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This paper tries to give an overview of the current object oriented data
base (OODB) technology. It is intended for readers that had occasional

experience with computer programming, so technical details are
avoided whenever possible. Rather, we did try to explain the meaning

of certain key-concepts so the reader is able to understand the
possibilities and capabilities of the technology. This will be done by

sketching the evolution of the ‘database’ and ‘programming language’
communities, each of which has led to some important concepts.
At the end an overview of various object oriented databases (both

commercial systems and research prototypes) is included.

1.     Introduction

In [KIM'90a] we found the following definition of an object oriented database: "An object-
oriented database system is a database system which directly supports an object-oriented data
model." We would reject this statement as a definition (it is not precise enough) but the sentence
is a perfectly good explanation of what an object-oriented database is. If one understands what
is meant by each the words one might understand better what is meant by “an object-oriented
database”. To acquire this knowledge, one needs to study the two fields object oriented
databases emerged from: programming languages and databases.

Sketching the evolution of these fields will reveal the crucial aspects of object oriented
databases, and will explain why the field is so promising. It will also allow to understand some
of the difficulties, because -as also stated in [BL/ZD'87]- both fields are culturally biased and
this leads to different viewpoints and, sometimes even, misunderstandings.

The following three chapters try to give an overview on the evolution of both communities.
Only the aspects important to object oriented data bases are mentioned, so this is by no means a
complete evolution of the two fields. In some cases interesting concepts are not covered, and in
other cases it is hard to pin-point the exact time some idea emerged. As a consequence of this,
priority was given to describe a clear time line instead of giving an accurate sequence of events.

2.     The Database Community

The First Generation: Advanced File Access Systems

Very soon in computer history people tried to use their computers to manage large amounts
of data. They built systems in order to help them manage all the data on disks and construct
useful information out of it. The first generation of database systems was nothing more than a
memory manager on disk (the so called secondary storage): the database system was a
collection of linked lists to be used as an index on other files [SALZ'88]. Sometimes they are
referred to as ‘Inverted List Systems’ [DATE'90].

It was impossible for different programs to access the database at the same time so the tasks
that needed to be carried out ran in ‘batch mode’ (the programs were scheduled by the database
system to run one after another and the results were not immediately available). This was
recognised as a lack of concurrency control mechanisms.

It was also very difficult to organize the data: the database was a large pool of bytes, and the
programmer was responsible to connect the pieces of data in the proper way (update indices,
…). Once connected there was no support for using the connections to construct information
out of the pieces of data. A database schema was needed.
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The Second and Third Generation: Network and Hierarchical Database
Systems

Department

DName DNumber MgrSSN MgrStartDate

Employee

Name SSN BDate Salary

Project

PName PNumber PBudget

Figure 2.1.a: A hierarchical schema and a population

Department
Research, 10, 337788-9, 1/10/92

Department
Administration 20, 137588-2,  2/1/92

Employee
Smith, 337788-9, 11/22/65, 10000

Employee
Wong, 772188-7, 04/13/69, 7000

Employee
Narayan 972138-1, 07/07/67, 8000

Project
New benefits, 733, 500000

Project
ArchIS 2.0, 961, 7000000

Employee
Walace 137588-2, 1/12/50, 120000

Project
Computers, 844, 50000

Employee
Zelaya, 247611-4, 12/1/50, 6000

Database  root

Figure 2.1.b: A hierarchical database population

Figure 2.1.b is a sample population of a hierarchical database. From the root one can find two
departments (Research and Administration), each holding a list of employees and projects.
The black lines link records of different types, the gray ones group records of the same type.

Practical experience led to the network and hierarchical database systems [EL/MA'89],
[DATE'90]. Information technology of these generations concentrated on various ways of
linking pieces of data together (so called records), and traversing the so-built structures to find
the needed information. A programmer wrote a database scheme (a framework on how the
various records will be interconnected) and the database system would help building and
traversing these systems according to the schema.

Those systems were able to give multi-user access to the database by means of a transaction
manager. Small groups of reads and writes of data for one user were collected into so called
transactions in such a way that every successfully completed transaction left the database in a
consistent state (an atomic transaction). The serialisation theory led to the two phase locking
protocol, which enables to recognize transactions that can be interleaved (the operations of the
different transactions may be mixed). The transaction-manager scheduled transactions that did
not interfere with each other to run together, but transactions that needed the same piece of data
had to synchronize. The problem of deadlocks (two transactions waiting for each other forever)
has various solutions varying from optimistic strategies to pessimistic ones. For a deeper study
of transactions we refer to [BE/HA/GO'87] and [ULLM'88].

An important component of transaction management was the possibility to recover from
system failures (hardware or software). The database must be left in a consistent state, so all of
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the effects of a transaction must be written into the database or none of them. This must be true,
even when certain parts of the system behave exceptionally, or if the contents of main memory
are lost after a system crash.

The concurrent access possibility was solved, but another problem emerged: authorization
control. Not all of the users can manipulate (= read or change) all of the data. Somehow the
database must record who can do what with a particular piece of data. It was recognised that
this information ca not reside with the piece of data itself, but should also depend on the
programs that manipulate it. In second and third generation systems this is very difficult
because the database system does not have any control over the systems that manipulate them.

Another disadvantage of such systems was that, although the definition of the database was
in one central place (the database schema), the maintenance of this structure was scattered all
through the programs that manipulated it. As a consequence of that, programming was hard and
tedious, code was duplicated many times, …: some form of constraint management was
needed.

Furthermore the possible relationships between the data was pre-defined by the means of
links. Tailoring the system to different needs was nearly impossible. Scheme management
instead of scheme definition and linking of data without predefined links was needed. It was
also recognized that having good schemas was of major importance to write database
applications, so the need for schema design tools became a research issue.

The Fourth Generation: Relational Systems

The fourth generation of database systems evolved in a completely different way. For the
previous systems the data model was formally defined after implementation (by means of the
CODASYL-group), but in 1970 the mathematician E.F. Codd published a paper "A Relational
Model for Large Shared Data Banks."[CODD'70]. Data was not linked anymore, but was
collected in a set of relations (named relations are the so called tables). Codd defined a
mathematically complete set of powerful operations (the relational algebra) on tables that could
be used to construct information out of the data that resided in the different tables.

Department

DName DNumber MgrSSN MgrStartDate

Employee

Name SSN BDate SalaryDNumber

Project

PName PNumber PBudgetDNumber

Figure 2.2.a: A relational schema (with key- and foreign key constraints) and population

The black arrows with a key on top of them are key-constraints. Columns holding such constraints
are not allowed to hold the same value twice (e.g. in the department table the column DName has a
key-constraint, meaning that every department has one unique name).
The gray arrows are foreign keys. A foreign key starting from column A and going to column B
means that every value in column A should at least exist in column B (e.g. the foreign key
between MgrSSN in the DepartmentTable and SSN in Employee, says that every manager of a
department must be an Employee).
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Department

DName

Research
Administration

DNumber

10
20

MgrSSN

337788-9
137588-2

MgrStartDate

1/10/92
2/1/92

BDate

11/22/65
1/12/50
04/13/69
07/07/67
12/1/50

Employee

Name

Smith
Walace
Wong
Narayan
Zelaya

SSN

337788-9
137588-2
772188-7
972138-1
247611-4

Salary

10000
120000
7000
8000
6000

DNumber

10
20
10
10
20

Project

PName

New benefits
ArchIS 2.0
Computers

PNumber

733
961
844

PBudget

500000
7000000
50000

DNumber

10
10
20

Figure 2.2.b: A relational database population

A population for a relational database is a set of rows. The database manager ensures that no
operation on this population violates the constraints in the corresponding schema.

Name

Smith
Wong
Narayan

DName

Research
Research
Research

Project(
   select ( 
      join (Department.DNumber 
          = Employee.Dnumber, 
      Department, Employee),
   DNumber = 10)
DName, Name)

Figure 2.3: The result of applying some relational operators to the population

The join operation takes a join-expression and two tables. It returns a new relation with a set of
columns that is the union of the column-sets of both operands and a set of rows that is a
combination of possible rows that matches the join-expression.
The select operation takes a boolean expression and a relation an returns the relation holding the
rows that satisfy the boolean expression.
The project operation takes a relation and a set of columns, and returns a new relation holding only
these columns.

The simple yet powerful model gave birth to the concept of a query-language which makes it
possible to write down a query. A relational query, when executed, combines the contents of
one or more tables into a new relation (that will be thrown away after the results have been
processed) according to certain user-defined specifications. A query language thus makes it
possible to connect all the pieces of data in the database, as long as the records contain a
common (or matchable) data value. Links, occuring in network or hierarchical systems are not
needed any more.

Predefined links were replaced by predefined queries, the so called views. A view is a
named query, which -after definition- acts like any other table, except that it contains no values.
Only when a query that uses the view is executed, the actual contents are computed.

This powerful concept was also a solution to the authorization control problem. Only certain
users can use named database objects like tables and views. But it is possible to limit the access
on certain parts of certain tables by means of a view. This way the right combination between
data- and program-authorization control was achieved.
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In previous systems one had to program all the steps the machine needed to do to find the
information needed, resulting in a imperative style of programming. With a query language it is
possible to use a declarative style of programming: a programmer needs to describe the way the
information must look like, and the system is responsible for returning the data that match this
description. It is important to recognize that the relational operators (join, project, …) are
imperative in nature (the order in which the operations are applied is very important), but that
the clean model allows a declarative interface for these operators. Again the mathematical
foundations led to a clean design: the declarative nature of the query language is based on the
tuple-calculus, which itself emerged from the predicate calculus.

$GET FIRST PATH Department, Employee
  WHERE (Department.DName = "Research");
WHILE DB_STATUS = 0 DO
  BEGIN
    writeln(Department.DName,
      Employee.Name);
    $GET NEXT PATH Department, Employee
      WHERE (Department.DName = "Research");
  END;

Hierarchical (imperative) query Equivalent relational (declarative) query

SELECT Dname, Name
  FROM Department, Employee
  WHERE (Department.DNumber
    = Employee.Dnumber) AND
    (Department.DName = 
               "Research");

Tuple calculus (based on predicate calculus)

{d.dname, e.name | ∀  d: ∀  e: Department(d) ^ Employee(e) ^ 
                  (d.dnumber = e.dnumber) ^ (d.dname = "Research")}

Figure 2.4: The different approaches to find information

The hierarchical query uses explicit navigation statements (GET FIRST, GET NEXT)
The relational query is another syntax for the tuple calculus query below. It has the same semantics
as the relational algebra expression in figure 2.3.

To avoid misunderstandings, we would like to make clear that the relational algebra is by no
means ‘low level’. In the relational algebra (see figure 2.3) one applies high level operations to
powerful concepts (relations), so it is high level programming. But since the order in which the
operations are applied is essential to get the result, people call it imperative (sometimes the word
procedural is used here). On the other hand the tuple-calculus makes use of low level operations
(and, or, universal and existential qualifiers) and low level concepts (tuple variables). Only
together they form the basis for a high level language, people refer to as declarative. One can
prove that the relational algebra and the relational calculus have the same computational power.

Experience has shown that a declarative style of programming leads to more correct and
shorter programs that are a lot easier to maintain. The price for these advantages is that such
systems need to be smarter, faster, bigger, … . But a lot a work has been done in the area of
optimization techniques, varying from clustering techniques (to minimize average cost of
accessing records) over intelligent cache management (to exploit knowledge of access patterns
to prefetch data) to fast indexing (to get fast access to sets of records which contain certain
values). Of course this area benefits from the precise formal model. Manageable relational
systems can be built and today, relational database management systems (DBMS) have grabbed
the commercial attention. Most new operating systems are even extended with relational
technology.

Originally the central idea behind a query language was to make it possible for non-
professional users to formulate their needs themselves instead of explaining an information
scientist what he wanted, who then wrote a program that would do the job. SQL (the ‘standard’
relational query language) did not meet this goal, but research into the area of high-level query
languages is still going on. A mainstream idea there is the query-by-example approach.

Despite the fact that a query language was meant for non-professional users, it was
recognised that designing a database (deciding what pieces of information should reside in
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which tables) was a job for professionals. A whole normalization theory was developed to
support schema designers in this complex task. A designer started from a “universal relation” (a
relation that contained all of the possible data-items in the future database), tried to identify
redundant information, decomposed the table into smaller ones and repeated the steps on the
new tables. The theory guarantees this process to stop with a set of tables that were (to some
extent) anomaly free. This theory gave birth to a whole family of software products (called
CASE-tools (Computer Aided Software Engineering)) that help people design a database
application.

Even with these tools the old adagium (separate the data definition part from the data
manipulation part) was still in effect. But in modern relational systems the two are better
integrated, and authorized users can change a populated database schema under certain
circumstances. Dynamic scheme management was a fact.

In one of his “12 fidelity rules” Codd stated that "the description of the database is
represented at the logical level, dynamically like ordinary data, so that authorized users can
apply the same relational language to its interrogation" [BYTE'89], making it possible to ask
information about the database using the database itself, in this way facilitating constraint
management. This idea of a data-dictionary is, among others, explored in [DO/KI'87].

The kind of platforms the database systems run on have also changed during the
development of commercial relational systems. There is a trend to shift from centralised
towards distributed computing.

Originally database systems ran on mainframes and users were sitting behind dumb
terminals, all controlled by the same (central) computer. The programs on the mainframe
controlled the in- and output on the terminals. This meant that all software (and thus all the data)
was centralized, making it relatively easy for a database administrator to manage. But with
terminals getting smarter and personal computers being connected to the mainframe, a client-
server model evolved. The mainframe was now a database server, which was responsible to
manage the data and collects requests for data from the network and tried to respond as fast as
possible. The personal computers (called clients) were responsible to send the right request to
the server, present the data to the user and do some error-checking on data-entry.

The basis of this architecture is the remote procedure call. A program is running on the client
and at some point in time it needs a service from a central server (for database applications this
will be a request for data, but in general it can be a request for any computation). The client
sends the request and the necessary information to the server, the server executes the
appropriate computation and then control is returned to the client (sometimes with the result of
the computation).

Now with the appearance of personal workstations, the trend is towards distributed
databases. The difference between clients and servers still exists, but is not as strong anymore:
clients have local private databases, multiple servers must cooperate to answer requests for
data, … . Today the systems have been adapted to the kind of problems that appear when one
leaves the centralized model of computation, but commercial realisations are hard to find.
Mostly they are based on the notion of location transparency, meaning that users that interact
with the data are unaware of the place it resides. Repositories are kept to keep track of the
migration paths, pending updates and distant copies of the data.

Even when the relational solution has been adapted to a major evolution in computer
architectures, there are still applications where it has been recognized that the relational model is
not adequate to be used as the basic building technology. Those applications come from the
domains of CAD/CAM, CAE, document management systems. Such applications (the list is
exclusive nor exhaustive) manage very heterogeneous sets of data with very complex
relationships between them in an cooperative environment.

A major critique is that the model itself is too simple. It starts with a limited set of basic
datatypes (numbers and strings), each with its own limited set of operations. There should be
more support for storage and retrieval of arbitrary long data; more possibilities for retrieving the
data in smaller segments and other techniques (full text indexing) that support the manipulation
of such data. Also there are no aggregation facilities (possibilities to combine heterogeneous
datavalues into one item), except relations themselves. Nested relations are not allowed in the
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basic model, and extensions that allow columns to hold complex values (like sets, relations, …)
are not well understood.

So relations can only hold lexical representations of real world entities. The value-based
manipulation of records means that one must always peek inside before they can be used. The
“everything is a table and nothing but a table”-idea makes it hard to abstract from the underlying
implementation. The concept of primary and foreign keys together with the view concept is a
way to get around this weak abstraction facility, but it needs more (schema)support than todays
relational systems can offer.

Relations have a rigid structure: a relation has a fixed set of columns, each of which can hold
a fixed datatype. In systems with many different heterogeneous types of records it is almost
impossible to manage the complexity of the database schema. A completely normalized set of
tables for such applications gets too big, and -by consequence of that- too slow: to pick up all
the data-values in order to build a complex object spread over many tables, many joins need to
be computed.

Relational query languages are all based on the first order propositional logic (see
[ULLM'88]). This implies that relational systems are not computationally complete, meaning
that not everything that can be expressed in traditional programming languages can be
expressed in relational query languages. The solution to this problem is to embed query
languages in programming languages (by means of precompilers, libraries, …), but this
approach leads to what has been recognised as the impedance mismatch. The set oriented
approach of query languages conflicts with the “one record at a time approach” of traditional
programming languages resulting in a hard to use cursor mechanism.

1

32

54

6

6

All the subparts from 'car'
  SELECT minp.Name 
 FROM parts majp, parts minp, part-of p1
 WHERE (majp.Name = 'Car') AND (majp.part-nr = p1.major-p)
   AND (p1.minor-p = minp.part-nr)

All the subsubparts from 'car'
  SELECT minp.Name 
 FROM parts majp, parts minp, part-of p1, part-of p2
 WHERE (majp.Name = 'Car') AND (majp.part-nr = p1.major-p)
   AND (p1.minor-p = p2.major-p) AND (p2.minor-p = minp.part-nr)

NAME

Car
Motor
Wheel
Tyre
Wheel II
Screw

PART-NR

1
2
3
4
5
6

PARTS
MINOR-P

2
3
6
4
5
6

MAJOR-P

1
1
2
3
3
5

PART-OF

Figure 2.5: impossibility to compute transitive closures with relational query languages

One important consequence of the computationally incompleteness of a relational query
language is the impossibility to compute transitive closures of relations. In figure 2.5 we find
two relations: the PARTS relation that relates every part number (primary key) to a name. The
PART-OF relations relates a MAJOR-PART-NO to a MINOR-PART-NO; every tuple in this
relation states that the part with number MAJOR-PART-NO contains at least one part with
number MINOR-PART-NO. As illustrated it is very easy to ask the subcomponents of some
major part, or the subsubcomponents, or the subsubsubcomponents: it does not matter how
deeply nested, as long as the level of nesting is known in advance. But the transitive closure of
a relation is joining the relation with itself until it does not change anymore, thus without
knowing in advance how many times this must be done ! This means that it is very hard to
manage so called composite objects, the building blocks of CAE-systems. Some SQL-
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extensions provide a solution to this problem (the CONNECT BY clause in Oracle
[ORAC'90]), but they are not part of the SQL-standard.

The concurrent access model (based on transactions) of current relational systems is created
for applications that run independently. It is based on short term transactions, involving few
tables, having short duration times (throughput of hundreds of transactions per second are
routinely measured in vendor bench-marks) and always leaving the database in a consistent
state. In cooperative environments there is a need for long term transactions manipulating
complex and deeply nested structures, measuring duration times in hours or weeks and
traversing many intermediate inconsistent states. These kind of transactions require database
systems to have more knowledge on what is happening in the applications that use them. One
of the promising ideas to solve this problem is version management .

The constraint definition in relational systems is part of the data-definition part and thus static
in nature. Rules and triggers are seen as possible answers to dynamic constraint definition.
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3.     The Programming Language Community

This section begins with the explanation of some widely accepted concepts, and therefore
some of this text may be viewed as overdone. Nevertheless this paper was intended for people
with occasional programming experience, so we decided to spend a few words on such basic
knowledge.

Sketching the  evolution of programming languages is even harder than describing how
database models evolved: the activities in the field are more diverse in nature and the goals to
meet differed a lot. One can speak of ‘generations’ of database systems as opposed to
programming languages which are divided into classes (functional, imperative, declarative, …).
We refer to [MACL'87] and [MASal'91] for a completer historical evolution and concentrate on
how ‘abstraction’ evolved in various programming languages.

Indeed this is the driving force behind the programming language community. The need for
reliable and maintainable software makes abstraction facilities in program design and
construction a crucial factor. We also believe that ‘abstraction’ is what the database community
was looking for when they first made contact with the object oriented world.

Control Flow Abstraction Leads to Procedural Abstraction

Program sources are static descriptions of dynamic processes manipulating data. To
understand what happens when such a process ‘runs’ it is very important to know when each
part of the process passes control to another part. This means that a programmer must be able to
read in the program source where and when the control is transferred. This is what is called the
control flow of a program. Control flow abstraction means that it is possible to concentrate on
certain aspects of the overall process (and abstract from others).

A big step forward was taken by the introduction of the so called block structured languages,
with its first member the Algol-60 language (later Pascal, Modula-2, C, Ada, … joined the
family). Before the invention of Algol, the control flow of programs was defined by ‘gotos’.
From every part of the program, control could be transferred to every other part (the metaphor
of spaghetti was used), making it very hard to read and understand program texts. People
agreed that the static structure of the program should correspond in a simple way to its dynamic
behaviour.

Block structured languages ensure that programmers divide their programs into
hierarchically structured blocks. Such a nested block has one entry and one exit point, making it
easier to trace the control flow and allowing to zoom in on certain parts. Each block is
introduced by a control statement, all having a clear syntax constructed with a limited set of
key-words, this way improving the readability of programs.

An important principle in writing programs is that it should be avoided to state something
more than once; recurring patterns should be factored out (the abstraction principle). According
to this principle, it was recognised that it should be possible to treat certain blocks as separate
entities. This way duplication of blocks could be avoided as one block could be used in several
places in the program. Therefore the concept of a named block (a subroutine  or procedure) was
introduced and a syntactical construct (in most languages it is called a procedure definition) was
invented to bind a name to a block of code. Another construct (the procedure call) defined how
a programmer can write the transfer of control from a block to a named block.

It was also recognised that subroutines must have parameters. As blocks are static
descriptions of (sub)processes manipulating data, blocks must be aware of what data they
should work on. But since named blocks can be called from different places, they should work
on different data depending on the caller. So a calling block must pass to the subroutine the data
it should work on. This is done by means of parameter passing. On the other side the
subroutines must specify what data they expect to work on to ensure that callers pass the right
kind of data. In other words: the interface for a procedure must be declared so that both caller
and callee know what they can expect from each other.

With this tools, procedural abstraction was seen as a good way to organize things. A
program should be constructed out of black boxes: from the outside it is impossible to see what
is happening inside. All a programmer knows is that if such a black box is called with the right
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kind of values, eventually it will return with some other values of certain kinds. This results in
information hiding, which has the advantage that small changes only have local effects.
Software maintenance became easier and team writing became possible as each team member
could work on his own black box.

Types and Values: the Declarative Parts of Programs

As already stated, programs are static descriptions of dynamic processes manipulating data.
We will concentrate on the manipulation of data now.

When programs want to use a value, they must allocate an area of memory of specified size
to hold it. Memory is divided into bits so an interpretation for a group of bits (as a number, a
character, …) must be defined. A memory location is identified by an address.

Since the available memory is limited, storage must be reclaimed whenever possible.
Therefore programs store different values in the same memory locations. Since managing
memory locations is hard, early programming languages (like Fortran) tried to work around
memory addresses whenever possible by means of the concept of a variable. A variable is a
named memory location large enough to hold all future values of a certain maximum size with a
known interpretation of the bits. The maximum size and bit-interpretation of a variable where
concepts that got unified in the concept of a type.

Beside the basic types (numbers, characters, …) it was seen that programmers needed ways
to combine existing types into larger blocks. There are two major type construction possibilities
to be used in conjunction: the combination of different kinds of things into one (e.g. records)
and the combination of the same kind of things into one (e.g. arrays, lists). This constructor
restricts the way the values in the type may be accessed (by name, by index, by position).

Programs were divided in declaration and implementation parts. The implementation parts
define the control flow of the process, while the declaration parts declare the variables and types
the process may use. Niklaus Wirth summarized this principle well in the title of his book
"Algorithms + Data Structures = Programs" [WIRT'76].

As stated in [DA/TO'88] "Types in programming languages are generally used and thought
of as means of characterizing values that arise dynamically in the course of computation". From
this perspective the concept of a type evolved from an abstraction facility (abstract from
memory size and bit-interpretation) and compiler utility towards a constraint mechanism.
Variables of certain types can only hold certain kinds of values, and may participate in a limited
set of operations (ex. characters ca not be multiplied).

This leads to the notion of strong typing. Languages were designed to support strong
typing, stating that only meaningful operations can be applied to the data. The operations built
in the language where defined on the certain basic types and it was an error to apply an
operation to types it was not defined for. When programmers define their own operations (by
means of subroutines) they must declare what operators are allowed and it is an error if a
subroutine is called with the wrong parameters. This declarative approach leads to more safety
for programmer because the compiler can check the correctness of the use of operations. The
compiler can also perform certain optimizations to produce fast (machine) code.

In most languages strong typing was recognised as a good thing, but in some cases type
constraints are seen as a problem. Most strongly typed languages provide an explicit loophole
in their typing system by means of a type coercion operation, always documented as an
operator that should be used with extreme care.

Other languages explicitly deny the strong typing principle, stating that it limits the freedom
of programmers and that its hard to use for prototyping and fast development of test programs.
In Common Lisp for example, type declarations are allowed but not necessary. When a variable
or parameter is declared to be of certain type, it is an error to assign it an illegal value, but the
compiler is not recommended to check it. Type declarations are there to increase the readability
of programs and to allow compiler optimizations, but the same program with or without
declarations must produce the same results.

Declaring variables allows a compiler to allocate memory resources, but not all of the
memory needs are known in advance (= at compile time). So a memory manager, responsible
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for managing run-time memory resources, is a necessary tool in software development. A
program asks the memory manager for a certain amount of memory space, and should release it
as soon as possible (allowing other parts of the program to reuse the same space). It is
generally accepted that it is hard to write correct programs with explicit memory management
and this led to memory managers with garbage collectors. When a programs start to run, all
variables are empty. As values are assigned to them, memory locations are allocated and
assigned to variables. Sometimes a value is larger than the current memory location assigned to
a variable, and then a new memory location is allocated and the old one is lost. The process of
collecting these lost memory cells is called garbage collection. Basically garbage collection
algorithms are based on the idea that all the memory locations reachable from some root (the
variables) are in use, and all the other ones are free and need to be collected for reuse.

One factor of great importance in the strong typing debate is the concept of overloading
(more generally called polymorphism). There are many cases in which the same kind of
operation is applicable to different types (e.g. the + (plus) operation is defined on reals and
integers, …). Programmers want to use the same symbol for these slightly different operations,
but this conflicts with the strong typing principle. Most strongly typed languages work around
this problem for their build in operations (the compiler knows the type of the operators and
produces different code depending on the case) but it remains a problem for operations defined
by programmers.

Abstract Data Types

Practical use of subroutines soon led to the viewpoint that a procedure should not work on
its own. Since a procedure has a well defined interface for the data it works on, several
procedures can be combined to define a clean interface on how certain kinds of data can interact
with each other.

On the other hand, the static nature of types as constraints did not satisfy programmers.
Using types allowed compilers to check for errors, but more support for declaring run-time
checks was needed to allow for better constraints.

Together this led to the notion of abstract data types. An abstract data type (ADT) is a set of
values (a type) only accessible by the operations defined on it. A user of an ADT need not
know how a concept is implemented, all he needs to know is its interface. As this interface is
known to be the only way to access what's inside, defining a secure ADT is possible.

Using an ADT-style of programming can be done in any programming language with a
procedure call mechanism, as long as programmers obey certain protocols. Of course special
languages are developed to enforce such protocols, among others CLU [LISal'77] and FOOPS
[GO/WO'90]. In the paper "Type theories and Object-Oriented programming" [DA/TO'88] an
overview of different ADT approaches is given. In such special languages ADTs can be viewed
as the way to ‘declarative programming’. A type is defined together with a set of applicable
operations, and results of the interaction of operations (e.g. operation A after operation B
produces the same result as operation B and operation C). The compiler should be able to infer
an implementation from these specifications, but sometimes programmers can give hints.

Readers will have noticed that the interface of an ADT is very important. According to the
information hiding principle, it is used to hide crucial implementation decisions allowing these
to be changed afterwards without affecting the rest of the program.

Object Orientation: Active Abstract Data Types

The idea of an internal state results in yet another view on the abstraction facilities of a
language. Incorporate the data and the procedures manipulating it into one entity, namely an
object, results in a object-oriented style of programming. Data participates more actively in
programs; this style is sometimes referred to as data-driven programming. According to P.
Wegner in [WEGN'90] "Objects are collections of operations that share a state. The operations
determine the messages (calls) to which the object can respond, while the shared state is hidden
from the world and is accessible only to the objects operations. Variables representing the
internal state of an object are called instance variables and its operations are called methods".
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Programmers using objects are only interested in the behaviour of the object, not on how this
behaviour is accomplished (defined in the methods). Object oriented programming consists of
defining and creating a set of objects and asking them to do certain things by sending them
messages. Objects are free to answer this message (by sending messages to other objects) or
passing it to another object (depending on the definition of an object and its methods) or a
combination of the two.

Note that the message-passing paradigm is a beautiful solution for the problem of
overloading. Since an object itself decides whether it will answer a message, it is perfectly valid
for two different objects to answer the same message. The methods in both receivers may differ
internally, but the interface on the outside will look the same.

It is important to know that ADTs and objects are not the same concepts, however it is
generally agreed upon that object oriented programming languages are well suited to implement
ADTs. As argued in [COOK'91] "The basic distinction is that object-oriented programming
achieves data abstraction by the use of procedural abstraction, while abstract data types depend
upon type abstraction. Object-oriented programming and abstract data types can also be viewed
as complementary implementation techniques: objects are centred around the constructors of a
data abstraction, while abstract data types are organized around the operations. […] This
characterization is not completely strict, in that the type of a procedural data value (= an object)
can be viewed as being partially abstract, because not all of the interface may be known; in
addition, abstract data types rely upon procedural abstraction for the definition of their
operations".

Again, like with ADTs, any language that allows to store procedures in variables can be used
in object-oriented style, but special languages exist that offer mechanisms for direct use of
objects. There are many languages that call themselves object-oriented, and as a consequence of
that it is hard to define what an object oriented language really is. This is also noted in
[DA/TO'88]: "In the case of object-oriented programming, this metaphor is rarely introduced
with the mathematical precision available to the functional or logic programming models.
Rather, OOP is generally expressed in philosophical terms, resulting in a natural proliferation of
opinions concerning what object oriented programming really is". In most cases object
orientation is divided in a set of features, and some are considered more important than others.
We will try to explain some of these features now, and then return to the question of what
object orientation really is.

Encapsulation

The fundamental idea behind object orientation is encapsulation. "Encapsulation is a
powerful system structuring technique in which a system is made up of a collection of modules,
each accessible through a well -defined interface." [ZD/MA'90]. In object oriented systems data
and procedures are incorporated into one entity (the object) and accessed through a known
external interface. This way a program is build from stand-alone entities that are encapsulated
from each-other.

Classes

Applying the abstraction principle (avoid to state something more than once; recurring
patterns should be factored out) to objects results in the concept of a class. "A class is the
description of a family of objects having the same structure and behaviour. It describes a set of
data and a set of procedures or functions". [MASal'91] Then every object is an instance of one
unique class. A class thus has two components, behaviour and structure, and so the definition
of a class must describe these two components. The structural component is generally called
instance variables and used to hold the state of the object. As different instances of the same
class should be able to represent different states, the structural component of a class is not
shared between its instances. The behaviour of a class is collected in a set of methods (the
method dictionary), and this dictionary is shared between the instances of a class.

Other techniques to group objects are used as well, but they have not received much success.
Today the three languages that seem to survive (Smalltalk, C++ and CLOS; more and more
people want to include Eiffel in this list) are all class-based. Nevertheless it is interesting to take
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a look at those alternatives, but before we must study some other important concepts. In the
section “Frames, actors and prototypes” we will return to this matter.

Inheritance

It is generally recognised a good thing when programming systems support the reuse of
code, and one way to accomplish this is by means of inheritance. When a message is sent to an
object the system (possibly the object itself) is able to decide when it is not capable to answer a
message and pass it to another object.

In class-based languages this is done by introducing subclasses. When defining a new class
one can decide to define it as a subclass of another class. This way, the subclass will have the
structure and behaviour of its superclass. To reflect the fact that a subclass is different from its
superclass extra instance variables and/or extra operations can be defined, existing operations
can be redefined (overridden) and so on.

By stating that a class can have several superclasses, multiple inheritance is introduced. This
results in a few problems (mainly what should be done when different superclasses define the
same instance variable or operation) that can easily be resolved. It is generally recognized that
multiple inheritance introduces additional complexity, but that the additional modelling power
justifies it.

In some ways, classes resemble types, but they should be viewed as different concepts. As
stated in [WEGN'90] types are specified by predicates and classes are specified by templates
used for generating and managing objects with uniform properties and behaviour. Types
determine a type-checking interface for compilers, while classes determine a run time interface
for programmers. With every class a type is associated, defined by the predicate that checks its
template. In CLOS this is reflected in the principle that every class (in fact it is with every class
that has a proper name) is associated with a type but some types are not associated with classes
[STEE'90], [BOBal'88]. In Smalltalk the notion of a type does not exist, but the class of an
instance may be checked so type-checking can be simulated.

Metaclasses

In class-based object-oriented languages, classes are used as templates for the creation of
instances. In many of these languages, classes are somehow an active component: objects are
created by asking a class to return an instance. This is interpreted as a class being an object
which understands at least a message 'make-instance'. If a class is an object, then it is an
instance of a class, and this class is called the metaclass. The introduction of a metaclass gives
rise to a uniform object-oriented data-model, but it introduces the problem of a possibly infinite
chain of metaclasses.

Metaclasses are powerful tools, and are especially useful to combine object oriented systems
with databases. The paper "PCLOS: stress testing CLOS" [PAEP'90] gives an interesting
viewpoint concerning this combination of fields. "Ideally we would have our systems be both
portable and flexible at the same time. Unfortunately, these goals are generally in conflict with
each other. Designing for portability leads us to constraining systems to ensure the ability of
mapping onto the weakest targets. The final stage of this tendency is usually standardization.
This is contrasted by the tendencies induced by the flexibility goal. This goal will tend to push
the design towards expansion, towards open, highly customizable systems. Instead of
standardization, the goal of flexibility has a randomizing effect.But a reconciliation of the
conflicting design goals of flexibility and portability can be achieved. The solution is based on
the realization that if the mechanisms for changing a portable system are themselves part of that
system, then the idiosyncrasies of disparate design instantiations will port along with the
system."

That's why the CLOS Meta-object protocol mechanism defines the internal static structure of
the language, as well as the dynamic, run-time behaviour. System programmers may adapt the
language by subclassing meta-object classes and by selectively shadowing methods that operate
on their instances. In PCLOS this mechanism is used to implement objects that persist the Lisp
session that created them by mapping CLOS objects to information in a database. Access to
instance variables are intercepted so that values can be retrieved from or written to the database.
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Frames, Actors and Prototypes

Frames were introduced by Marvin Minsky as a tool for knowledge representation and have
known a major evolution since. It was claimed that predicate calculus was not suited for
knowledge representation since things as default values, exceptions, incomplete and redundant
information is hard to represent with logic. The formalism is based on the dynamic reuse of
structures (= frames) which represent patterns of situations. A frame is a hierarchical network
of nodes, the upper ones representing typical objects and the lower ones are more specific.
Nodes have slots which can hold values (which can, but need not be, frames) or can be empty.
When empty, slots inherit default values from higher nodes. Frame-based languages introduced
the notion of a trigger (sometimes called a reflex or a daemon (not to be confused with the Unix
daemons)): a procedure that gets executed just before or just after a slot is accessed. A powerful
concept, especially when we think about constraint checking or handling exceptional values.

Normally, inheritance is seen as static: the object being inherited from remains the same.
Opposed to that one can define dynamic inheritance or delegation. The major proponent of this
class of systems are actor systems, based on a concurrent data model. Systems are built from
autonomous agents (called actors) knowing some other actors (called acquaintances) and having
a script which describes the behaviour of an actor. The set of messages understood by an actor
is called its intention. When receiving a message the script filters it and activates the appropriate
part, which may send messages to the acquaintances. Actors are not organised hierarchically
and actors do not have classes. An actor can create another one by duplicating itself. The clone
is able to change his acquaintances and his script, this way becoming a completely new kind of
object.

Another way to see the difference between inheritance and delegation is to look at the
granularity of sharing. Inheritance is then viewed as sharing at the level of classes, and
delegation is sharing at the level of objects. The delegation in actor systems is organized by
means of a graph. Systems which enforce delegation in a tree-structure are called prototype
systems. Prototype systems do not know classes: one object (the prototype) is chosen as the
representative of the set of objects that share structure and behaviour. Note that a prototype can
have several descendants, but that an object can have but one prototype.

Object Identity

An integral part of an object oriented data model is the ability to make references through an
object identity. This means that every object has some value that remains invariant through all
possible modifications of the objects internal state. This object identifier (OID) is unique for all
objects in the system so it can be used as an identification. Testing for equality can be done in
two ways: comparing the OIDs (identity test) or comparing the internal state (equivalence test).

An OID is not the same as a variable name: one object can have many names (aliases) in one
program, for example when it is passed as a parameter. An OID is also distinct from the
address of the memory location where the object resides: the memory address is an external,
accidental attribute while its identity is an internal essential attribute. It is not a primary key
(database concept) either: a primary key is unique within a single relation while an OID is
unique across the universe.

The notion of an OID makes it very easy to create shared structures. Two objects x and y can
share state by holding a reference to a third object z responsible for managing the shared state.
It is also very easy to build complex objects out of smaller ones: the former holds references to
the latter and the encapsulation will ensure that the behaviour of the smaller objects is invisible
on the outside of the top-level complex object.
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4.     When Two Worlds Collide

Some of the statements in this section are based upon the "Issues in the design of object-
oriented Database programming languages" paper by Bloom, T and Zdonik, S. B. [BL/ZD'87].

The Database Culture

The database culture is such that it tries to centralize data and information on the data, while
the functionality is separated in well-defined compartments. A DBMS should be viewed as a
separate entity in the whole picture, sometimes even a stand alone application. In a way a
DBMS behaves more like an operating system than a program development tool.

The power lies with the data rather than with the applications: constraints are used to put
semantics in the database. Data-independence is important: applications should rely only on the
database schema and the DBMS (instructed by the database administrator) is free to choose the
representation. The main symptom for this data-orientation is the fact that the data base is
designed before programs are written. This means that a database schema should be designed
with the needs for all present and future applications perfectly balanced. As databases are
designed to manipulate large amounts of heterogeneous data, the data structuring facilities are
simple and power comes from uniformity.

The various tools that work with the data are meant to be used in a non-integrated fashion.
The only communication channel between the tools is the database itself. Each tool is to be used
for its own special purpose: scheme designers are tools for the programmer to think about the
problem, the DDL (data definition language) defines the database structures, the DML (data
manipulation language) manipulates the data in those structures, report generators summarize
the information, … . The division between the DDL and DML part of a DBMS is seen as the
major way to achieve a clean data base design.

The query language is the only way to get data in and out of the DBMS. Therefore
optimization techniques concentrate on handling large amounts of data on slow secondary
storage media, independent of the way the data will be used. This results in well understood
technology for query optimization that benefits from the formal grounds of database models.
Still it fails to meet application requirements since the query language has no notion of the
surrounding applications, this way excluding techniques like data flow analysis.

Database research is focused on the notion of persistent data. In [SI/ST/UL'91] persistence
is defined as "the maintenance of data over long periods of time, independent of any programs
that access the data". It must be possible to extract data from the database, even when explicit
links to the data do not exist anymore. As a consequence, data should be removed from the
database explicitly.

Close to persistence is the notion of simultaneous data-access. In multi-user environments
databases ensure that processes run independently. Different processes can share data-items as
long as they do not interfere with each other. So the data access model is based on independent
processes that share data, not on cooperative processes that communicate through data.

Since the introduction of the relational model, the database research community is devoted to
a formal approach. Indeed the mathematical foundations for the model, the query language and
the normalisation theory resulted in some well understood solutions for old problems. New
approaches without such formal grounds are not easily accepted in the database community.
Moreover this resulted in a clear definition on what is relational and what is not.

The Programming Language Culture

In the programming language community, integration is the key concept. Functionality and
data is grouped in modules, several modules can be combined in larger ones until finally a root
module (the application itself) evolves.

The power and semantics of such modules come from the combination of operations and
data. Programs are constructed step by step and the responsibility over the data is distributed
over the modules. The structuring and combination of data is easy and well integrated with the
operations that act upon the data. Clean programs come from clean and well defined interfaces
for the different modules.
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As data access is already fast, optimization techniques must concentrate on the interaction
between data and operations. Data flow analysis is the solution but since the number of
possibilities are so enormous, serious optimization is almost impossible. Peephole optimization
(optimizations are local on small pieces of programs) is the only technique that is well
understood. Data is transient (= does not survive the process that created it) so techniques like
garbage-collection are necessary. It is not possible to share data with other programs.

The programming language community is less devoted to formal techniques. As a
consequence, there are no clear definitions on what is object-oriented and what is not.

Adding Persistence to Programming Languages

Building complex systems (like computer aided engineering (CAE), computer aided
design/computer aided manufacturing (CAD/CAM) applications, multimedia information
systems, …) revealed the shortcomings of both the fields. Programming languages lacked the
notion of persistence, and the ability to share data. Database management systems needed
things like dynamic constraint facilities, type systems, data-abstraction, powerful query-
languages, stronger and more concurrency facilities. Moreover, the possibilities of both
hardware and software (personal computers & workstations, better networking facilities) tends
towards “distributed computing”. Working together was a logical step.

This “joining of forces” idea was recognized for a certain period of time. Capturing the
power of the relational model in traditional programming languages was a research issue and
the rationale behind it was very simple.

The relational model is powerful because of its simplicity: all manipulable objects are
relations, and all relational operations return relations. It is not Turing equivalent (not
everything is computable) but it is very expressive (with a few lines very complex operations
can be defined and executed). On the other hand, traditional programming languages are
computationally complete, but miss the expressivity of query languages like SQL.

Therefore, several experiments to encapsulate the relational model into traditional languages
have been undertaken. On the academic side with extensions like Pascal/R and PS-algol (see
[AT/BU/MO'88] and [HUGH'91] as well as on the commercial side (precompilers for Cobol,
C, …). All approaches have problems with what has been recognised as the impedance
mismatch.

The impedance mismatch problem has been reported on two levels. The first, and easiest to
resolve, is at the type-level. Connecting two systems with different type systems means that
values from one type must be translated into values of the other. What must be done when the
ranges of corresponding types do not match and what must be done when a type in one system
has no corresponding type in the other are questions that must be answered. Solutions are easy
to find, but result in large amounts of code that basically add nothing to the functionality of the
total system. A typical example of this mismatch can be found in [SM/ZD'87], where very long
and variable length strings must be translated in the fixed-length strings of the underlying
database. The proposed solution resulted in an extra table where small pieces of the string
where stored, and a very complex operation to get the contents out of the database.

The second level of impedance mismatch is more fundamental in nature. The paradigm
mismatch is the problem of converting two different programming paradigms. Traditional
programming languages are not very well suited to a many-record-at-a-time approach and a run-
time definition of datastructures. This means that it is not easy to represent the concept of a
relation or query in languages like Pascal or C. The solution has been found in the concept of a
‘cursor’ (standard ANSI-SQL) which  holds one (current) row in a relation and can be moved
through all the rows in the query-result. This approach has several drawbacks: one must
predefine the fields of the query-result (this way returning to the predefined links of the
hierarchical model); one must explicitly enumerate the query-result (going back to the
procedural style); … . The elegant simplicity of the relational model is lost, and with it the
original beauty.
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Object Oriented Databases: Object Orientation + Persistence

But since modelling facilities of object oriented languages are better than those of classical
imperative languages, it was worth the effort of trying to capture database semantics in those
languages. G-Base and Gemstone both added persistence to object oriented environments (G-
Base started with frames, Gemstone with a Smalltalk like data model) and this idea has shown
its benefits.

Various other experiments had been conducted (Encore/ObServer, Orion, IRIS, Statice,
VBase, O2, …) leading to better understanding, new insights, other application domains, … .
Soon everybody realised that this field was a very promising one, and the need for
standardization became more and more apparent. But in the object-oriented world there is no
such thing as an standard object oriented data model, so it is impossible to specify what
constitutes a true object-oriented database. Finally a group of people working in the field
(Atkinson, M / Bancilhon, F. / DeWitt, D. / Kittrick, K. / Maier, D. / Zdonik, S.), decided to
define a collection of mandatory features. They published their ideas in a paper called "The
Object-Oriented Database System Manifesto" [ATKal'89]. Figure 4.1. lists the “13
commandments”.

1. Thou shalt support complex objects

2. Thou shalt support object identity

3. Thou shalt encapsulate objects

4. Thou shalt support either types or classes

5. Thine classes or types shall inherit from their ancestors

6. Thou shalt not bind prematurely

7. Thou shalt be computationally complete

8. Thou shalt be extensible

9. Thou shalt remember thy data (persistence)

10. Thou shalt manage very large databases

11. Thou shalt accept concurrent users

12. Thou shalt recover from hardware and software failures

13. Thou shalt have a simple way of querying data

Figure 4.1: Mandatory properties as proposed in the Object-Oriented Database System Manifesto

Their are other propositions for defining object-oriented databases. In the paper "Object-
Oriented Databases: Definition and research directions" by Kim, W. [KIM'90a] a core object-
oriented data model is presented and any database system that supports such a model is called
an object-oriented data base. The core model is based on four components:

• object and object identifier
• attributes and methods (state and behaviour)
• class
• class hierarchy and inheritance.

In the book "Introduction to object-oriented databases" Kim writes "A data model is a logical
organization of real-world objects (entities), constraints on them, and relationships among
objects. A data model that captures object-oriented concepts is an object-oriented data-model.
An object-oriented database is a collection of objects whose behaviour and state, and the
relationships are defined in accordance with an object-oriented data model. An object oriented
database system is a database system which allows the definition and manipulation of an object-
oriented database" [KIM'90b].
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In the introduction to "Readings in object-oriented database systems" Zdonik and Maier
define a threshold model, but any real system is free to include other features. According to
them

"an object-oriented database must, at a minimum, satisfy the following requirements:
1. It must provide database functionality […]
2. It must support object identity
3. It must provide encapsulation. This encapsulation should be the basis on which all

abstract objects are defined
4. It must support objects with complex state. The state of an object may refer to other

objects, which in turn may have incoming references from elsewhere." [ZD/MA'90]
Database functionality means at least the following features:

1. Having a (non-trivial) model and language
2. Able to represent relationships between entities
3. Having a permanent data store (= persistent + stable)
4. The possibility to share data (simultaneous access by multiple users)
5. Arbitrary size

A a list of possible extensions of the threshold model is included, and some of these
extensions are grouped in a ‘reference model’.

At the database level:
• Integrity constraints (static (DDL) + dynamic (triggers))
• Authorization control
• querying (may be declarative but should at least allow associative access to data)
• indexing
• separate schema (meta-information) and dynamic scheme management
• views (virtual data computed from stored data)
• database administration (reorganizing the logical or physical structure of data;

gathering statistics for tuning performance; auditing for security and accounting; user
administration; archiving; …)

• Distribution
• Report and form management
• Data-dictionary
• Database name spaces
• Active data (changes to one item may cause changes to other items in the database) and

active databases (changes to the database can cause messages to the application)
• Derived data: some fields are declared as being derived from others by executing

certain methods. Views are one form of derived data.
• Rules
At the data model level:
• Inheritance (Not in their mandatory list !!)
• Typing (may be parameterized)
• Polymorphism
• Hierarchies (three possible hierarchies are identified: a type hierarchy (specification),

an implementation hierarchy (representation and methods) and a classification
hierarchy

• Collections
• Versions

The Next Generation: Semantic Database Systems

Since relational systems pushed all other systems off the market, every database vendor is
afraid to miss the next database-train. In the article "Relational vs. Object-oriented" Herb
Eidelstein [EDEL'91] explains why. (After an introduction where Dr. Codd and his model are
presented) "The rest is history. No matter what kind of DBMS a system was, it had to call itself
relational in order to survive. The largest independent DBMS vendor of the day, Cullinet, spent
tens of thousands of dollars on fruitless technical tricks and brochure engineering on its
IDMS/R to no avail, and eventually the company was acquired at a bargain-basement price by
Computer Associates"
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The relational response to the object oriented database was formulated at the "Object-
Oriented Databases" conference organized by the IFIP Working group 2.6 D.S.4 in July 1990
by the invited speaker Michael Stonebraker (Ingres), who presented the "Third-Generation
Database system manifesto". The committee for Advanced DBMS function (Stonebraker, M. /
Rowe, L. / Lindsay, B. / Gray, J. / Carey, M. / Brodie, M. / Bernstein, P. / Beech, D.)
published this paper also in the ACM SIGMOD Record, Sept, 1990 [STOal'90].

Basically, object oriented database systems were seen as part of the larger next generation of
database management systems (actually they called it the third generation, counting network and
hierarchical system as the first generation and relational systems as the second). Nevertheless
there are some remarkable differences between the two papers. Most eyecatching is the
importance of the query language. "Essentially all programatic access to a database should be
through a non-procedural, high-level access language (proposition 2.1)" and "Queries and their
resulting answer should be the lowest level of communication between a client and a server"
which is completely different than saying "Thou shalt have a simple way of querying data".
Moreover the third generation manifesto states that "for better or worse, SQL is intergalactic
dataspeak".

Another difference is the position of the object-identifier: third generation systems should
assign unique identifiers to records only if a user-defined primary key is not available. Also
rules (triggers and constraints) are seen as a major future feature in next generation systems and
updatable views (virtual data-collections) are essential.

The scope of this next generation of database systems is much wider than the CAE-
applications object oriented databases were invented for. In the special issue of the
Communications of the ACM on next generation DBMS, the article "Database systems:
achievements and opportunities" [SI/ST/UL'91] thinks about image databases, CAD-systems
for skyscrapers (with hundreds of subcontractors), …. Problems and solutions will meet in
new kinds of data (images ≠ bitmaps), rule processing, new data models (spatial data, temporal
data, uncertainty, …), new algorithms (scaling up is impossible), parallelism, tertiary storage
(archives), other transaction protocols (collaborative databases), object versions and
maintenance of consistent configurations, heterogeneous and distributed databases, incomplete
and inconsistent databases, …
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5.     Some Object Oriented Database Management Systems

G-Base

References: [JE/HA/DO'89], [OOST'91], [KIM'90b] + documentation and leaflets
G-Base was the first commercially available OODBMS (1984), originally developed by

Graphael (France) it is now marketed by Object Databases. It is based upon the frame-model
and its main programming language is Lisp (though a C++ version is sheduled for early 1992).
G-Base comes in two versions: G-Base-W (single user) and G-Base/GTX (multi-user). There
exists a Macintosh version on top of the Allegro Common Lisp environment (the predecessor of
Macintosh Common Lisp), but according to our documentation it is the single-user G-Base-W.

Gemstone

References: [JE/HA/DO'89], [OOST'91], [AHMal'91], [KIM'90b], [BU/OT/ST'91], [MA/ST'90], [MAIal'86],
[PE/ST'87], [PU/SC/MA'91] + documentation and leaflets
An OODBMS which has found widespread use. Based upon early research and Smalltalk-80

it is one of the older systems (1987), but as such available on a wide variety of platforms
including Macintosh and IBM-PC clients. The supported languages are Smalltalk, C en C++
and there is also a C interface for other languages (Cobol, Fortran, Lisp).

Gemstone lacked some useful tools but with the new release (3.0 expected for the summer
1992) this problem should be fixed.

Versant

References: [OOST'91], [AHMal'91], [DESA'91] and training manual, documentation and leaflets
Versant is a newer product not based on well known research prototypes. Their experience

is based on traditional database technology, extended with a variety of features (long term
transactions, many different lock types, version control, heterogeneous and distributed
databases). Versant is available on different Unix-platforms, not on Macintosh or IBM-PC.
They support C, C++ and Smalltalk (not on all of the platforms) but this list may be extended in
the future.

O2

References: [KIM'90b], [DEUal'91], [LE/RI/VE'90] + documentation and leaflets
O2 grew from a French research project aimed to build a database product for the 90s by

combining that state of the art of different fields. After five years (from September 1995 until
September 1991) of R&D efforts, they came up with a DBMS that supports C and C++ and is
available on some UNIX platforms. They will extend this list of platforms before supporting
other languages. O2 had a serious impact on the research community, especially the clean
model (object orientation, persistence and query language are well integrated) is widely
appreciated.

Orion & Itasca

References: [OOST'91], [AHMal'91], [BANal'90], [WO/KI/LU'90], [KIMal'90], [KIMal'87](136), [THUR'89] +
documentation and leaflets
Orion started in 1985 as a research project at the MCC (Micro electronics and Computer

Technology Corporation) based upon a object oriented extension of Common Lisp. The Itasca
product is an extension of the third ORION prototype and supports C++, C and Lisp. Like O2,
Orion had a major influence on the research community. It included the widest variety of
features (especially for distributed and multimedia systems) and it has powerful dynamic
scheme management facilities.
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ObServer/ENCORE

References: [AHMal'91], [KIM'90]b (112), [SK/ZD'86], [SKAR'89], [SM/ZD'87] + documentation and leaflets
ObServer is a general purpose object server developed at Brown University for pure

research purposes. ENCORE is the front-end environment supporting C. The system is
available on a few Unix platforms. ObServer is recognised for its original work on extended
concurrency control (long term transactions, version control).

VBase & Ontos

References: [JE/HA/DO'89], [OOST'91], [AHMal'91], [KIM'90]b (112), [ANDR'90], [ANDR'91], [DAMO'91],
[AN/HA'87], [AN/HA'90]
Ontos, formerly VBase is a commercial OODBMS developed by Ontologic. VBase started

with its own object oriented extension of C, with two major parts: TDL (Type definition
language) and COP (C Object Processor). Later on they decided to move to C++ and from then
on they called the product Ontos. Ontos runs on UNIX platforms and OS-2 machines.

Statice

References: [JE/HA/DO'89], [OOST'91], [KIM'90]b (112), [WEIal'91] + documentation and leaflets
Statice is implemented in Common Lisp to run on Symbolics LISP machines but SUNs and

Macintoshes with an IVORY-coprocessor board are also supported. Being commercially
available since 1988 it is one of the first OODBMS.

IRIS

References: [KIM'90]b (112), [FISal'90], [FISal'90]
IRIS is an industrial research prototype from Hewlett Packard. It has a very clean data model

with a consistent use of functions. IRIS supports Lisp and C++.

Postgres (Ingres)

References: [KIM'90b], [RO/ST'90], [ST/KE'91]
Postgres is a sequel to the Ingres relational database system. The philosophy of the Postgres

designers is to conservatively extend the well-founded relational model, and as such they were
a member of "The committee for Advanced DBMS function" that wrote the "Third-Generation
Database system manifesto".

ObjectStore

References: [OOST'91], [AHMal'91], [LAMal'91]
An OODBMS devoted to C++ and focusing on Unix and IBM-PC platforms.

ODBMS

References: Documentation and leaflets
An German system that has been implemented using Smalltalk/V to support for OS/2 and

Windows 3.0.



A survey of Object Oriented Databases S. A. Demeyer

May '92 .23

6.     Acknowledgements

Sponsors for this research are the "Brussels hoofdstedelijk gewest via het Instituut voor Wetenschappellijk
onderzoek in Nijverheid en Landbouw (IWONL)" "The Brussels Free University" and "SoftCore".

7.     References

[AHMal'91] Ahmed, S. / Wong, A. / Sriram, D. / Logcher, R. "A comparision of Object-Oriented Database
Management Systems for Engineering Applications"

Massachusetts Institute of Technology - Research Report R91-12

[AN/HA'87] Andrews, T. / Harris, C. "Combining Language and Database advances in an Object-Oriented
Development environment"

OOPSLA '87 proceedings

[AN/HA'90] Andrwes, T. / Harris, C. "Combining language and Database Advances in an Object-Oriented
Development Environment"

From "Readings in object-oriented database systems (ed. Zdonik, S. B. / Maier, D.)" ISBN 0-
55860-000-0; Morgan Kaufmann publishers.

[ANDR'90] Andrews, T. "The Vbase Object Database Environment"

Paper from "Research foundations in object-oriented and semantic database systems (ed.
Cárdenas, A. / McLeod, D.)" ISBN 0-13-806340-0; Prentice Hall

[ANDR'91] Andrews, T. "Programming with VBase"

From "Object-Oriented Databases with applications to CASE, Networks, and VLSI" Gupta, R. /
Horowitz, E. (Editors) ISBN 0-13-629833-8; Prentice hall

[AT/BU/MO'88] Atkinson, M. P. / Buneman, P. / Morrison, R. (Editors) "Data Types and Persistence"

ISBN 0-387-18785-5; Springer Verlag New York

[ATKal'89] Atkinson, M / Bancilhon, F. / DeWitt, D. / Kittrick, K. / Maier, D. / Zdonik, S. "The Object
Oriented Database System Manifesto"

Deductive and Object-Oriented Databases; Elsevier Science Publishers

[BANal'90] Benerjee, J. / Chou, H. / Garza, J. F. / Kim, W. / Woelk , D. / Ballou, N. / Kim, H. "Data model
issues for Object-Oriented Application"

From "Readings in object-oriented database systems (ed. Zdonik, S. B. / Maier, D.)" ISBN 0-
55860-000-0; Morgan Kaufmann publishers.

[BE/HA/GO'87] Bernstein, P. A. / Hadzilacos, V. / Goodman, N. "Concurrency control and recovery in Database
Systems"

ISBN 0-201-10715-5; Addison-Wesley

[BL/ZD'87] Bloom, T. / Zdonik, S. B. "Issues in the design of object-oriented Database programming
languages"

OOPSLA '87 proceedings

[BOBal'88] Bobrow, D. G. / DeMichiel, L. G. / Gabriel, R. P. / Keene, S. E. / Kiczales, G. / Moon, D. A.
"Common Lisp Object System specification X3JI3 Document 88-002R"

SIG PLAN Notices Vol. 23, Sept. '88. Special Issue

[BU/OT/ST'91] Butterworth, P / Otis, A. / Stein, J. "The Gemstone object database management system"

Communications of the ACM, Vol. 34(10), Oct. 91

[BYTE'89] Pascal, F. "A brave new world ?"

BYTE, September 1989 (In depth: Database trends)

[CODD'70] Codd, E.F. "A Relational Model for Large Shared Data Banks."

Communications of the ACM, Vol. 13(6), June 1970.

[COOK'91] Cook, W. R "Object-Oriented Programming versus Abstract Data Types"

Foundations of Object-Oriented Languages. ISBN 0-387-53931-X; Springer-Verlag

[DA/TO'88] Danforth, S. / Tomlinson, C. "Type Theories and Object-Oriented Programming"

ACM Computing surveys, Vol 20(1), March '88

[DAMO'91] Damon, C. "C++ and COP: abrief comparision"

From "Object-Oriented Databases with applications to CASE, Networks, and VLSI" Gupta, R. /
Horowitz, E. (Editors) ISBN 0-13-629833-8; Prentice hall

[DATE'90] Date, C. J. "An introduction to database systems, Volume 1 (Fifth edition)"

ISBN 0-201-52878-9; Addisson-Wesley

[DESA'91] DeSanti, M.  "OODBMS Pays off"



A survey of Object Oriented Databases S. A. Demeyer

May '92 .24

DBMS Developing Corporate application Vol4 (12) Nov. '91

[DEUal'91] Deux, O. et al. "The O2 system"

Communications of the ACM, Vol. 34(10), Oct. 91

[DO/KI'87] Dolk, D. R. / Kirsch, R. A. "A Relational Information Resource Dictionary System"

Communications of the ACM, Vol 30 (1), January '87

[EDEL'91] Edelstein, H. "Relational vs. Object-Oriented"

DBMS Developing Corporate application Vol4 (12) Nov. '91

[EL/MA'89] Elmasri, R. / Navathe, S. B. "Fundamentals of database system"

ISBN 0-8053-0145-3; Benjamin/Cummings Publishing Company, Inc.

[FISal'90] Fishman, D. H. / Beech, D. / Cate, H. P. / Chow, E. C. / Connors, T. / Davis, J. W. / Derrett, N. /
Hoch, C. G. / Kent, W. / Lyngbaek, P. / Mahbod, B. / Neimat, M. A. / Ryan, T. A. / Shan, M. C.
"Iris: an object-oriented database management system"

From "Readings in object-oriented database systems (ed. Zdonik, S. B. / Maier, D.)" ISBN 0-
55860-000-0;  Morgan Kaufmann publishers.

[FISal'90] Fishman, D. H. / Beech, D. / Annevelinck, J. / Chow, E. / Connors, T. / Davis, J. W. / Hasan, W.
/ Hoch, C. G. / Kent, W. / Leichner, S. / Lyngbaek, P. / Mahbod, B. / Neimat, M. A. / Risch, T. /
Chan, M. C. / Wilkinson, W. K. "Overview of the Iris DBMS"

Paper from "Research foundations in object-oriented and semantic database systems (ed.
Cárdenas, A. / McLeod, D.)" ISBN 0-13-806340-0; Prentice Hall

[GO/WO'90] Goguen, J. A. / Wolfram, D. "On Types and FOOPS"

Proceedings of the IFIP 1990 Conference on OODB (Windermere, U.K.); Elsevier Science
Publishers

[HUGH'91] Hughes, J. G. "Object-Oriented Databases"

ISBN 0-13-629874-5; Prentice Hall

[JE/HA/DO'89] Jeffcoate, J. / Hales, K. / Downes, V. "Object-oriented systems: the commercial benefits (Ovum
Report)"

Ovum report. ISBN 0-903969-42-4; Ovum, Ltd

[KIM'90a] Kim, W. "Object-Oriented Databases: Definition and Research directions"

IEEE Transactions on knowledge and data engineering, Vol. 2 No. 3, September 1990

[KIM'90b] Kim, W. "Introduction to object-oriented Databases"

ISBN 0-262-11124-1; MIT Press

[KIMal'87] Kim, W. / Banerjee, J. / Chou, H. / Garza, J. F. / Woelk, D. "Composite Object support in an
object-oriented Database system"

OOPSLA '87 proceedings

[KIMal'90] Kim, W. / Ballou, N. / Banerjee, J. / Chou, H. / Garza, J. F. / Woelk, D. "Integrating an Object-
Oriented Programming System with a Database System"

Paper from "Research foundations in object-oriented and semantic database systems (ed.
Cárdenas, A. / McLeod, D.)" ISBN 0-13-806340-0; Prentice Hall

[LAMal'91] Lamb, C. / Landis, G. / Orenstein, J. / Weinreb, D. "The Objectstore database system"

Communications of the ACM, Vol. 34(10), Oct. 91

[LE/RI/VE'90] Lécluse, C. / Richard, P. / Velez, F. "O2: an object-oriented data model"

From "Readings in object-oriented database systems (ed. Zdonik, S. B. / Maier, D.)" ISBN 0-
55860-000-0;  Morgan Kaufmann publishers.

[LISal'77] Liskov, B. / Snyder, A. / Atkinson, R. / Schaffert, C. "Abstraction mechanisms in CLU"

From "Readings in object-oriented database systems (ed. Zdonik, S. B. / Maier, D.)"  ISBN 0-
55860-000-0; Morgan Kaufmann publishers.

[MA/ST'90] Maier, D. / Stein, J. "Development and implementation of an Object-Oriented DBMS"

From "Readings in object-oriented database systems (ed. Zdonik, S. B. / Maier, D.)"I SBN 0-
55860-000-0;  Morgan Kaufmann publishers.

[MACL'87] Maclennan, B. J. "Principles of programming languages (Design, evaluation and
implementation)"

ISBN 0-03-005163-0; CBS College publishing

[MAIal'86] Maier, D. / Stein, J. / Otis, A. Purdy, A. "Development of an Object-Oriented DBMS"

OOPSLA '86 proceedings

[MASal'91] Masini, G. / Napoli, A. / Colnet, D. / Leonard, D. / Tombre, K. "Object oriented languages"

ISBN 0-12-477390-7 (A.P.I.C. series, no. 34); Academic Press

[OOST'91] Object-Oriented Strategies "The Object-Oriented Market in the fall of 1991"



A survey of Object Oriented Databases S. A. Demeyer

May '92 .25

Object-Oriented Strategies - 1st issue - Oct '91

[ORAC'90] ORACLE "Tree Walking"

Oracle training services Course SQL

[PAEP'90] Paepcke, A. "PCLOS: stress testing CLOS"

ECOOP/OOPSLA'90 Proceedings

[PE/ST'87] Penney, D. J. / Stein, J. "Class modification in the Gemstone Object-Oriented DBMS"

OOPSLA '87 proceedings

[PU/SC/MA'91] Purdy, A. / Schuchardt, B. / Maier, D. "Integrating an Object Server with Other Worlds"

From "Object-Oriented Databases with applications to CASE, Networks, and VLSI" Gupta, R. /
Horowitz, E. (Editors) ISBN 0-13-629833-8; Prentice hall

[RO/ST'90] Rowe, L. A. / Stonebraker, M. R. "The POSTGRES Data Model"

From "Readings in object-oriented database systems (ed. Zdonik, S. B. / Maier, D.)" ISBN 0-
55860-000-0;  Morgan Kaufmann publishers.

[SALZ'88] Salzberg, B. "File Structures, An analytic approach"

ISBN 0-13-314691-X; Prentice Hall.

[SI/ST/UL'91] Silberschatz, A. / Stonebraker, M. / Ullman, J. "Database systems: achievements and
opportunities"

Communications of the ACM, Vol. 34(10), Oct. 91

[SK/ZD'86] Skarra, A. H. / Zdonik, S. B. "The management of changing types in an Object-Oriented
Database"

OOPSLA '86 proceedings

[SKAR'89] Skarra, A. H. "Concurrency Control for cooperating transactions in an object-oriented database"

Sigplan notices, Vol 24(4), Apr. '89

[SM/ZD'87] Smith, K.E. / Zdonik, S.B. "Intermedia: A case study of the Differences Between Relational and
Object-Oriented Database Systems"

OOPSLA'87 proceedings

[ST/KE'91] Stonebraker, M. / Kemnitz, G. "The postgres next-generation database management system"

Communications of the ACM, Vol. 34(10), Oct. 91

[STEE'90] Steele, G. L. jr. "Common Lisp, The Language (second edition)"

ISBN 1-55558-041-6; Digital Press

[STOal'90] Stonebraker, M. et al. (The committee for Advanced DBMS function: Stonebraker, M. / Rowe, L.
/ Lindsay, B. / Gray, J. / Carey, M. / Brodie, M. / Bernstein, P. / Beech, D.) "Third-Generation
Database system manifesto"

Proceedings of the IFIP 1990 Conference on OODB (Windermere, U.K.); Elseviers Science
Publishers

[THUR'89] Thuraisingham, M. B. "Mandatory security in object-oriented  database systems"

OOPSLA '89 proceedings

[ULLM'88] Ullman, J. D. "Principles of Database and Knowledge-based systems, Volume 1"

ISBN 0-7167-8158-1; Computer Science press, Inc.

[WEGN'90] Wegner, P. "Concepts and Paradigms of Object Oriented Programming"

OOPS Messenger Volume 1(1), August '90

[WEIal'91] Weinreb, D. / Feinberg, N. / Gerson, D. / Lamb, C. "An object-oriented database system to
support an integrated programming environment"

From "Object-Oriented Databases with applications to CASE, Networks, and VLSI" Gupta, R. /
Horowitz, E. (Editors) ISBN 0-13-629833-8; Prentice hall

[WIRT'76] Wirth, N. "Algorithms+data structures=programs"

ISBN 0-13022-418-9; Prentice Hall

[WO/KI/LU'90] Woelk, D. / Kim, W. / Luther, W. "An object-oriented approach to Multimedia Databases"

From "Readings in object-oriented database systems (ed. Zdonik, S. B. / Maier, D.)" ISBN 0-
55860-000-0;  Morgan Kaufmann publishers.

[ZD/MA'90] Zdonik, S. B. / Maier, D. "Fundamentals of Object-Oriented Databases"

From "Readings in object-oriented database systems (ed. Zdonik, S. B. / Maier, D.)" ISBN 0-
55860-000-0;  Morgan Kaufmann publishers.



1. Introduction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. The Database Community .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

The First Generation: Advanced File Access Systems .. . . . . . . . . . . . . . . . . . . . 1
The Second and Third Generation: Network and Hierarchical Database Systems
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
The Fourth Generation: Relational Systems.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. The Programming Language Community .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Control Flow Abstraction Leads to Procedural Abstraction .. . . . . . . . . . . . . . 10
Types and Values: the Declarative Parts of Programs.. . . . . . . . . . . . . . . . . . . . . 11
Abstract Data Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Object Orientation: Active Abstract Data Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Encapsulation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Classes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Inheritance.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Metaclasses.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Frames, Actors and Prototypes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Object Identity................................................................... 15

4. When Two Worlds Collide........................................................... 16
The Database Culture........................................................... 16
The Programming Language Culture......................................... 16
Adding Persistence to Programming Languages............................ 17
Object Oriented Databases: Object Orientation + Persistence. . . . . . . . . . . . . . 18
The Next Generation: Semantic Database Systems.. . . . . . . . . . . . . . . . . . . . . . . . 19

5. Some Object Oriented Database Management Systems .. . . . . . . . . . . . . . . . . . . . . . . . . . 21
G-Base.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Gemstone.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Versant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
O2 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Orion & Itasca................................................................... 21
ObServer/ENCORE ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
VBase & Ontos .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Statice .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
IRIS .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Postgres (Ingres) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
ObjectStore .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
ODBMS..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6. Acknowledgements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7. References.............................................................................. 23


