Evaluating Code Duplication

Detection Techniques

Filip Van Rysselberghe and Serge Demeyer
Lab On Re-Engineering

. Universiti/ Of Antwei

Towards a Taxonomy of
Clones in Source Code: A
Case Study

Cory J. Kapser and Michael W. Godfrey
Software Architecture Group
University of Waterloo

Duplicated Code (ak.a. code clone)

m Code duplication occurs when
developers systematically copy
previously existing code which solved a
problem similar to the one they are
currently trying to solve.

= Typically 5% to 10% of code, up to
50%.

m Variety of reasons duplication occurs.

Associated Problems

m Errors can be difficult to fix.

m Change in requirements may be difficult
to implement.

m Code size unnecessarily increased.

m Can lead to unused, dead code.

m Can be indicative of design problems.
m Bugs may be copied as well.

Evaluating Duplicated Code
Detection Techniques

: m Authors set out to evaluate the qualities

of several clone detection techniques
_ and determine where they fit best into
N

the software maintenance process.

m Compares 3 representative techniques
on 5 small to medium size cases.

Duplication Detection
Techniques

m Authors suggest there are three groups
of methods of detecting duplicated
code:

— String based
— Token based
— Parse-tree based

Research Structure

m Goal
m Questions
m Experimental Setup

Selected Cases

m ScoreMaster

m TextEdit

® Brahms

® Jmocha

m JavaParser of JMetric

Results: Portability

m Simple line matching most portable.

m Parameterized line matching and suffix
tree matching are fairly portable.

m Metric based matching least portable.

Results: What Kind of Matches
Found?

m Metrics based approach find function
block duplication.

m Simple string matching finds equal lines.

m Parameterized line matching finds
duplicated lines.

m Suffix tree matching finds duplicated
series of tokens.

Results: Accuracy

m Number of false matches:

— Parameterized suffix tree matching and
simple line matching find no false matches.

— Parameterized line matching finds few
false matches.

— Metrics based matching finds many false
positives when applying metrics to block
fragments, only a few when applying to
methods.

10

Results: Accuracy

m Number of useless matches:

— Both parameterized methods returned low
amounts of useless matches.

— Metrics found more useless matches, 133
out of 138 in TextEdit when applying
metrics to methods.

— Simple line matching finds many, 229
useless matches in TextEdit.

11

Results: Accuracy

m Number of recognizable matches
— Metric fingerprints is very high.

— Parameterized matching techniques return
less recognizable matches.

— Simple string match returns the lowest.

12

Results: Performance

Performance

230 1

)

]

i}
L
"

=
=
]

1
b

Execution imee [s5ec)
'_I.
N
=
]
- s
-

n
o
1

—_—— =

l:l =t T L L] 1
0 a00a0 10000 13000 £0000
Program Size (LOC)

—=— [Duploc

— ———-Suffix Tree
Pararm, Line
—a—Metric Finger

Figure 4. Performance of the different techniques

13

Conclusions

m Based on comparing the 3 representative duplication detection
techniques, the following conclusions were drawn:

— Simple line matching is suitable for problem detection and
assessment.

— Parameterized matching will work well with fine-grained
refactoring tools.

— Metric Fingerprints will work well with method level
refactoring techniques.

m Have shown that each technique has specific advantages and
disadvantages.

m Have laid the ground work for a systemic approach to detecting
and removing clones.

14

Toward a Taxonomy of Clones

m Aim to profile cloning as it occurs in the
real world and generate a taxonomy of
types of code duplications.

m This will give us insight into how and
why developers duplicate code, and aid
the effort in developing clone detection
techniques and tools.

15

The Study

m Performed on the Linux kernel file-
system subsystem.

— Consists of 538 .c and .h files, 279,118
LOC.

— 42 file system implementations.
— Layered design.

Study Methods

m Used parameterized string matching and
metrics based detection to gather clones.

m Manually inspected clones returned from the
detection tools and created the current
taxonomy.

m Generated scripts to classify each clone into
one of clone types, and again manually
iInspected these results.

17

Taxonomy of Clones

m Duplicated blocks within the same function.

m Cloned blocks across functions, files and
directories.

m Similar functions, same file.

m Functions cloned between files in the same
directory.

® Functions cloned across directories.
m Cloned files.
m |nitialization and finalization clones.

18

Results

m 12% of the Linux kernel file-system
code is involved in code duplication.

m Detected 3116 clone pairs, with an
average length is 13.5 lines.

m 78% of cloning occurs in the same
directory.

19

Locality of Clone Pairs

Clones in Same File

Clones in Same Directory

Clones in Different Directories

of clone pairs 1628 w6 GR2

Average LLOC 12.7 14.5 14.5
Max LOC O3 71 123
Min LOC 2 4 |

Table 1: Profiles of cloning locality

All clones

20

Frequency of Clone Types

Tvpe Count | Average Leneth
Same File
Blocks m Same Function SRU | 3
Duplicated Functions 244 26
[nitialization Clones 28 |4
Finalization Clones %2 | 3
Cloned Blocks SRN | 3
Same Directory
Duplicated Functions 658 | 6
[nitialization Clones 2 | 4
Finalization Clones |1 | ()
Cloned Blocks |35 |4
Different Directories
Duplicated Functions 129 27
[nitialization Clones 0 | 2
Finalization Clones 435 |1
Cloned Blocks 4356 |4

Table 2: Frequency of various clone categories

farametric String Match

21

Families of File Systems

m ext2 and ext3 highly related.

m Intermezzo cloned much from the main
file-system code and Coda.

m Jffs has cloned much from inflate fs,
most of the clones were put into 1 file.

22

Visualization of Cloning
Without Showing Same
Directory Clones

Number of Clones Among File-Systems

Q0

80

ext2 vs ext3 ! >

60 —

Clones

L= © N
— 2 W -

— ™
File-Systems

[fs vs intermezzo
50 j

inflate_fs vs jffs

16 File-Systems

oo
|1
oz
o3
|4
o5
W&
a7
mi
mje]
ot1o
o
|12
|13
m14
|14
o168
o17
ot18
o14
ozo
o1
o2z
o223
m24
m25
o 26
oz27
o8
@29
w30
o
w32
m33
W34
W35
= el
m37
|38
el
m40
o4
m42
@43

23

Metrics Vs. String Matching

Metric Match string Match
Minimum Function Length (L.OC) 5 0 7 N/A
Same File 41 110] 108 244
Same Directory LIST | 1152 | 619 (b
Different Directory 116 80 R 1249

Table 2: Number of Tunction ¢lones found in metrics based clone detection and parameterized string match

Minimum Number of Lines 5 6 7
Function pairs found by both | 716 | 716 | 708
Found in Parametric Only 353] 353] 56l
Found in Metrics Only OOR | 626 | 57

Table 4: Comparison of & of function clones found by the two clone detection algorithims

Conclusions

= We have begun to build a taxonomy of code
clones in software.

= Cloning activity in the Linux kernel file-system
subsystem is at a non-trivial rate.

= Cloning most commonly occurs within a
subsystem.

m Parameterized string matching provides an
interesting and powerful method for function
duplication detection.

m 3D visualization provided an interesting
method of viewing clones amongst
subsystems.

25

Af" B R mN

Importance of this Work

m Lots of clone detection methods out
there, few comparisons.

m \What we catch and what we miss Is
unclear.

26

