canada
madhavji@csd.uwo.ca jtasse@unbsj.ca

Abstract

An important trait of a mature discipline is that,
amongst other things, practitioners have specific
criteria to judge the appropriateness of the different
courses of action to take under a given circumstance, or
whether a given task has been well-accomplished. These
criteria may be in the form of templates, checklists,
rules-of-thumb, constraints, policies and laws, which
have resulted from many years of experience with
repeated application of these in different situations.
There is data to support that software evolution
practices are far from mature. Thus, in this position
statement, we make a case for establishing a (i)
comprehensive set of evolutionary policies and (ii) their
support mechanisms, to guide development1 in the
context of the instituted policies. A benefit of utilising
established policies and their support mechanisms is
that the sustainability of the evolving systems would
likely be increased.

1. Introduction

While the overall process maturity in software
organisation continues to improve according to the
SEI’s Year 2002 Year End update [1], there are still a
staggering 60% of the 1,345 organisations assessed
worldwide (appraised and reported since 1998) that
have been calibrated at Level 1 or 2 on the software
Capability Maturity Model (CMM) [2] and another
approx. 25% at Level 3. The first two levels denote
chaotic and repeatable practices, respectively, while
Level 3 denotes defined processes in an organisation.
Both technically and numerically, majority of the
organisations are far from the 15% organisations that are
at the, desired, higher levels of maturity (Level 4 --
managed and Level 5 -- optimising). Overall, therefore,
the worldwide picture of software development can be
considered quite gloomy.

† This work is supported, in part, by research grants from
NSERC (Natural Science and Engineering Research Council
of Canada).

1 In this paper, by “development” we mean evolutionary
development unless indicated otherwise.

Moreover, because most significant software projects
in industry are in evolutionary stages (i.e., beyond the
first release of a software system), we can assume that
the software projects assessed were typically not new
development projects. Also, whilst in general there are
many factors that contribute to the overall low process
maturity rating in software projects, there is no reason to
believe that software-evolution-related factors (e.g.,
ability to control size growth, or amount of regression
testing conducted in proportion to the degree of code
change, etc.) were not amongst them. Software evolution
community, both research and practice, thus has every
reason to be concerned about the state of the art and of
practice in software evolution.

Also, the Standish Group’s CHAOS study [3] of

23,000 applications in US companies over five years
(1994-1998) shows that, while more and more projects
are succeeding, by 1998 approx. 28% were failing
outright and another 46% were significantly challenged
on the quality and delivery fronts. This is corroborated
by data from another source [4] that also indicates that
approx. 30% of the large projects get cancelled, and that
the probability of a system of size 1 million lines of
code (MLOC) or some 10,000 Function Points (FP)
getting cancelled is approximately 50%. Not only this,
large systems are notorious for: drastically overshooting
schedules and budgets; severe reduction in
requirements, features or functions after project start;
not delivering what was promised; major reliability and
performance problems following delivery; and many
other issues [5].

Add to this abysmal record the approximately 8%
annual growth (new + changed), though in migration
projects (hardware or software based), volatile
environments, or in early evolutionary life, the growth
can be significantly higher (25-100%) [4]. This,
therefore, raises a challenge as to how to increase the
life expectancy of, say, a 10,000 function point system
from the current average of 10-15 years.

2. Position

There are many lines of attack in attempting to solve
software evolution problems. In this position statement,
however, we make a case for establishing a (i)

Madhavji & Tassé Page 2 of 6

comprehensive set of evolutionary policies2 and (ii) their
support mechanisms, to guide development3 in the
context of the instituted policies.

A rationale for this strategy is that, in a mature
discipline, amongst other things, practitioners have
specific criteria to judge the appropriateness of the
different courses of action to take under a given
circumstance, or whether a given task has been well-
accomplished. These criteria may be in the form of
templates, checklists, rules-of-thumb, constraints,
policies and laws, etc., which have resulted from many
years of experience with repeated application of these in
different situations.

In the building industry, for example, single-glazed
or ¼” double-glazed windows would be considered
inadequate for the deep wintry conditions of Quebec
(typically in the range -20 to -30 ˚C); whereas, they
would be considered acceptable-to-comfortable for the
mild winters of New Zealand. Such knowledge is often a
result of past mistakes. For example, when early British
settlers emigrated to New Zealand, the orientation of
many houses did not maximise solar access in the
principal rooms which, in the years to come, precipitated
house remodelling.

In the field of software evolution, however, while

progress has no doubt been made over the last thirty-odd
years, exemplified by Lehman’s laws [6], the general
principle of “design for change” [7], or by numerous
other empirical studies (some of which are cited later in
the section on discussion) it is our contention that, as a
community, our rate of progress in adopting and
developing evolutionary policies and their support
mechanisms has been undeniably slow4. For example,
the Trial Version 1.00 of The Guide to the Software
Engineering Body of Knowledge (SWEBOK) [8] –
specifically Chapter 6 (Software Maintenance) and
Chapter 10 (Software Engineering Tools and Methods) -
- neither mentions policies for evolving software nor
their technological or methodological support as a
critical issue.

2 An evolutionary policy is defined as a statement of rule,
guiding principle, strategy, plan, course of action, procedure,
or constraint, to follow during the process of software
evolution.
3 In fact, we also need mechanisms to ensure continued
relevance, comprehensiveness and soundness of the enacted
policies. But we choose not to delve into policy management
and evolution issues in this position statement so as not to lose
focus on development issues, which are clearly of first order
importance.
4 While one may argue that this slow pace is due to the lack of
a general theory of software evolution, we contend that there
are nuggets hidden in numerous empirical studies and in
general practice awaiting discovery and their synthesis into
formalized policies that can be supported by automated means.
A prime purpose of this position statement is to demonstrate a
humble beginning in this direction.

Thus, in the absence of a concerted5 effort by the
software evolution community, developers have often
resorted to use, manually of course, ad hoc policies and
rules of thumb, such as:

 If the number of files edited for a given
change is ≤ six then self-reviews would
suffice; otherwise, independent
inspection would be conducted. [9].

While an argument in favour of such practice is

“better this than none”, it does little to further the
discipline as a whole. Consequently, even in a single
large project, let alone across projects, divisions or
organisations, one may find inequity in the application
of specific policies. The net result is an imbalance in
software quality in different parts of even the same
system; integration delays due to hold ups, or feature or
test reduction to cope with integration and release
schedules; higher evolutionary costs; and ultimately,
user dissatisfaction.

Ad hoc and esoteric practices in a given project

almost certainly imply a lack of a comprehensive (or
practically viable) set of policies concerning different
aspects of software evolution. Much remains to be done,
therefore, in defining detailed policies to guide, monitor
and verify project-specific actions in all areas of
software evolution (e.g., from release planning, detailed
analysis, to release implementation, and involving
numerous types of software artefacts).

From the preceding description, it should be evident
that the total number of policies required to
comprehensively satisfy the needs of a software
evolution project would be quite large. There is thus a
danger that such a large set of policies could become the
heart of a bureaucratic machine reeked with policy
management problems, which would defeat the purpose
of institutionalising policies in the first place.

To avoid this danger, but also, in fact, to apply

policies effectively, there is a need for technological
support to design, codify, organise and evolve policies
and verify development against these policies. In our
work thus far, we have concentrated mainly on the last
of these. Detection of development-violation against the
policies would help fix product or process problems at
their earliest; whereas, any “positive” feedback would
help build stronger confidence in the development team.
Collectively, thus, a significant benefit of utilising
established policies and their support mechanisms is that
the sustainability of the evolving systems’ quality would
likely be increased.

5 While it is not our intention to give here a particular blueprint
for such a concerted effort, examples exist in other disciplines
where such effort has resulted in benchmarks, body of
knowledge, standards, Open Source software, etc., which have
proved invaluable for experimentation, learning, and business.

Madhavji & Tassé Page 3 of 6

3. Examples Policy:

∀ c ∈ {p ∈ TypedEntSet("Component")  p.name
∈ <list of components> } • In this section, we give two brief examples of

policies derived from third-party empirical work [10,
13]. These examples deal with pertinent issues in
software evolution, such as: re-engineering change-
prone modules, and consistency between code and
documentation. Some more examples can be found in a
companion paper [12].

∃ r(a,m,t) ∈TypedRelSet("activity consumes
component") • a.name = "re-engineering"

where, “<list of components>” denotes the list of
modules to be re-engineered. The policy says that for
each component in the given list, there should be an
activity called “re-engineering” that consumes (or
operates on) the component.

3.1 Example 1: Re-engineering change-
prone modules

 This policy would be used to verify the development
plan, such as that shown in Figure 1. This plan shows
two versions of the same system, called V-elicit6, (see
the two double circles) and the new-release development
process (see the hierarchy of boxes representing the
process activities). Version 5 (V5) of the system consists
of the components (see ellipses linked to V5):
visualization_V2, policies_V1,
generator_V2, base_code_V5 and
view_matching_V1. This system is to be updated to
version 6 (V6), whose planned components (also shown
by ellipses) are likewise linked by its arrows. The new-
release development process (model) consists of the
activities: make_changes, re-engineering and
testing. For simplicity, no further activity breakdown
is shown here.

Mattsson and Bosch [10] have proposed an approach
to identify those modules of a system that require re-
engineering. Proactively maintaining the software (an
object-oriented framework in their case) by restructuring
the change-prone modules could "simplify the
incorporation of future requirements". In their approach,
the change-prone modules from past releases are
identified based on their size, change rate and growth
rate.

Once it has been decided which modules need to be

re-engineered during the development of a particular
release, an important issue then is to ensure that all the
identified modules do in fact go through the re-
engineering process. However straightforward this may
appear by itself, such monitoring -- basically carried out
manually today – is leaden with the risk of losing track
of the tasks involved amidst project pressures.

Let us now assume that the Mattsson-Bosch

approach identified two components for re-engineering:
view_matching_V1 and generator_V2 (from
version 5). The “<list of components>” in the policy
description above would thus be replaced by these two

In an automated system, however, a policy such as

the following could be defined:

Figure 1 - Overall plan for the development of the sixth version of the V-elicit system.

6 V-elicit is a system for eliciting models of processes or
products [11]. Its operational details are not relevant to this
paper.

Madhavji & Tassé Page 4 of 6

component names7. Such automated checking is much preferable to
hand-checking the plans, and its value is particularly
felt: in large or complex systems; when many
individuals are involved in the project; when quality is
at stake; and when time is at a premium. Also, the policy
checking mechanism can be used in either prescriptive
or descriptive contexts. For example, in the former
context, as described above, it is used to ensure that the
plan is complete prior to process enactment. In the latter
context, it can be used to monitor a project’s progress by
verifying the process-trace against the policy at a desired
time in the project.

The policy checking mechanism8, described in [12],

accepts two inputs (a policy and a model) and produces
feedback as to whether or not the model complies with
the policy and, if not, identifies the offending elements
and relationships of the model.

Evidently, the plan in Figure 1 is not correct.
Specifically, the component generator_V2
(identified for re-engineering) is mistakenly left out
from the re-engineering effort (i.e., this component is
not an input to the "re-engineering" activity box in
Figure 1). Such mistakes do occur when building
prescriptive models in the planning phase, even in
moderate sized projects. This is why it is quite important
to verify the planned process - against the prescribed
policies -- prior to its execution, in order to prevent
evolution errors.

3.2 Example 2: Code-documentation
consistency

A case study by Tryggeseth [13] shows that the
availability of valid documentation during software

evolution increases system
understandability and
productivity. However,
maintainers and evolvers
often document their work
by means of memos, which
are not always integrated
into the master
documentation [7]. Over
time, therefore, the
documentation gets
increasingly out of date to
the point that the
documentation is no longer
trusted or used. Often, this
triggers costly and intensive
reverse-engineering of the
system to recover the “lost”
design, architectural,
requirements or other
software artefacts.

Figure 2 shows the result of verifying the plan
against the described policy. The top part of the figure
describes the policy informally and then formally. The
bottom part lists the violations -- that is, those
components that were supposed to be re-engineered but
have not been included in the plan.

7An advanced form of this policy could automatically detect
the components that should be re-engineered, for example,
components with a change rate higher than a certain threshold.

8 This mechanism is relevant here in concept, not so
much in its details.

A preventative approach
would ensure that with any
new development or
changes the documentation
and implementation are

congruent with each other. For example, in an object-
oriented system one may want to verify that the code
implements exactly the class diagram in the design
document (i.e., no classes missing or added, and all
attributes and method interfaces properly implemented).
This can be achieved by comparing the class diagram
from the design document against that generated by
reverse-engineering the new or updated code, guided by
a policy that specifies those entities and relationships
that should be similar in the two diagrams. For example,
the following policy verifies whether all the classes in
the code are included in the design document.

Figure 2 - Verifying the plan for re-engineering change-prone modules.

Madhavji & Tassé Page 5 of 6

Policy:

∀ c1 ∈ {c ∈ TypedEntSet("Class")  c.source =
“code” } •
∃ c2 ∈{d ∈ TypedEntSet("Class")  d.source =
“documentation” }•
c1.name = c2.name

Figure 3 (bottom part) then shows that the code class
line-on-invoice does not match the class diagram
from the documentation. Likewise, policies can be
written to verify in more detail whether related classes
have the same attributes and functions (including
parameters and return values).

3.3 Discussion and Closing Remarks

The described two examples are illustrative in the
basic idea of evolutionary policies and their supporting
mechanism, though, needless to state, much further
work is necessary to make this an industrial-scale
reality. As a step in this direction, we have derived,
codifed in logic and, in some cases, pseudo-codified for
preliminary assessment, a number of other policies
interpreted from empirical studies or experiential works
of others, e.g.: 35 policies from Davis' 201 principles of
software development [14]; 42 policies from Lehman's
laws of evolution [6]; Munson’s proportional regression
testing policy [15]; Humphrey’s optimal value of
“Appraisal-to-failure ratio” [16]; and Ramanujan et al.’s
“standard for variable naming” [17]. What this does
suggest is that evolutionary policies are numerous, if

implicitly buried in their rudimentary forms in the
literature or in specific practices.

Time is thus ripe to dig into such literature, all the

while conducting more empirical studies to establish
evolutionary facts; use the findings to design suitable
evolutionary policies; experiment with such policies to
assess their validity in case studies and in practice; and
investigate into policy-design and support mechanisms
(see [12], for example, where we describe a mechanism
to verify evolutionary software artefacts and processes
against instituted policies). The overall objective of this
work is to improve software evolution practice and to
improve the quality-sustaining power of software
systems. This is no mean task, however, and therefore to
make significant progress, it would require a concerted,
community, action as opposed to isolated efforts of a
few individual researchers and practitioners.

Figure 3 - Verifying consistency between
documentation and code.

ACKNOWLEDGEMENTS

We are thankful to the three anonymous referees, whose
comments have helped us to improve this position
paper.

4. References

[1] The SEI, “Software CMM CBA IPI and SPA
Appraisal Results 2002 Year End Update”, April 2003,
available from: www.sei.cmu.edu/sema/profile.html
(accessed: May 2003).

[2] M.C. Paulk, C.V. Weber and B. Curtis, “The
Capability Maturity Model: Guidelines for Improving
the Software Process”, Addison Wesley Professional,
1995.

[3] “CHAOS: A recipe for success”, The Standish
Group International, Inc., 1999.

[4] C. Jones, “Applied Software Measurement –
Assuring Productivity and Quality”, 2nd edition,
McGraw Hill, 1996.

[5] W. Wayt Gibbs, “Software's Chronic Crisis”,
Scientific American, September 1994, pp72-81.

[6] M. M. Lehman and J. F. Ramil, "Rules and Tools for
Software Evolution Planning and Management", Annals
of Soft. Eng., Vol. 11, 2001, pp. 15-44.

[7] D.L. Parnas, “Software Aging”, Proc. Of the 16th
International Conference on Software Engineering,
Sorento Italy, May 1994, IEEE Press, pp. 279-287.

[8] SWEBOK -- Guide to the Software Engineering
Body of Knowledge, Trial Version 1.00, May 2001,
IEEE Computer Society.

[9] H. Dayani-Fard, Personal communication, 2002.

http://www.sei.cmu.edu/sema/profile.html

Madhavji & Tassé Page 6 of 6

[10] M. Mattsson and J. Bosch, "Observations on the
Evolution of an Industrial OO Framework", Proc. of the
International Conference on Software Maintenance
1999, pp. 139-145.

[11] J. Tassé and N. H. Madhavji, "View-Based Process
Elicitation: a User's Perspective", Software Process
Improvement and Practice, vol.6 no.3, Sept. 2001, pp.
125-139.

 [12] N.H. Madhavji and J. Tassé, “Policy-guided
Software Evolution”, Proc. of the International
Conference on Software Maintenance, September 2003,
Amsterdam (To appear).

[13] E. Triggeseth, “Report from an Experiment: Impact
of Documentation on Maintenance”, Empirical Software
Engineering, vol.2 no.2, Kluwer Academic Press, 1997,
pp.201-207.

[14] A. Davis, “201 Principles of Software
Development", McGraw Hill, 1995.

[15] J. C. Munson, "Measuring Software Evolution",
chapter submitted for consideration in “Software
Evolution” (eds.) Madhavji, N.H., Lehman, M.M.,
Ramil, J.F. and Perry, D., Wiley (pending).

[16] W. S. Humphrey, "Using a Defined and Measured
Personal Software Process", IEEE Software, vol.13
no.3, May 1996, pp. 77-88.

[17] S. Ramanujan, R. W. Scamell, J. R. Shah, "An
Experimental Investigation of the Impact of Individual,
Program, and Organizational Characteristics on
Software Maintenance Effort", Journal of Systems and
Software, vol.54 no.2, October 2000, pp. 137-157.

	A Case for Establishing Evolutionary Policies
	and their Support Mechanisms, with Examples †

