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0. Abstract

Selector table indexing is a simple technique for
method lookup in object-oriented languages, which
yields good performance, is well suited to multiple
inheritance and dynamic typing, but is generally
disregarded for its prohibitive memory consumption.
The large memory footprint is caused by keeping a
table of methods, indexed by a selectorcode, for each
class in the system. These tables are sparsely filled. A
sparse array implementation is presented, which
reduces the memory consumption by an order of
magnitude, while performing retrieval in constant
time. This implementation is discussed in the context
of a real programming environment, and compared to
selector coloring, a different memory-optimizing
technique. The method is shown to be complementary
to dynamic caching techniques such as inline caching.

1. Introduction

Dynamic binding is both the basis of
polymorphism and a source of inefficiency in object-
oriented languages. The association of a message
selector to its implementation, depending on the
runtime class of the receiving object,  implies an
overhead on each message call. Since a pure object-
oriented language uses message-passing as the sole
way of forming expressions, this constitutes a major
bottleneck.

In statically typed languages, like C++, the
overhead can be minimized by using type information
at compile time, narrowing the runtime choice of
methods as much as possible, in most cases
eliminating choice altogether. However, even a
statically typed language exhibits a degree of
polymorphism. A type is often defined as a class and
all it's subclasses. If a message of a class is
overloaded in a subclass, a runtime lookup is
needed1.

In dynamically typed languages the receiver of
a message can be any object. Therefore no compile-
time choice is possible2. The task of finding the
appropriate method for a class-messageselector  pair
always has to be performed at runtime. Hence,
speeding up the method lookup is highly relevant in a
dynamically typed environment.

1.1. Method lookup

For the sake of the discussion, we will mention
classes as the entities which hold a set of
messageselectors and their implementations. One can
replace "classes" by "prototypes" or "mixins3" [BRA
90],[STE 93] without changing the basic premises
and conclusions, as long as code sharing is employed.

1 In C++ this lookup is performed efficiently as a single table
lookup, when only single inheritance is employed.
2  We will ignore type-inference, being outside the scope of the
discussion
3 Actually not mixins as such, but the result of applying several
mixins in a certain order, be it a class or a prototype.



Classes can be organized in a directed, a-cyclic
graph called an inheritance-graph. Edges connect a
class to its superclasses. On the interface level, an
edge from class C to class P means that class C
understands all messages that class P understands. On
the implementation level, it means that the actual
methods invoked by objects of class C are the same as
for objects of class P. C can change this default by
adding some messages to those understood by P,
redefine implementations, or cancel messages. The
latter usually takes the form of redefining with a
special method. We will call the introduction of a
message-implementation pair the definition of a
message. Figure1 shows an example hierarchy.

A a b c

B a d C e D d f

E a g F h i G j

H j I c k

Figure1: an example inheritance graph

Message selectors are specified by lowercase
letters, classes by uppercase letters. When a message
m is defined in class C, we will call m a proper
message of C. If a message is not a proper message,
but is understood by C, we call it an inherited
message.

Now we can view the task of finding an
implementation for a given class-message pair as a
lookup in a two dimensional table. Figure 2 shows the
table for the hierarchy of figure1.

C\s a b c d e f g h i j k
A
B
C
D
E
F
G
H
I

: Proper message : Inherited message

Figure 2: Class/Selector table for figure 1

Given this setup, a variety of algorithms
performs the association. We will discuss these in
terms of time and space efficiency in the following
section.

2. Overview

The basic algorithm, called dispatch table
search (DTS) or superclass-chain lookup, is a fairly
literal translation of the definition of method lookup:
find the closest ancestor class for which the message
is a proper message. Every class holds a table of its
proper messages, with their implementations. This is
called a method table. At runtime, the class of a
receiver is obtained. Then the message selector is
looked up in the method table of that class. If found,
the lookup is finished. If not found, the search is
continued in the superclass of the current class4. If all
superclasses are visited without success, the message
that was sent is not understood by the receiver.

If we assume that the tables are efficiently
implemented, using for example hashing on the
message selector, the time taken by this technique is
proportional to the number of ancestors of a given
class (the depth of the tree in the case of single

4 If there is more than 1 superclass, as is the case in multiple-
inheritance, the order in which the superclasses are searched is
part of the language definition. For the performance of the
algorithm, this order is irrelevant.



inheritance). As stated in [COX 87]:"this is usually
intolerable because it can inhibit speed conscious
developers from using this powerful tool
[inheritance]". The memory used by this technique is
minimal, since there are only as much table entries as
there are methods  in the entire system5 (the black
area in figure 2).

In selector table indexing (STI), the other
extreme, every class holds a table indexed by all
selectors (the rows in figure 2). For fast retrieval, the
selectors are identified by a unique number, the
selector code, ranging from 1 to S, where S is the total
number of different selectors in the system. This
number can replace the selector symbol in the actual
code. The association of a class-selector pair to the
implementing method amounts to indexing in an
array, a constant-time operation. The memory
requirements are enormous, however. If C is the
number of classes, C*S is the memory used.

Dynamic caching [KRA 83] is an effort to join
the best of both worlds. Superclass-chain lookup is
used the first time a message is sent at run time. The
association of the class/selector pair and the acquired
method is then entered in a dictionary, implemented
for fast retrieval6 (the cache). The next time the same
pair is encountered, a lookup in the cache dictionary
is performed. If the method is still resident, it is
immediately executed. If not, a superclass-chain
lookup is done. Hit rates as high as 95% have been
obtained, rendering a substantial speedup in message
calling [JOH 87]. However, due to the statistical
nature of the speedup, this cannot be guaranteed in all
possible cases. The memory overhead of this
technique is equal to the size of the cache. One could
see the two former approaches as boundary cases, in
which the size of the cache is zero and infinite,
respectively. Techniques derived from STI are also
known as static caching, since a message is entered in
the cache when it is defined, rather than when it is
called (compile-time versus run-time).

5 We again assume that the implementation of a method table is
such that memory comsumption is minimal.
6 Inline caching [DEU 84] can be considered a special form of
caching in which the cache is distributed over the code.

3. Reducing the memory overhead of
STI

In this section, we will preserve the basic idea
of STI, while reducing the memory cost. In a
straightforward implementation, the table of figure 2
would be translated into a 2-dimensional array. For
the Smalltalk class hierarchy of the system used in
our lab, in which 774 classes and 5087 different
message selectors are defined, such an array contains
3.937.338 addresses. This is 3 orders of magnitude
more than required by superclass-chain lookup, which
needs 8.540 entries7 (nr of methods, black area in
figure 2).

To avoid superclass-chain lookup, each class
should have a direct reference to the methods
implementing its inherited messages (gray area in
figure 2), on top of the references to its proper
messages (black area). For our Smalltalk, the total
number of known messageselectors in the table is
178.264 (average of 230 per class). This is a lower
boundary for an implementation that guaranties
method lookup in constant time. Thus, the table of
figure 2 is only 5% filled in a real example. This is
reminiscent of sparse arrays8.

3.1. Table width allocation

Looking at figure 2, a space-optimization
suggests itself quite naturally: it is fairly easy to
allocate, for a given class, an array that is only as
wide as  the difference between it's lowest and it's
highest numbered selector. We will call this the width
of the table. A simple boundary check would be
added to the retrieval procedure. In return, a

7 Actually there is an extra overhead  in this particular
implementation, since the tablesizes are set to be a power of 2.
The tables are on average only 75% filled. A hashing strategy
with internal rehashing is used.
8 The latter have been extensively studied (as sparse matrices) in
numerical analysis. However, the implementations realized in this
field are biased towards the handling of columns as a whole (cfr.
Gauss-elimination). We need an implementation that emphasizes
speedup of only one operation: retrieval of one element in a one-
dimensional array.



substantial amount of memory can be saved. In our
Smalltalk system, this technique brings the number of
entries kept in memory to 1.477.992. The arrays
then have 12% non-nil references.

3.2. Sparse arrays

In this section we present a datastructure, based
of the memory management of trie-tree nodes in
[AOE 92], which suits our purpose better than the
arrays of the above approach. Given a large number
of sparsely filled arrays, a mapping of these arrays
onto a master array can be found, in which the indices
of non-empty elements in the masterarray are unique.
In figure 3, an example mapping is shown for the
classes A,C,H,I.

A

I

H

C

Figure 3: Mapping of sparse tables onto a master
array

The tables are fitted together like a one-
dimensional Jig-Saw puzzle. Given a reference r to
the beginning of the table (an index in the
masterarray), and a selectorcode s, the reference to the
corresponding method (on index r+s) can be retrieved
in constant time. The only problem arises when a
messages is not understood by a class, so it should
have a nil reference on position r+s, but due to the
packing together, proper message s' of another class
with reference r' happens to be at the same entry (i.e.
r'+s' = r+s).

This ambiguity needs to be resolved. In order to
do this, the master array has to be implemented as a
double array structure (figure 4). The top row of the
data structure holds the method-references. The
bottom row holds the index  to the beginning of the

method table9, in figure 4 symbolized by the name of
the class.

I A H C
1 1 1 1 1 1 1 1 1 1 2 2 2

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 a b c d f a b c j k a b c d f a b c j e
I I I I I A A A I I H H H H H C C C H C

Figure 4: structure of the double array

Now we can verify that the position r+s is
'owned' by the table with reference r by verifying that
the lower entry holds the value r.

To summarize: if the lower part of the element
equals the table reference (i.e. it points to the
beginning of the table), then the upper part gives the
address of the method to be called (the table owns the
entry). If it doesn't, the selector is not understood by
the class (the space is empty, or owned by another
table). This process shows constant-time
performance. So does removal of an element10.

Insertion of an element in a sparse array does
not always take place in constant time. If the entry
where the element is inserted is free, or already
owned by the table in which the insertion takes place,
no extra actions are necessary. If, however, the entry
is owned by another table, the whole table has to be
lifted out of the master array, and inserted were
possible. To do this, the pattern of non-nil entries in
the method table (it's 'signature') has to be matched
against the pattern of free entries in the masterarray.
In figure 4, this would happen if the selector k were
defined for class H, since it collides with the defined
selector e of class C.

9 As an alternative, the reference can be relative. Then it has to be
equal to the selectorcode for non-empty entries. This has the
advantage that the space, needed for the lower entries in the table,
can be limited to the number of bytes, needed to represent the
number of selectors, instead of the number of entries in the entire
master array. However, see 3.2.2.
10 We ignore the maintenance of the freelist, which, implemented
intelligently, takes time, proportional to the number of non-empty
entries to the left and to the right of the released entry.



The time required by the matching process
depends on the number and structure of the free
places in the masterarray, and the pattern of non-nil
entries in the table. A strictly upper bound is given by
E * N, where E is the number of empty spaces in the
master-array and N is the number of defined entries in
the table. This is an overestimation, since the formula
is based on the assumption that in order to detect a
non-match, all N entries of the table need to be
checked, and this for every free space in the
masterarray.

Since the number of message sends is much
larger than the number of message definitions in any
given system, the time required by insertion need not
be a problem in principle. We will return to this later.
For now, we observe the feasibility of the technique.

3.2.1.Experiments

In order to measure the memory savings of the
sparse array technique on a real-life system, we have
built up the masterarray for the Smalltalk inheritance
tree.

In all tests, a class is treated as a whole, so all
messages known by a particular class are first
collected and then inserted in the master array.
Hereby we avoid the (for this experiment) useless
lifting and inserting of a table. The  signature of a
table is matched as a whole onto the masterarray. This
still leaves two degrees of freedom: the particular
coding of the selectors, and the order in which classes
are inserted. We found that the former has the biggest
impact on the redundancy rating. Since the selector
coding determines the pattern of non-empty entries, it
is responsible for the form of our puzzle pieces.

In a first test, the selector code is set equal to its
position in an alphabetically ordered table of all
selector symbols. Since the message selectors of a
given class are usually more or less evenly distributed
over the alphabet, in this case the method tables are
wide and sparse. The classes are processed in
preorder, which gives us for the inheritance graph in
figure 1 the ordering: A B E C D F G H I. We obtain

a table that is 11% filled, which is slightly worse than
the simple table width allocation method, outlined in
the beginning of paragraph 3.1. In the latter
technique, selector numbers are assigned as they are
encountered. As a result, the proper messages of
classes are usually clustered together in the method
table11, as shown in figure 5.

Alphabetical Order

Encountered Order

Figure 5: Non-empty entries in a sparse table, as
influenced by selector code

The tablewidth of a subclass is always larger or
equal  to the tablewidth of its superclass. To ensure
that the tablewidth of a class is strictly smaller than
that of its subclasses (a gain in space), the ordering
has to put the superclass before its subclasses. In the
new ordering, this is the case.

With this selectorcoding, we obtain a
masterarray that is 36% filled, about seven times
better than the naive approach, three times better than
simple width-allocation.

We can do better, when looking at the
particularities of the inheritance tree. In the Smalltalk
inheritance tree used for the experiment, there are two
kinds of classes: normal classes and meta-classes.
Since every class has a meta-class, both kinds are
about as numerous12.

11 The exception is when a message is defined in two seperate
subtrees, as the message d in figure 1
12 They are not equal in number, since the class MetaClass does
not have a normal class as instance. Furthermore, in the
experiment, Behaviour, Classdescription and Class are counted as
meta-classes, since they help define the meta-class protocol, and
they do not have instances that are normal objects. In fact the first
two are virtual metaclasses.



Normal Meta
Number of classes 383 391
Total Known selectors 4027 1288
Average Known selectors 161 297

Figure 6: Normal versus metaclasses in the
Smalltalk inheritance graph

From figure 6, it is obvious that the two groups
are widely different. The metaclasses understand only
1288 of all available message selectors, with each
meta-class understanding almost 300 selectors on
average. The other classes as a group understand four-
fifth of all selectors, while each class itself
understands only 161 of them. If we put the meta-
classes first in the ordering, the width of the first 391
tables is at most 1288, and each table is about 25%
filled to start with. This produces a dense packing of
the tables, after which the normal classes can be
added. Since these have a wide range of selectors, but
more empty entries in the method-table, they are wide
and the selectors more randomly spread, so they are
more difficult to pack together.

The experiment, in which all metaclasses were
filled in right after the class Object, gives a fill rating
of 60%. Thus the memory used by the selector tables
is reduced by a factor 12. The packing of normal
classes in the masterarray is 49%. As expected, the
meta-classes are more densely packed, giving a 69%
fill rating. The masterarray has a width of 295.414
entries, as opposed to the naive implementation of the
selector table, which has 3.937.338 entries.

The results of the last test is Smalltalk-specific,
in the sense that the class-metaclass dichotomy need
not occur in prototype-based languages13. However,
the sparse array technique is reminiscent of the
knapsack problem, strongly suggesting NP-
completeness. This means that heuristics are the only
practical way to solve the problem in reasonable time.
The last test relies heavily on that principle.

13 The copying methods, that replace the meta-protocol of a class,
reside in the same method table as the 'instance' methods of a
prototype.

Heuristics based on the number of messages known to
subtrees, a generalization of the more extreme class-
metaclass example, are currently under investigation.

3.2.2. Eliminating the double array

Although the total number of entries in the
masterarray is 12 times less than the number of
entries in the naive implementation, the entries in the
masterarray take twice as much memory.

If we do not implement sparse arrays
separately, as a datatype with an abstraction barrier,
but take advantage of the knowledge that they are to
be used as method tables, further space reduction is
possible.

Suppose we eliminate the lower entry in the
masterarray. Then, for a class C, with table reference
r, and a selector with code s, we need to be able to
verify if the method reference at index r+s is
effectively 'owned' by class C. If we would be able to
surmise the selector t for which the method found at
index r+s is the implementation, we would simply
have to check if t = s . If this is the case, then the
method can not be an implementation of s for another
class, since every class has a unique reference to its
method table. In other words, if the method at index
r+s implements selector s, it has to be part of the
method table beginning at r, hence it is the right
implementation.

All we need, then, to eliminate the lower part of
the masterarray, is to keep with each method the
selectorcode of the message it implements. In terms
of space, this adds only as much references as there
are methods in the system. For our example, this
gives 8.540, as opposed to the 295.414 entries of the
masterarray. In terms of time, one reference
indirection is added to the method lookup.

3.3. Selector coloring

Selector coloring, first proposed in [DIX 89],
and expanded for dynamically typed languages in
[AND 92], offers a different way to optimize the
selector table size.



The basic principle is as follows: give the
selector code range [1,S], a function color(selector) is
defined which maps the range [1,S] to a range [1,K],
with K<< S, such that, for every two selectors s1 and
s2, if they are understood by the same class, color(s1)
≠ color(s2). In other words, when two messages are
understood by the same class, they get a different
colornumber. The methodtable is then implemented
as an array of size K. The colornumber can replace
the selector in the actual code14. This has as effect
that the selector table of figure 2 has less columns, for
the same number of non-empty entries. To find the
method for a given class-selector pair, the
colornumber of the selector is looked up in the
method table of the class.

The construction of a good coloring function
translates into a well-known problem in graph theory:
graph coloring (hence the name). Every node of the
graph stands for a selector. Edges are drawn between
selectors if they are understood by the same class
anywhere in the system. Two nodes that are
connected can not be assigned the same color. The
problem is to find the least total number of colors K,
with which all the nodes of the graph can be colored,
so that every node has a different color than its
neighboring nodes. K is called the chromatic number,
and is proved to be at least the size of the greatest
clique in the graph. A clique is a subgraph of totally
interconnected nodes. In terms of the inheritance
structure, all the selectors understood by a given class
C form a clique.

Although graph coloring is NP-complete,
inheritance trees apparently have nice properties,
making it possible to find a coloring that approaches
the chromatic number with an algorithm that ends in
polynomial time. In the algorithm, colors are assigned
from the most constrained selector to the least
constrained. The most constrained selector is the
selector understood by the largest number of classes.
The next selector is assigned the lowest colornumber
that is still different from that of its assigned
neighbors. When the least constrained selector is

14 However, see 3.3.1

assigned a color, the algorithm ends. The coloring
obtained is guaranteed to satisfy the conditions
described above, although K is not guaranteed to be
small.

We ran this technique on the aforementioned
Smalltalk class tree, and obtained 401 as the value of
K, the number of messages understood by the
metaclass of class Cursor. This was the class with the
largest number of understood messages, so effectively
the lower bound was reached. The fill rate, given by
the average number of understood messages per class,
divided by K, was found to be 57%, comparable to
our scheme, and consistent with the results given in
[AND 92].

3.3.1 Resolving aliasing in selector
coloring

An issue not addressed in [AND 92], but
touched upon in [DIX 89], is the problem of aliasing
of selectors. Since most color numbers are used  by
more than one selector, for each class there will exist
selectors that are not understood by the class, but that
have the same colornumber as a selector that is
understood. Without checking, a send of a selector s
to a class C, with s not understood by C, can result in
the execution of the method implementing selector r,
understood by C, if color(s) = color(r).

A solution suggested in  [DIX 89] is to keep in
each method a copy of the selectorcode to which it
responds (as in 3.2.2), and to keep at each message
send not only the colornumber of the selector, but also
the selectorcode itself. A message lookup then
includes a check if the sent selectorcode equals the
selectorcode in the method. This scheme would make
the method lookup behave with about the same
efficiently as inherent in the improved sparse array
technique. However, the size of the code would
increase substantially, since for each message call,
two numbers instead of one should be remembered.

A modification which doesn't take as much
memory, but would add an indirection, is to keep only
the selectorcode in the compiled code, and, prior to



the method lookup, map that selector code to its
colornumber. The memory overhead of this technique
is an array of size S, if S is the number of selectors,
This is negligible (20 Kbytes for the Smalltalk
example).

3.4. Comparing sparse arrays &
selector coloring

3.4.1 Lookup efficiency

In terms of lookup efficiency both techniques
are fairly equivalent.

Method lookup with sparse array's (abbr. SA)
takes the following operations:

1) get the class from the receiving object
2) get the table reference r from the class
3) get the method, corresponding to selector s

from position r+s
4) check if s equals the method's selectorcode

Method lookup with selector coding takes the
following operations:

1) get the class from the receiving object
2) get the color c from the selectorcode s
3) get the method at position c from the method

table
4) check if s equals the method's selectorcode

If keeping both the selector and it's
colornumber in the code is not prohibitive, step 2)  in
selector coloring is not necessary.

3.4.2 Memory usage

In terms of memory usage, for the example both
techniques seem to perform comparably15. However,

15 We only take the colored cache into account, and not the
conflict graph, which is kept in memory in [AND 92]. The latter
makes selector coloring only profitable for hierarchies as large as

there is a great difference in memory management.
In the SA approach, the memory used by method
tables differs radically from the 'normal' memory,
used by objects in the system. If a class is deleted, its
methods can be garbage collected, but the place
occupied by the table has to be reclaimed within the
context of the master array. Furthermore, when a class
is added, the master array may have to grow, taking
space from the object memory. An arrangement in
which the masterarray takes up one end of the
memory and grows toward the runtime stack, coming
from the other direction, with the object memory in
the middle, is imaginable.

In the selector coloring technique, there is a
choice. If the method tables are each allocated as
normal objects, adding or deleting a class amounts to
allocating and freeing an object. We will refer to this
method as SC1. In this case, step 2) from the SA
method lookup needs to be added to the SC1 method
lookup, since an indirection is necessary to obtain the
method table from a class. If on the other hand all
method tables are gathered in a two-dimensional
array, indexed by color and classnumber, a class
identification is equal to it's index, so the
aforementioned step 2) is not necessary. We will call
this approach SC2. The memory in SC2 has a special
status, as in SA. Adding a class in SC2 causes a
growth of the two-dimensional array.

When examining the performance of  the two
methods on special cases of inheritance, differences
are blown up. On a tree structure (as in the Smalltalk
example), both approaches behave similarly. Figure 7
lists other examples (terminology adopted
from[AND 92]).

the Object hierarchy, when compared to simple selector table
indexing .
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D d
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E e

Apple
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Figure 7: Special cases of inheritance

The 'branch' case has no overhead for SA.
Starting with class A, all method tables are stacked
after each other, leaving no empty space, rendering a
master array with size 10. For SC1, there is no
overhead either. For SC2 6 of the 16 entries in the 2-
dimensional class-color array are empty, since all
selectors are known in class D, and have to have
different color numbers.

The 'comb' case would give the following
master array for SA:

A B C D
1 2 3 4 5 6 7 8
 a a b a a c d
A B B C D C D

Figure 8: Master array for 'comb' case

The redundancy is 1 out of 8. This would be
different if class A had more selectors. We can
conclude that redundancy can be expected in this
case. SC1 gives no redundancy. SC2 gives 1 out of 8.

The 'apple' case, an example of multiple
inheritance, is the 'comb' case with a common
subclass added. The SA method delivers the array of
figure 9:

A B E C D
1 2 3 4 5 6 7 8 9 10 11 12 13
 a a b a b c d e a a c d
A B B E E E E E C D C D

Figure 9: Master array for 'apple' case

Adding a subclass adds a densely filled method
table to the array, giving redundancy of 1 out of 13.
For the SC1 and SC2 methods, the subclass
introduces conflicts between all known selectors,
rendering a method table containing all selectors. For
SC1, this gives a redundancy of 3 out of 15, for SC2
this delivers 13 out of 25.

We can conclude that the SA approach is more
robust for special cases of inheritance, especially
multiple inheritance, than SC1 and SC2, the latter
being the most brittle.

3.4.3 Dynamics

The third perspective from which to compare
the different approaches is the impact of changes in
the inheritance graph as they occur in a development
environment. There are two cases to consider: adding
a class, and adding a message. The removal of classes
and messages does not pose a real problem.
Reclamation of space can be postponed until a
suitable time interval occurs, in which all method
tables in the system can be rearranged.

Adding a class is a problem for SC2, if the
added class needs a new color. All method tables in
the global array have to be shifted to accommodate
for the extra entry at the end of each method table.
This is prohibitive at runtime. For SA it implicates a
search for a matching empty space in the master
array, which can possibly lead to growing of the
array. For SC1 the effect is only problematic in the
case of multiple inheritance, as when the 'comb' case
turns into an 'apple' case.

Adding a message is problematic when the
class in which it is added has many subclasses. To
focus on the extreme example for the Smalltalk case,
adding a message in Object has a catastrophical



effect. In the SA approach, the more densely packed
the masterarray, the more method tables have to be
lifted and inserted again. Since the ordering is such
that all selectors understood by object have the lowest
selector numbers, the new message will add an entry
at the other end of the method table, rendering the
placing of most tables ineffective. In order to avoid a
lengthy repacking of all method tables at runtime,
only onepreventive measure seems practical.

We propose to maintain an additional method
table, with the new messages, which is checked if the
lookup in the original table fails. At regular times, a
process can be run which incorporates the newly
defined messages into the original tables, if necessary
relocating the entire masterarray. The new messages
have a constant cost added to the method lookup (step
2 to 4 of the SA lookup) during development time.
The packing of the new tables in the masterarray will
probably be space-efficient, since their width is bound
to be small, given regular relocation of the
masterarray. However, the dynamics of this approach
need to be studied in future research.

In SC1 and SC2, defining a new message for
Object would have the same catastrophical effects.
Since the selector conflicts with all selectors in the
system, it has to be assigned a new colornumber,
higher than all colors used. For SC2 this is equivalent
to the class case. For SC1 this causes all method
tables to grow to incorporate the new color, forcing
system-wide reallocation of method tables.

4. Comparing sparse array STI &
dynamic caching

In the absence of hard performance data, an
assesment of the expected efficiency of our technique
is in order.  The currently most used strategy to speed
up method lookup in dynamically typed, object-
oriented languages, is inline caching [DEU 84],
[UNG 87].  In this technique, a call to the method
lookup routine is replaced (inline) by a direct call to
the method  which was called last time at that
particular point. The method in question is prefixed
by a test, which compares the current type of receiver

with that of  it's most recent call. If a match occurs,
the method is further executed. If not, a regular
method lookup is performed, which will cause an
update of the target of the inline call.

On a hit, this scheme takes only three to four
machine instructions, coming very close to the
efficiency of procedure  calling. SA takes six to seven
instructions with the double masterarray.

In  [UNG 87], the SOAR Smaltalk system
spends 11% of its time in (inline) cache probes and
another 12% handling misses.  Since SA, by
construction, does not have the latter overhead, we
can tentatively assume that the runtime efficiency will
approach that of inline caching. Still, no claims can be
made without thouroughly benchmarking a running
system.

However, an improvement over inline caching
can be constructed by combining the two techniques,
employing inline caching first, and using SA on a
miss. This strategy would cut down the total time
spend on misses to a  small fraction of the 12%. Since
some information, like the receiver's type, resides in a
machine register after the cache probe, SA also has
less work after a probe than in the general case.

The last proposal adds the memory
requirements of inline caching to those of SA,
rendering a substantial memory overhead. Whether
this is still profitable is an open question.

5. Future and related work

The work described in this paper is support for
the Agora language, a prototype-based, object-
oriented language employing mixin-based inheritance
[STE 93] [COD 91]. A runtime version of selector
table indexing with sparse arrays will be implemented
in the near future for an experimental Agora to
Scheme compiler [DHO 93]. Runtime aspects of the
technique, such as the performance of inline caching,
combined with SA, will then be more thoroughly
investigated. A formal treatment of the mentioned
heuristics for table packing is being studied. Sparse
arrays have been implemented as an abstract datatype



in Scheme, with a vector-like interface, integrated
with the resident garbage collector.

6. Conclusion

We have presented a novel technique for
reduction of space requirements by selector table
indexing. The approach reduces the size of the
method tables by a factor of 12, while retaining
constant time lookup. Compared to incremental
selector coloring, a previously proposed technique for
selector table size optimization, our method performs
with equivalent speed, and comparable memory
requirements, but suffers less from special cases of
inheritance, especially multiple inheritance.  The
technique needs to be further refined to avoid
occasional massive repacking of the masterarray. A
combination of our method and inline caching seems
promising.
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Appendix: Smalltalk results

The table below sums up fill rate % (non-empty
entries / total entries) of  the sparse array
implementation (SA) on Smalltalk classes. These are
compared with regular STI fill rates, and with selector
coloring (SE). In SE, the size of the conflict graph is

not taken into consideration. If the latter is kept in
memory, in order to speed up changes to the method
tables, SE takes more memory than STI for all
subsystems smaller than Object [AND 92] .

Class nc d Mp Tp Ap Mm Tm A m T s STI S C S A
A-AgBrowserObject 8 3 15 40 5 19 82 10 24 43 53 85
A-AgTokens 26 4 12 58 2 22 426 16 29 56 74 88
A-AgObjectStructure 30 8 13 70 2 26 636 21 35 61 81 79
A-AgTree 11 4 19 72 7 47 412 37 55 68 79 88
Set 9 4 38 144 16 77 450 50 94 53 65 92
M-Set 13 6 38 198 15 88 751 58 121 48 65 84
C-Set 16 6 38 205 13 89 894 56 126 44 62 73
Stream 16 6 49 210 13 108 1122 70 126 56 65 74
A-Stream 19 6 49 262 14 108 1312 69 168 41 63 82
A-AgComponent 26 4 46 294 11 90 1780 68 136 50 76 75
C-ArmanObject 43 4 37 250 6 68 1248 29 164 18 42 56
C-DemoObject 28 5 48 326 12 58 942 34 210 16 58 47
Magnitude 18 4 89 568 32 148 1381 77 240 32 52 80
A-Magnitude 36 6 95 630 18 155 1886 52 266 20 33 69
C-HAMAbsSupClass 29 6 85 335 12 128 1577 54 274 20 42 81
Collection 51 6 55 805 16 151 4960 97 403 24 64 48
A-Collection 65 7 66 1044 16 157 6435 99 498 20 63 45
M-Collection 72 7 66 1240 17 157 7167 100 580 17 63 50
VisualComponent 53 7 83 875 17 133 4253 80 529 15 60 54
A-VisualComponent 146 9 122 1968 13 175 13955 96 924 10 54 39
C-VisualComponent 159 9 122 2046 13 175 15179 95 957 10 54 45
M-VisualComponent 183 9 122 2330 13 175 17629 96 1045 9 55 40
M-MeiObject 111 7 164 2387 22 265 11167 101 1513 7 37 47
Object-noclass 383 8 113 6835 18 260 61809 161 4027 4 62 42
A-Object-noClass 881 10 135 13026 15 309 153529 174 7004 2 56 39
Object 774 12 113 8540 11 401 178264 230 5087 5 57 60

In the table, nc is the number of classes, d is the
depth of the subgraph, Mp is the maximum number of
proper messages (methods) in  the subclasses, Tp  the
total number of proper messages in the subgraph, Ap
the average number of proper messages. Mm , Tm ,
and A m  give the same numbers for messages
understood by the class. Ts is the total number of
distinct selectors in the subgraph. STI  is the
percentage of non-empty entries in the selector tables,
SC  is the percentage of non-empty entries in the
colered cache, SA is the percentage of non-empty

entries in the masterarray of the sparse array
implementation.

The classes, prefixed by A are part of an Agora
interpreter, implemented at our lab, those with prefix
C are part of a groupwork project and prefix M stands
for the Mei utilities public domain classlibrary.
Classes without prefix are part of the standard library
(subsets of the former applications). The noclass
suffix indicates that the metaclasses were cut from the
tree.


