Benchmarking: The Way Forward for Software Evolution

Susan Elliott Sim
University of California, Irvine
ses@ics.uci.edu
Developed a theory of benchmarking based on own experience and historical research

Successful benchmarks examined for commonalities:
- TREC Ad Hoc Task
- TPC-A™
- SPEC CPU2000
- Calgary Corpus and Canterbury Corpus
- Penn treebank
- *xfig* benchmark for program comprehension tools
- C++ Extractor Test Suite (CppETS)

Overview

• What is a benchmark?
• Why benchmark?
• What to benchmark?
• When to benchmark?
• How to benchmark?

• Talk will interleave theory with implications for software evolution
The Way Forward…

• Start with an exemplar.
 – Motivating Comparison + Task Sample
• Use the exemplar within the network to learn about each other’s research
 – Comparison, discussions, relative strengths and weaknesses
 – Cross-fertilization, codification of knowledge
 – Hold meetings, workshops, symposia
• Add Performance Measures
• Use the exemplar (or benchmark) in publications
 – Common validation
• Promote use of exemplar (or benchmark) in broader research community
What is a benchmark?

• A benchmark is a standard test or set of tests used to compare alternatives. It consists of a motivating comparison, a task sample, and a set of performance measures.
 – Becomes a standard through acceptance by a community
 – Primarily concerned with technical benchmarks in computer science research communities.
Benchmark Components

1. Motivating Comparison
 - Comparison to be made
 - Motivation for research area and benchmark

2. Task Sample
 - Representative sample of problems from a problem domain
 - Most controversial part of benchmark design

3. Performance Measures
 - Performance = fitness for purpose; a relationship between technology and task
 - Can be qualitative or quantitative, measured by human, machine, or both
What is not a benchmark?

• Not an evaluation designed by an individual or single laboratory
 – Potential as starting point, but not a standard
• Not a baseline or fixed point
 – Needed for comparative evaluation, but not sufficient
• Not a case study that is used repeatedly
 – Possibly a proto-benchmark or exemplar
• Not an experiment (nor trial and error)
 – Usually no hypothesis testing, key factors not controlled
Benchmarking as an Empirical Method

<table>
<thead>
<tr>
<th>Characteristics from Experiments</th>
<th>Characteristics from Case Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>Features</td>
</tr>
<tr>
<td>? Use of control factors</td>
<td>? Little control over the evaluation setting, (e.g. choice of technology and user subjects)</td>
</tr>
<tr>
<td>? Replication</td>
<td>? No tests of statistical significance</td>
</tr>
<tr>
<td>? Direct comparison of results</td>
<td>? Some open-ended questions possible</td>
</tr>
<tr>
<td>Advantages</td>
<td>Advantages</td>
</tr>
<tr>
<td>? Direct comparison of results</td>
<td>? Method is flexible and robust</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>? Not suitable for building explanatory theories</td>
<td>? Limited control reduces generalizability of results</td>
</tr>
</tbody>
</table>
Overview

• What is a benchmark?
• Why benchmark?
• What to benchmark?
• When to benchmark?
• How to benchmark?
Impact of Benchmarking

"…benchmarks cause an area to blossom suddenly because they make it easy to identify promising approaches and to discard poor ones.” -Walter Tichy

"Using common databases, competing models are evaluated within operational systems. The successful ideas then seem to appear magically in other systems within a few months, leading to a validation or refutation of specific mechanisms for modelling speech.” -Raj Reddy

Benefits of Benchmarking

- Stronger consensus on the community’s research goals
- Greater collaboration between laboratories
- More rigorous validation of research results
- Rapid dissemination of promising approaches
- Faster technical progress

- Benefits derive from process, rather than end product
Dangers of Benchmarking

- Subversion and competitiveness
 - “Benchmarketing” wars
- Costs to develop and maintain
- Committing too early
- Overfitting
 - General performance is sacrificed for improved performance on benchmark
- Non-independent probabilistic results
- Closing off other research directions (temporarily)
Why is benchmarking effective?

• Explanation is based in philosophy of science.
• Conventional view: scientific progress is linear.
• Thomas Kuhn introduced the idea that science moves from paradigm to paradigm.
 – During normal science, progress is linear.
 – Canonical paradigm shift is change from Newtonian mechanics to quantum mechanics.
• A scientific paradigm consists of all the information that is needed to function in a discipline. It includes technical facts and implicit rules of conduct.
• Paradigm is created by community consensus.

Theory of Benchmarking

• Process of benchmarking mirrors process of scientific progress.
 Progress = technical facts + community consensus

• A benchmark operationalizes a paradigm.
 – Takes an abstract concept and turns it into a concrete guide for action.
Sensemaking vs. Know-how

• Beneficial to both main activities of RELEASE
 – Understanding evolution as a noun– what, why
 – Understanding evolution as a verb– how

• Focusing attention on a technical evaluation brings about a new understanding of the underlying phenomenon
 – Assumptions
 – Problem frames and world views
Overview

• What is a benchmark?
• Why benchmark?
• What to benchmark?
• When to benchmark?
• How to benchmark?
What to benchmark?

• Benchmarks are best used to evaluate technology
 – When a result to be use for something
• Where engineering issues dominate
 – Example: algorithms vs. implementations
• For RELEASE, this is the how of software evolution
Benchmark Components

• The design of a benchmark is closely related to the scientific paradigm for an area.
 – Deciding what to include and exclude is a statement of values.
 – Discussions tend to be emotional.

• Benchmarks can fulfill many purposes, often simultaneously.
 – Advance a single research effort
 – Promoting research comparison and understanding
 – Setting a baseline for research
 – Providing evidence for technology transfer
Motivating Comparison

• Examples:
 – To assess information retrieval system for an experienced searcher on ad hoc searches. (TREC)
 – To rate DBMSs on cost effectiveness for a class of update-intensive environments. (TPC-A)
 – To measure the performance of various system configurations on realistic workloads. (SPEC)

• Can a context for specified for the software evolution benchmark?
Software Evolution Techniques

Which techniques do complement each other?

Take from Tom Mens, RELEASE meeting, 24 October 2002, Antwerp
Task Sample

• Representative of domain problems encountered by end user
 – Focus on the problems, not the tools to be compared
 • Tool view: Retrospective, Curative, Predictive
 • User view: Due diligence, bid for outsourcing
 – Key or typical problems act as surrogates for a class

• Possible to include a suite of programs, but need to keep the benchmark accessible
 – Does not take too much time and effort to use
 – Automation can mitigate these costs.
Performance Measures

- Do accepted measures already exist?
- Are there right answers (ground truth)?
- Does close count? How do you score?
- Initial performance measures can be “rough and ready”
 - Human judgments
 - Approximations
 - Qualitative

- Process of measuring often defines what is.
 - Should first decide what is and then figure out how to measure.
Overview

- What is a benchmark?
- Why benchmark?
- What to benchmark?
- When to benchmark?
- How to benchmark?
When to benchmark?

- Process model for benchmarking
- Knowledge and consensus move in lock-step
- Pre-requisites
 - Indicators of readiness
- Features
Prerequisites for Benchmarking

• Minimum Level of Maturity
 – Proliferation of approaches and implementations
 – Recognized separate research area
 – Participants self-identify as community members

• Ethos of Collaboration
 – Research networks
 – Seminars, workshops, meetings
 – Standards for data, files, reports, papers

• Tradition of Comparison
 – Accepted research strategies, especially validation
 – Evidence in the literature
 – Use of common examples
Overview

• What is a benchmark?
• Why benchmark?
• What to benchmark?
• When to benchmark?
• How to benchmark?
How to benchmark?

- Knowledge and consensus move in lock-step
- Features of a successful benchmarking process
 - Led by a small number of champions
 - Supported by laboratory work
 - Many opportunities for community participation and feedback
Emergence of CppETS
Implications for Software Evolution

• Steps taken so far fits with the process model
 – Papers, workshops, champions
• Many years (and iterations) are needed to build a widely-accepted benchmark
 – Time is needed to build consensus
• Many elements already in place
 – Champions
 – A research network that meets regularly
 – Funding for laboratory work
The Way Forward…

• Start with an exemplar.
 – Motivating Comparison + Task Sample
• Use the exemplar within the network to learn about each other’s research
 – Comparison, discussions, relative strengths and weaknesses
 – Cross-fertilization, codification of knowledge
 – Hold meetings, workshops, symposia
• Add Performance Measures
• Use the exemplar (or benchmark) in publications
 – Common validation
• Promote use of exemplar (or benchmark) in broader research community
More Information

• Paper from ICSE 2003
• xfig structured demonstration
• CppETS 1.0
• CppETS 1.1
Virtual LEGO Construction

- All software is free, thanks to the spirit of James Jessiman.
 - http://www.ldraw.org
- LD Design Pad Minifig Plug-In
 - Uses LDraw parts library and DAT file format
- MLCad
 - Creates models and scenes
 - http://www.lm-software.com/mlcad
- L3P
 - Converts DAT to POV format
- POV-Ray
 - Renders the model into a drawing
 - http://www.povray.org/