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Abstract

ESM systems have been developed by D. Janssens [Jan93] as a model of concurrent systems
based on graph rewriting. It will be shown that ESM systems can be used to model Petri nets
or, more precisely, that Petri nets can be seen as ESM systems without any edges between
the places. This leads to a Petri net semantics based upon the external effect of computations
(or processes), which is compositional with respect to the composition of Petri nets. This
semantics describes how tokens have been rewritten by a computation rather than describing
the firing of transitions.
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1 Introduction

Extended Structure Morphisms [Jan93] are a generalization of Actor Grammars [Jan90, Jan91]
which are graph grammar [EKL90, EL91, Low91] based descriptions of Actors.



The semantics of ESM systems are based on computation structures that describe how its
initial graph gets transformed by a rewriting process of the ESM system. FEvery step in this
rewriting process in represented in the computation structure. The semantics of an ESM system
P can then be described by the set of computation structures associated with P. A more abstract
semantics can be obtained by considering the external effect of such computation structures, that is
by describing how the initial graph is transformed to its resulting graph by the complete rewriting
process without showing the single rewriting steps of this process. This 1s more abstract in the
sense that two different computation structures can have the same effect if they transform the
initial graph in the same way to its result graph using different rewritings.

The aim of this article is to show that ESM systems are capable of modelling Petri nets [Rei85]
by translating P/T-nets in ESM systems that operate on discrete graphs. P/T-nets are then a
special case of ESM systems, called Petri systems. It will be shown that for every P/T-net, an ESM
system can be constructed such that there is both a structural and semantical equivalence between
them. Computation structures of these Petri systems will then correspond to processes, and hence
will be called process structures. We will then investigate the Petri net semantics resulting from the
external effect of ESM systems, by considering the external effect of the constructed ESM systems.
It should then be clear from this approach that the essential difference between P/T-nets and ESM
systems 1s the absence of relations between the tokens in the former.

Section 3 defines the notion of similarity between P/T-nets and Petri systems, a special kind of
ESM systems suited to model Petri nets, and between processes and process structures (computa-
tion structures of Petri systems). Furthermore, the relation between similarity and isomorphism
is shown.

In section 4, it is first shown that process structures yield the same kind of semantics for Petri
systems as processes do for Petri nets, i.e. different P/T-nets have the same sets of processes if
and only if similar Petri systems have the same sets of process structures. Then the external effect
semantics of ESM systems is applicated onto P/T-nets and the differences with traditional Petri
net semantics are investigated.

2 Preliminaries

In this section we recall some basic terminology about graphs, relations and Petri nets [Rei85] to
be used in the paper and we summarize the results of ESM systems as described in [Jan93].

2.1 Graphs and Relations

1. For a set A, Id, denotes the identity relation on A. For a relation R C A x A, R* denotes
the reflexive and transitive closure of . We will often write 2% to stress that the closure
is taken with respect to the set A. The relation R is antisymmetricif (z,y) € R, (y,2) € R
implies that * = y. For sets A and B, the difference of A and B is denoted by A — B.
The union of disjoint sets A and B is often denoted by A @ B. For disjoint sets A, B and
functions f; : A — C and f, : B — (', the common extension of f; and fs to a function

from A @ B into (' 1s denoted by f1 & fo.

2. Let ¥ and A be sets. A (X, A)-graph is a system g = (V, F, ¢) where V is a finite set (called
the set of nodes of g), E CV x A xV (called the set of edges of g), and ¢ is a function from
V into X (called the node-labeling function of g). For a (X, A)-graph g, its components are
denoted by V,, E, and ¢,, respectively. A discrete E—graph is a (X, A)-graph ¢ for which
E,=10.

3. Let g and h be (X, A)-graphs, let f : V, — V}, be an injective function and let B C V, x AxV,.
Then the set {(f(z),8, f(y)) | (x,y) € R} is denoted by f(R). We use a similar notation in
the case where R C V, x V, or R C (V, x A) x (V, x A), and for the inverse relation f~1.

f(g) denotes the graph (f(V}), f(Ey), ¢n o f).



4. A graph morphism from g into h is an injective function f : V; — V3 such that ¢, = ¢ o f
and f(E;) C Ey. fis a graph isomorphism if its inverse is a graph morphism from & into g.
Id%" denotes the identical graph morphism on g.

5. Let g and h be (X, A)-graphs. Then & is a subgraph of g if Vi, C V,, E) C E,; and ¢y
is the restriction of ¢, to V3. For a subset A of V, the subgraph of g induced by A is
the graph (A, E; N (A x A x A),¢"), where ¢’ is the restriction of ¢, to A. The graphs
g and h are disjoint if V; NV, = 0. For disjoint graphs ¢ and h, ¢ & h denotes the graph
(Vy & Vi, Eg © Eny oy @ ).

Throughout this paper we assume that 3 and A denote arbitrary but fixed alphabets.

2.2 Petri nets

1. A net with arc weights is a triple N = (5,7, W) where S and T are disjoint sets (SN7T = )
and W: ((S x T)U(T x S)) — IN. We sometimes denote the three components S,7 and W
of a net N by Sy, Tny and Wy, respectively.

Forz € SyUTn, *x = {y | Wn(y,x) > 1} is called the presetof , 2® = {y | Wy (z,y) > 1}
is called the postset of x. An element x € N is called isolated if ®x U 2® = . N is called
simple if distinct elements do not have the same pre- and postsets: Ya,y € Sy UTy : ®x =
[ ] [ ] { ]

YA =y*)=2=y
Let N, N’ be two nets and let 3 : SyUTy — Sy UTN be a bijection. N and N’ are called 3-
isomorphicif s € Sy < 8(s) € Sy, t € Ty < B(t) € Ty and Wy (z,y) = Wi (8(x), 8(y)).

2. Let N be a net. A mapping M : Sy — IN 1s called a marking of N.

3. A P/T-net (or Petri net) is a four-tuple N = (S, T, W, My) such that (5,7, W) is a net with
arc weights and My : .S — IN is an initial marking.

4. An occurence net N = (B, E, F) is an acyclic ordinary net without branched places, i.e.
Ve, y€ N :(z,y) EF* ANz #y= (y,z) ¢ F* and Vb € B : |*h| < 1 A |b%] < 1. Elements of
E are called events and elements of B are called conditions.

A B-cut ¢ C B of an occurence net (B, F, F') is a maximal unordered set of B—elements
with respect to F'*, that is, Ve,y € e¢: (z £ y) = (2,y),(y,2) ¢ F*. Min(N) is defined as
{zeN|® =0}, and Maz(N) is defined as { z € N [2* =0 }.

bl

(

5. A process # = (B, E, F,v) of a Petri net N = (S, T, W, My) is an occurence net (B, E
together with a labelling v C (B x S)U(F x T) such that v is a function and Min(B, E
is a B-cut which corresponds to My, that is, Vs € S : Mo(s) = [p~1(s) N Min(N)|. Let 11
be the set of all processes of a Petri net V.

)
)
N)

For technical simplicity, we will only consider nets without isolated elements.

2.3 ESM systems
1. Let g and h be (X, A)-graphs. An ESM morphism from g into h is a 3-tuple R = (R°, R*, R")
of relations such that
(a) R°Y,R'CV, xV; and R* C (V, x A) x (V, x A).
(b) R' C R® and, for each &, u € A, ((z,6),(y,n)) € R* implies (z,y) € R°.
(¢) R(Ey) C En.

where R(E) = {(u,p,w) € Ey | 3(z,8,y) € E : ((2,6),(u,p)) € R* and (y,w) € R'} with
ECE,.



IdeM = (Idv,, Idv,xa, Idy,) is an ESM morphism from g into g, called the identical ESM-
morphism on g. A primitive ESM morphism is an ESM morphism R : ¢ — h such that ¢, h
are nonempty and R* =V, x V4. For an ESM morphism R : ¢ — h, let Min(R) denote Vj
and Maz(R) denote V.

An ESM system P is a set of primitive ESM morphisms. The elements of an ESM system are
often called productions. Two ESM systems P, and P> will be called y-isomorphic if there
exists a bijection 7 : P, — P> that maps a production of P, on an isomorphic production of
Ps.

. A computation structure is a 4-tuple (V, E, ¢, R) such that (V, E, ¢) is a (X, A)-graph,
R:(V,E,¢) — (V,E,p) is an ESM morphism, R°, R* and R are reflexive, transitive and
antisymmetric, and for each ((z, ), (v, 1)) € R®, x = y implies § = p.

The 4-tuple (Vy, Ey, ¢y, IdgESM) 1s a computation structure, called the identical computation
structure on a (X, A)-graph g. For each primitive ESM morphism R : ¢ — h, R may be
represented by the computation structure Cr = (V; & Vi, B U R(E,), ¢4 B ¢5, R*). The
4-tuple (0,0,0, Ry) is called the trivial computation structure.

The set of minimal and maximal nodes of a computation structure C with respect to R,
are denoted by Min(C') and Maxz(C'), respectively. Note that for a primitive ESM morphism
p:g— h, Min(p) = Min(Cp) and Maz(p) = Maz(C}).

For computation structures C7 = (Vi, B, 91, R1), Co = (Va, Fa, 92, R2), a CS morphism
from € into C is an injective function f : V4 — Vi such that ¢q o f = 1, f(F1) C Fs,
F(RS) C RS, f(RS) C RS and f(RY) C R,. The computation structures together with CS
morphisms form a category CS. By consequence, f i1s a CS isomorphism if its inverse is a
CS morphism

. Let P be an ESM system and let C' be a computation structure. A P-covering of (' is a

collection (fi, m;)ser of pairs, with Cr, = (Vi, By, R;, ¢;), such that

(a) Foreachie I, m; € Pand f; : Cr, — C is a CS morphism.

(b) For each x € Vi, there are at most two indices ¢ € I such that z € f;(V;), and if
v € [i(Vi) N f;(Vj) where ¢ # j, then either 2 € fi(Maz(Cxr,)) N f;(Min(Cyr,)) or
r € fi(Min(Cr,)) N fj(Mazx(Cxr,)).

A P—covering of C' is valid if Re = (Uier fi(R:))y,, and Ec = Re(Emin U Uier fi(Ei max))

where Epin = EcN(Min(C) x A x Min(C)) and E; mar = E;N(Maz(Cr,) x A x Maz(Cy,)).

C is P—valid if there exists a valid P—covering of C. The set of all P—valid computation

structures of an ESM system P is called Comp(P).

. Let Gy = (Wi, B, 61, R1), Ca = (Va, B9, ¢2, R2) be computation structures. A (Cp,Ca)-
interaction is a 3-tuple int = (Cipe, d1, d2) where Cyine = (Vine, Bint, Gint, Rint) 1s a compu-
tation structure and dy : Cyny — C', ds : Cipny — C5 are CS-morphisms such that

(a) for each & € Vi, either dy(z) € Min(Cy) and dao(z) € Maz(C2), or di(x) € Min(Cs)
and da(2) € Maz(C), and

(b) The relation (dy'(R$) U dz_l(Rg))”{/m is antisymmetric.

The composition of Cy and C's over int is the set

Com—22—C,
C104ntCy = {(Ch2, €1, €2) | the diagram dll lcz is a pushout in CS }
Ch a C

We will often write C1o € C10;,:Cs instead of (Cg,¢1,c¢2) € C10;p:Ca.

Comp(P) an now be derived inductively as follows:



a) The trivial computation structure is in Comp(P).

b)

(c) For every p € P, every computation structure isomorphic with C, is in Comp(P).
)

(d) For every C1,Cy € Comp(P) and int a (Cq,Ca)-interface, C10;,Cy is a subset of
Comp(P).

(
(

For every (X, A)-graph g, the identical computation structure on ¢ is in Comp(P).

Note that Comp(P) is closed under isomorphism.

5. Let C' = (V, E, ¢, R), then the external effect of C, denoted Eff(C), is the ESM morphism
Repp g — h where

‘/S]IMin(C), By =ENV, x AxV,, p,=pNV, xX%,
Vh:Ma:z?(C'), En=EnNVixAxVy, epr=9¢NV,xX, and
Reff=(R°NVyx Vi, RPN (Vy x A) x (Vi x A), R' NV, x V)

The external effect of an ESM system P is the set of all external effects of P—valid compu-
tation structures, i.e. Eff(P) = { Eff(C)|C € Comp(P) }. The external effect of a system
P can also be derived inductively since Eff (C10:p:C2) = Eff (C1)0int EF (C2).

3 Petri systems

Since P/T-nets and ESM systems are both transition based formalisms, it is a rather straightfor-
ward approach to map markings (state descriptions of P/T-nets) onto graphs (state descriptions of
ESM systems) and transitions onto productions. As markings formally associate with each place
a quantity, we can model them as discrete graphs in which every place appears as many times as
the label of a node as given by the marking. Figure 1 shows a marking (left) with a corresponding
graph (right). The names in this figure represent node identities in the marking, and represent
node labels in the graph. The identities of the nodes are not shown in the graphical representation
of a graph.

This implies that the productions of this specific ESM systems will only operate on discrete
graphs. This, by consequence, eliminates the need for source and target relations in the ESM
morphisms, since they describe how source and target parts of edges are transferred between
graphs.

OO O66O O

Figure 1: A marking (left) and its graph representation (right)

In the subsequent paragraphs, the restricted versions of ESM systems we will use (called Petri
systems) are introduced. Thereafter, we will define the constructions between ESM systems and
Petri nets. In the following section, we’ll do the same between their computations and processes.
At last, it is proved that computations play the same role for ESM systems as processes do for
P/T-nets.

3.1 Basic definitions

We will define a discrete ESM morphism, a process structure and a Petri system as restrictions
of an ESM morphism, a computation structure and an ESM system respectively, by omitting all
references to edges as described above. Process structures and Petri systems will be the ESM
equivalents of respectively processes and P/T-nets.



Definition 3.1 Let g, h be discrete X—graphs, then R : g — h is a discrete ESM morphism if
(R,0,0) is an ESM morphism from g inio h.

Definition 3.2 A Y -process structure is a triple (V, R, ) where RCV xV and ¢ : V — X such
that (V,0,¢,(R,0,0)) s a (X, A)-computation structure.

These definitions stress the fact that discrete ESM morphisms and (X, A)—process structures
are restrictions of ESM morphisms and computation structures. We can also say that a discrete
ESM morphism is a relation from V, to V3 and that a (X, A)-process structure is a triple (V, R, ¢)
where R C V x V is a reflexive, transitive and acyclic relation on V.

Graphically, we will represent a discrete ESM morphism R : ¢ — h by placing g above h and
drawing the ESM morphism as vertical lines from ¢ to h (see also figure 2). A process structure
(V, R, ¢) will be represented graphically by drawing R vertically as a partial order between the
nodes, i.e. the reflexive and transitive relations are not shown (figure 4).

Since a Petri net contains the notion of an initial marking, we will have to add the corresponding
notion of an initial graph to ESM systems. A Petri system then consists of productions, i.e.
primitive discrete ESM morphisms, and an initial graph In:t.

Definition 3.3 A primitive discrete ESM morphism is a discrete ESM morphism R : g — h such
that g, h are nonemepty discrete X—graphs and R =V, x V3.

Definition 3.4 A Petri system is a tuple ES = (Init, P) where
1. P s a set of primitive discrete ESM morphism.

2. Init 1s a discrete X—graph.

Definition 3.5 Let ES = (Init, P) be a Petri system. The set of computation structures of ES
is defined by IComp(ES) = {C € Comp(P) | Min(C) is isomorphic with Init }.

For ES a Petri system and C' a process structure, if C' is an element of IComp(ES) then we
say that C'is a process structure of E'S.

3.2 Nets and Petri systems

Having defined Petri systems, we can now describe which Petri systems correspond to a given
Petri net and vice versa. This will be done by defining a construction and a similarity property.
The constructions Esm and Petri construct one Petri system resp. net that fullfills the similarity
property. We then show that every other Petri system (resp. net) meeting this similarity property,
is 1somorphic to the one constructed by FEsm resp. Petri.

Nets and systems will be called ”similar” if there exists a bijection between their transitions and
productions that maps productions to similar transitions. As is shown in Figure 2, a production
i1s similar to a transition if every place occurs as many times as the label of a node in the left
respectively right side graphs, as described by the weights to respectively from the transition. We
will therefore consider the alfabets ¥ and S to be equal.

In the graphical representation of a net, circles respresent places (or occurences) and boxes
represent transitions. The flow relation is drawn by directed edges, labelled with their weights (if
different from one). The names represent node identities. The tokens are represented by dots.
A production is represented graphically by drawing circles for the nodes labelled with the node
labels. The ESM morphism R : ¢ — & then i1s drawn by vertical lines with g above h.

Figure 3 shows a Petri net and a similar Petri system. As is shown in this figure, we will often
give productions a name to reference them. This name is only for the ease of use and is not a part
of the Petri system.

Definition 3.6 (similarity of nets and systems)
Let N be a Petri net and ES a Petri system where N = (S, T, W, My) and ES = (Init, P).



Figure 3: A Petri net and a similar Petri system

1. Let p be a primitive discrete ESM morphism and t € T, then p and t are similar, denoted
p~tif

W (s,t) = |Min(p) N e~ 1(s)]
Vse S ’ _
’ { W(t,s) = [Max(p) N~ 1(s)|
2. For g = (V,y) a discrete S—graph and M an S-marking, we say that g and M are similar
and we write g ~ M if

Vs €S : M(s)= o~ (s)

3. A similarity between ES and N is a byjection n: P — T such that

e For each p € P and for eacht €T,
n(p) =1 if and only ifp ~ 1
o Init ~ M,

We say that N = (S, 7, W, My) and ES = (Init, P) are similar (for n) and we write ES ~ N
(for n), if there exists a similarity  from ES to N.

It is obvious from the figures 1, 2, 3 and definition 3.6, that the place names of a P/T-net are
used as node labels in an ESM system. In this way, the nodes in Init and P get the same meaning
as the nodes in processes: they represent tokens. As a result, productions describe how tokens are
replaced (rewritten) when they’re applied to a configuration.

In the following, it is argued that similarity is strongly connected to the notion of isomorphism
by proving that nets, similar to the same system, are isomorphic and vice versa. We start with
stating that for P/T-nets (without isolated elements) and a similar Petri system, every place name
appears as a label in a production.



Lemma 3.1 For a Petri net N = (S,T,W, My) and a Petri system ES = (Init, P) such that n
1s a similarity from ES to N,

S = [ (p(Min(p)) U p(Max(p))

peEP
Proof. Let t € T, p € P such that ¢t = n(p). For any s € S,

se% = W(s,t)>1
= [Min(p)ne~'(s)] > 1
<= s € p(Min(p))

It can be proven in the same way that s € t* if and only if s € ¢(Maz(p)). The result then follows
from S = U (*tuUt®). O
teT

The previous theorem 1s valid only in the context of Petri nets without isolated elements. This
i1s because an isolated place in a net, does not occur as node label in one of the productions of
a similar system. If we admitted the presence of i1solated places in a Petri net, then Petri nets
similar to the same system would be isomorphic up to those isolated places (i.e. they could differ
in those isolated places only).

Theorem 3.1 Let ES = (Init,P) be a Petri system and let N = (S,T,W,My), N' =
(S", T, W' M{) be Petri nets. Then ES ~ N and ES ~ N' implies N’ is isomorphic with N.

Proof. Suppose ES is similar to N with »’ a similarity from ES to N’, then

S = Uep (p(Min(p)) Up(Maz(p)))

S = Upep ((Min(p)) U p(Maz(p)))
thus S = S5’. Now let

& 8 — 5 be the identity, and

& o= gon i T—=1T

then & and &; obviously are bijections. We now prove that £ = (£1,&2) is an isomorphism. Let
seS, teT and let ' € §' ¢/ € T’ such that s’ = &;(s) = s and ¥/ = £3(s), then

W(s',t')y = |Min(p)Ne=L(s)]

[Min(p) N~ (s)]

W(s,t) and one may show that
W', s'y = WI(,s)in a similar way

Theorem 3.2 Let N = (S, T, W, My) be a Petri net, and let ES = (Init, P), ES' = (Init’, P)
be Petri systems. Then ES ~ N and FS' ~ N implies ES’ is isomorphic with ES.

Proof. Assume ES and ES’ are similar to N with 5 and n’ similarities from resp. E\S and ES’ to
N. Then ¢ = 5'~ton: P — P'is a bijection. We now prove that for each p € P and each p’ € P,
&(p) = p" if and only if Cyis isomorphic with C7.

Let Cp = (V,R,p) € P and C}, = (V', R, ¢') € P’ such that n(p) =t = #'(p’), then for each
s €S, |Min(p) Ne~L(s)| = W(s,t) = [Min(p') N ¢'~1(s)|, and thus |Min(p)| = |Min(p')|. By
consequence, we can construct a label preserving bijection from Min(p) onto Min(p’). For the
same reason we can construct another label preserving bijection from Maz(p) onto Maxz(p').

Define p : V' — V' the union of these two bijections, then, by the digjunction of Min(p) and
Maz(p) (resp. Min(p') and Maz(p')), p also is a bijection. Now, if (v1,v2) € R, then vy, vy are



elements of resp. Min(p) and Maz(p). As a consequence, u(vy) and p(vg) are elements of resp.
Min(p') and Maz(p'), and thus is (p(v1), p(v2)) € R'.

Init is isomorphic with Init’ then follows from the fact that |¢=1(s)| = Mo(s) = |¢'~1(s)|, for
each s € S. O

For a given net, we now know that all similar systems are, up to an isomorphism, the same.
The Esm construction constructs one such system for a given net N that will be similar to N.
We then know from theorems 3.2 and 3.3 that every other Petri system ES, similar to N, is
isomorphic to Fsm(N).

The FEsm construction essentially creates for every transition t a similar production p, as shown
in figure 2. The main problem is to create, for every place, the requested number of different nodes.
To this aim, nodes will be tuples (s, i) where s is a place and 7 is a serial number. This structure
of the created nodes is however not essential to the ESM construction, it is just an easy way to
assure that different nodes have different identities. For example, the production constructed for
the transition shown in figure 2 will be the primitive discrete ESM morphism p : ¢ — & where

Vg = {(a’ 1)’ (b’ 1)’ (b’Q)} E, = 0 Pg = {((a’ 1)’a)’ ((b’ 1)’[))’ ((b’Q)’b)}
Va :V{ (c"})’ (d’ 1)} Ep =10 $h = {((c’ 1)’6)’ ((d’ 1)’ 1)}
pP=Vg X Vp

Definition 3.7 (Esm Construction) Let N = (S, T, W, My) be a Petri net. Consider a num-
bering of the transitions for this net: T ={t; |j € J} for some J C IN.

1. For a transition t € T, define Fsm(t) as follows
Let Vi = Useo, { () [ L <i < W(s, ) } and Vi = Uepe {(5,0) [1 < S W s) ), then
Esm(t) is the discrete ESM morphism p : g — h defined by

(Vg,ﬁ,gog) with SDgZVg—>SZ(S,Z')l—>S
(Va,0,0n) with ¢p Vi — S :(s5,4) — s
Vy x Vi

= o>w
l

2. For an S-marking M, Esm(M) is defined by Esm(M) = (V,¢) where

V= {sl1<i< M)}
SES
go:VE—>S:(5,i)n—>5

3. Esm(N) is defined by Esm(N) = (Init, P) where

Init = Esm(My)
P={p;j|ljeJ} wherep; = Esm(t;), j€J

Another remark is needed here. If we consider a net N that is not simple, 1.e. there exist
t,t' € Ty such that ®t = ®* and t® = ¢'®, then the Esm construction would create for ¢ and ¢
identical productions p and p’, because Esm(t) is only determined by ®t and ¢*. This would result
in Esm(N) = (Init, P) not being similar to N because P contains only one production for the
transitions ¢ and ¢/, which implies that there doesn’t exist a bijection between P and Tn. This
situation can however be solved easily by assuring that all constructed productions use different
nodes, which can be done by including the transitions’ identity into the nodes’ identity. This way,
a node would be a triple (s,t,7) € S x T x IN. Such an ”improvement” however, would render the
FEsm construction more complicated and would give the impression that the transitions’ identities
somehow have to be coded into the process structures.

Lemma 3.2 For a net N = (S, T, W, My), Esm(N) is a Petri system.



Proof. Let ES = (Init, P) = Esm(N). Each p € P clearly is a primitive discrete ESM morphism
and Init is a discrete X—graph. O
Theorem 3.3 Let N = (S, T, W, My) be a Petri net, then Esm(N)~ N.
Proof. Suppose T = {t;|j€J} and let ES = Esm(N) with ES = (Init, P), then P =
{Esm(t;)|jeJ}. Let p; = Esm(t;),j € J. Now, let n: P — T : p; — t; (this clearly is a
bijection). We prove that Init ~ My and 5(p;) = t; if and only if p; ~ ¢;.
1. Let Init = (V,¢), s € S, then
p7Hs) = {5 ) eV]s =5} ={(s0) |1 < i< Mo(s)}
thus |p~1(s)| = Mo(s).

2. n(p) =t if and only if p = p; and t = ¢; for some j € J. Then for each s € 5,

|Min(p) N~ (s)] = [{(5,) [1<i<W(s,t)} = W(s,1)
(Maz(p)ne™(s)] = H{(s,)[1<i<W(ts)}H = W(ts)
but then p ~ ¢. a

The Petri construction is the inverse of the Esm construction in that it constructs a Petri net
out of an ESM system. This i1s done by creating for every production p a transition . The thus
constructed Petri net will be similar to the given Petri system (Theorem 3.4). Again, it then
follows from theorem 3.1 that every Petri net similar to the original system, is isomorphic to the
constructed one.

Definition 3.8 (Petri construction) Let ES = (Init,P) be a Pelri system. Consider a num-
bering of the productions of ES: P = {p; |j€J} for some J C IN, and let, for each j € J,
pj = (Vi Ry @5)-

1. For a configuration g = (V, @) € Conf(ES), define M = Petri(g) as
M(s) = ¢~ (5)]
2. N = (ST, W, My) = Petri(ES) is constructed as follows: choose, for every j € J, a transi-

tion 1;,

T=A{tjljel}

S=Jei(v)
jeJ

My = Petri(Init)

. f (s,t) — [Min(p;) Ny (s)]
W.(SXT)U(TXS)HIN.{(U’S) - |Max(i)j)ﬂf0j_l(5)|

It is obvious from the construction that for every ESM system ES, Petri(ES) is a Petri net.
Theorem 3.4 Let ES = (Init, P) be a Petri system, then ES ~ Petri(ES).

Proof. Suppose P = {p; |j€ J }andlet N = (S, T, W, My) = Petri(ES). Then T'= {t; |j€ J}.
Now, let n : P — T : p; ~ t; (this clearly is a bijection). We prove that Init ~ M, and
0(pj) = t; < pj ~ 1.

1. Mg = Petri(Init) implies M(s) = |¢~1(s)|,Vs € S. Thus Init ~ M.
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2. n(p) =t if and only if p = p; and ¢ = ¢; for some j € J. Consider p; € P and t; € T for
some j € J, then by construction we have, for each s € S

W(s,tj) = [Min(p;) ;' (s)]
|Maz(p;) N (s)]

E

o~

<.

v

N
|

which shows that p; ~ ;. a

We have now shown that it is possible to define a structural similarity between P/T-nets and
Petri systems that is closely related to isomorphism. We will now do the same for the processes
of a net and the process structures of a system.

3.3 Processes and process structures

Analogously to the way that Petri nets and Petri systems are related to each other, we can
relate processes with process structures using their (structural) similarity and by Fsm and Petri
constructions. Consider the process shown in Figure 4, which is a process of the net in Figure
3. A process of a Petri net describes how the tokens are replaced from one place to another
and which transitions have been used to accomplish this. In ESM systems, the first is done by
computation structures, who describe a rewriting history of an ESM system. The second one,
describing the productions that have been used during this rewriting process, is not contained
within a computation structure but is described by a covering which maps productions into the
computation structure.

A similarity will thus be defined as a tuple of bijections between a process m and a process
structure C' together with its covering, one bijection between the conditions of = and the nodes of
C and another between the events of 7 and the elements of the covering, as is shown in Figure 4.

A process 1s represented graphically by circles and boxes connected by directed edges repre-
senting respectively conditions, events and the flow relation. The names are now labels. A process
structures is drawn as circles, representing nodes, labelled with their node labels connected with
vertical lines directed from top to bottom, who represent the ESM morphism. The covering is
represented graphically by drawing rectangles labelled with the productions used at that place in
the computation or process structure.

a b
a b S R O

Figure 4: A process and a similar process structure
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Definition 3.9 (similarity of processes and process structures)
Let N = (S, T, W, My) be an Petri net, ES = (Init, P) a Pelri system, and let 7 = (B, E, F,v) €
M(N), C=(V,R,¢) € IComp(ES) such that cov = (p;, fi)1 be a P—covering of C', Then p is a

similarity from (C,cov) to w if and only if p = (pu°, p*) where

p® V. — B alabel preserving bijection
o I — E  a bijection
such that
. . .
. pi(i) = po(fi(Min(p;)))
Viel: o/ c
{ pe(0)* = pt(fi(Max(pi)))

Whenever there exists a similarity ¢ between a process structure with a covering (C cov) and
a process m, we say that (C,cov) is similar to = and write (C, cov) ~ 7. For a set of processes II
and a set of process structures C, we say that C 1s similar to II if

e for each C € C there exists a # € II such that C' is similar to =, and
e for each 7 € II there exists a C € C such that C' is similar to .

For the remaining paragraphs within this section, N = (S, T, W, My) will be a Petri net and
ES = (Init, P) a Petri system such that 7 is a similarity from ES to N.

Just as we did in the previous section, we can prove the connection between isomorphism and
similarity of processes and process structures (with coverings), i.e. processes similar to the same
process structure (with covering) are isomorphic and process structures (with coverings) similar to
the same process also are isomorphic. Both statements are proved by composing the similarities
w1 and po to an isomorphism.

Theorem 3.5 Let w1, ms be processes of N and let C be a process structure of ES with a valid
P—covering cov = (fi,pi)1 of C.
If (C,cov) ~ w1 and (C,cov) ~ wy then w1 is isomorphic to ma.

Proof. Let py = (p$, pd) and po = (p, pb) be similarities from (C, cov) to 71 and (C, cov) to ma,
respectively, where my = (By, E1, Fi,v1), w2 = (Ba, Fa, Fa,va), C = (V, R, ) and cov = (fi,p:)1,
as usual.

T%L C L»ﬁ}l’z
g

Let 3° = pgo;ﬁ_l be a mapping from By to Bs, and let 8¢ = péopﬁ_l be a mapping from E; to
E5. Then B® and B® are obtained by composing bijections, and thus are bijections themselves. By
consequence, 3 = 3° U 3¢ is a bijection because 5° and 3¢ have disjoint domains and codomains.
This way, 8 automatically fullfils the properties € By < f(x) € Ba and € Fy & 3(z) € Es.

Thus it only remains to be verified that (z,y) € Fy if and only if (8(»), 8(y)) € F». Now
(z,y) € Fy implies either # € By and y € Fy or # € Fy and y € By. We'll consider the first case
(the second is analoguous).

Take v € C and i € I such that p¢(v) = z and g (i) = y, then

(8(x), B(y)) € F

($ay)EF1

LRGN R (3
&
m

Thus, (#,y) € Fy if and only if (3(z), B(y)) € Fo. a
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Theorem 3.6 Let © be a process of N and let C,C' be process structures of ES with valid P-
coverings cov and cov’ of respectively C and C’.

If (C cov) ~ 7 and (C';cov’) ~ w then C is isomorphic to C".
Proof. Let py = (p§,pt) and pa = (p§, pb) be similarities from (C,cov) to 7 and (C’, cov’) to
7, respectively, where # = (B, E,F,v), C = (V,R,¢), C' = (V| E' ¢') and cov = (fi,pi)1,

/o ! /
cov’ = (fj,pj)s, as usual.

el e
v

Let v° = pg_l o 1tf be a mapping from V to V', and let % = /ﬂ;l o it be a mapping from I
to J. then 7° is a label preserving bijection from C' to C’ and 4’ is a bijection from I to J since
they are obtained by composing such bijections. We now show that C' is y*—isomorphic to C’, for
which it is sufficient to show under the restrictions of Petri systems, that v°(R) = R’.

Now, take (z,y) € fi(R;), then for each i € I and j € J such that v*(i) = j,

(r,y) € fi(R) < { ;EJ{Z %Z; le)))) | R; = Min(p;) x Maz(p;)
{ pi(x) € ul(fz(Mm(Pz))) = *ui(4)
e
pi(x E'szzu%} in(p; i (o
< { Ki() € 1(7)° = us(f (Maz () = em)l)
o { v°(x) € fi(Min(p}))
7°(y) € f;(MaI(p}))
& ()7

By consequence, v°(f;(R;)) = f»(R]») and thus v(R) = R/ since R = (Ujerfi(R;))* and
R = (Ujes fi(RS))" u

We now turn to the construction of a similar process structure (with covering) for a given pro-
cess, the F'sm construction. Since there exists a label preserving bijection between the conditions
of a process m and the nodes of a similar process structure C' (this also is obvious from figure 4),
we can just take the condition identities as nodes of Esm(w) together with their labels, and use
the identity relation as a label preserving bijection. The Esm construction then creates, for every
event e, an element (f, p) where p is the production similar to the transition corresponding with
the event, formally p = n~'(v(e)), and where f maps C}, on the nodes in C' rewritten by p.

Definition 3.10 (Esm construction) Let 7 = (B, E, F,v) € II(N) and consider a numbering
of its event nodes: B = {ey,ea,...,em }. Then Esm(w) is defined by Esm(w) = (C,cov) where
C = (V,R,p) and cov = (f;,ps)1 with Cp, = (Vi, Ry, ;) such that

1. V=B. For the purpose of clarity, we will often use idy : B — V the identity.

2. o=v|s

3. Let I ={1,2,...,m}, then for each i € I, p; = n~ (v(e;)) and f; : Cp, — C such that
fiMin(py)) = idy(%e)
fi(MaX(pi)) = idv(@i.)

filvr) =va & @i(v1) = pi(va)

4. R= (Uierfi(R:))"

The first thing to be verified is that the E'sm-construction of a process (of N), yields a compu-
tation structure (of £S). To this, we prove that the constructed covering is a valid P-covering of
C'. Then, we verify that the constructed process structure and covering are indeed similar to the
process. It then follows from theorem 3.6 that every other similar process structure is isomorphic
to the constructed one.
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Lemma 3.3 For m a process of N, Esm(w) ~ =.

Proof. Let # = (B, E, F,v) and let Esm(w) = (C, cov) where C' = (V, R, ) and cov = (fi, pi)1.
Reconsider the numbering of the events used in the Esm construction.

Define p = (p,pf) as p° = idy and p® : I — E : i — e, then p°(fi(Min(p;))) =
idy (idy (%e;)) = ®e; = *p' (i) and p°(fi(Maz(p;))) = idy ' (idy (e:%)) = &;® = p'(i)® O

Lemma 3.4 For m a process of N, Esm(w) is an element of IComp(ES)

Proof. Let Esm(w) = (C,cov) where 7 = (B, E, F,v), C =V, R, ) and cov = (f;, p;)1 such that
Cp, = (Vi, R;, ¢;). We subsequently prove that cov is a valid P—covering of C' and that Min(C) is
isomorphic with I'nit. cov is a P—covering of C' because

1. All p; clearly are elements of P and all f; are CS morphisms from C,, into C'.

2. This follows from the non-branched places property of occurence nets, i.e. for any b € B,
|®6] <1 and [p® < 1.
The covering then is valid by the Esm construction since R = (Ujer fi(R;))*.
Min(C) = Min(w), thus Mo(s) = |Min(C) N ¢~ 1(s)| for each s € S. Init ~ My, thus
Mo (s) = |Init N p~1(s)| for each s € S. By consequence, there exists a label preserving bijection
between Min(C') and Init, thus they are isomorphic (since they are discrete graphs). a

The inverse operation is performed by the Petri construction. As is done in the Esm construc-
tion, we will take the set of conditions to be the set of nodes of C. The Petri construction then
creates for every element (f,p) in the covering, an event node e such that ®c = f;(Min(p;)) and

e® = fi(Maz(p;)).
Definition 3.11 (Petri construction) Let C' € IComp(ES) and cov be a P-covering of C,
where C' = (V, R, @) and cov = (p;, fi)1. Define Petri(C,cov) to be (B, E, F,v) such that

1. B=YV. For the purpose of clarity, we will often use idg : V. — B the identity.

2. Lel E be a sel containing |I| event nodes. Consider a numbering of this eveni nodes such
thalt E can be wrilten as: E={e; |i €1}.

3. Define pre: I—28: i idg(fi(Min(p;)))
post : I — 2B i idp(fi(Max(p;)))

F = U ((pre(i) x {e; ) U ({ e } x post(7)))
4. vlp: B—S: b g(b)
vig: E—T: e — u(p)

Again, Petri(C, cov) constructs a process of N (the verification is left to the reader) that is
similar to (C, cov), as is shown in the following lemma.

Lemma 3.5 For C' a process structure of ES with a wvalid P-covering cov, (C,cov) ~
Petri(C, cov).
Proof. Let Petri(C,cov) = (B, E, F,v) where C' = (V, R, ) and cov = (f;, pi)r such that Cp, =
(Vi, Ri, ¢;). Reconsider the numbering of the event nodes in the Petri construction.

Define p = (p°, p¥) as p° = idg and p' : I — E : i — ¢;, then *ui(i) = ®e; = pre(i) =
idp(fi(Min(p;))) = p°(fi(Min(p;))). The equality pi(i)® = p°(fi(Maz(p;))) is shown analogu-
ously. a

It then follows again from this lemma and theorem 3.5 that every process similar to (C, cov)
is isomorphic with Petri(C', cov).

14



4 Petri net and Petri system semantics

In this section, it is shown that the process structures yield the same semantics for Petri systems
as processes do for petri nets. For this, it is proved that two nets have the same sets of processes
if ans only if similar systems have the same process structures, and that similar nets and systems
have similar sets of processes and process structures. This last situation is shown in Figure 5.

N similarity S

11 IComp

simi-
larity

Figure 5: Similar nets and systems have similar processes and process structures

It are these observations that justify the use of process structures as a Petri net semantics
and using processes as a Petri system semantics. Moreover, it is possible to use processes based
semantics, such as bisimilarities, for Petri systems and, conversely, to use process structures based
semantics, such as the external effect semantics, for Petri nets. The first one is studied in more
detail by J.Delcour [Del93], the second one will be shown by examples in the second part of this
section.

4.1 Processes and process structures

Theorem 4.1 Let Ny, Ny be Petri nets and let ES1, EESs be Petri systems such that Ny 1s similar
to £S1 and No is stmilar to ESs.
Then, TI(Ny) = II(N2) if and only if IComp(ES,) = ICompES,.

Proof.

Let C; € IComp(ESy), then Petri(Cy) € T(Ny) = T(N2) thus Esm(Petri(Cy)) €
IComp(FSs) and thus Cy € IComp(ESa) because Esm(Petri(Ch)) is isomorphic to C7.

<] analoguous. ad
g

We now prove that similar nets and systems have similar sets of processes and process structures
(every process is similar to a process structure and vice versa), as is shown in Figure 5.

Theorem 4.2 Let N be a Petri net and let ES be a Petri system. If ES s similar to N, then
M(N) is similar to IComp(ES).

Proof. We have to prove that there exists, for every C' € IComp(ES), a process m € II(N) such
that C' is similar to 7 and vice versa.

For the first, Petri(C') is a process in II(N) and for the second, Fsm(w) is a process structure
in IComp(ES). O
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4.2 External effect for Petri nets

We will first prove some properties about the external effect in general, to simplify the study of
equivalence of both Petri and ESM systems. The main property to show is that two systems are
equivalent if the productions of one system can be obtained as the effect of the other system and
Vice versa.

First, since Eff(P) (for an ESM system P) can be derived inductively, we have following
properties:

Lemma 4.1 Let P, P’ be two ESM systems, then
1. PCEF(P) = BF(P) C B (P')
2. PC Eff(P)= Eff(PUP")C Ef(P)

Theorem 4.3 Let Py, Py be two ESm systems, then Eff (P1) = Eff (Pa) if and only if Py C Eff(P2)
and P2 g Eﬁ(Pl)

Proof. Suppose Eff(Py) = Eff(P-), then P, C Eff (P1) = Eff (P2) and P2 C Eff (P2) = Eff (P1).
Conversely, suppose P; C Eff (P2) and P, C Eff(P1). Then P, C Eff(P2) implies Eff (Py) C
Eff (P2) and P, C Eff (Py) implies Eff (P2) € Eff (P1), which completes the proof. a

So in order to prove that two systems have the same effects, it suffices to show that the pro-
ductions of one system can be generated by the other and vice versa. For general ESM systems,
these properties are not very important since Comp(P) is not compositional with respect to the
composition of computations, and thus Eff(P) isn’t too. For Petri systems however, Comp(P)
actually is a compositional semantics with respect to the union of Petri systems (if we consider
nets without an initial marking), since conditional computation structures degenerate to just com-
putation structures for this kind of ESM systems. This is because the conditions, in a conditional
computation structure, describe the way edges have to be rewritten by the context to ”enable” a
computation structure. Since we do not have edges in a Petri system, the role of these conditions
disappear. Thus, we can introduce a composition operator for Petri nets such that Comp(N) and
Eff (N) are compositional for this operator. The composition of two Petri nets Ny and N then is
the Petri net that is similar to Fsm(N1) and Esm(Ny), or Petri( Esm(N1)U Esm(N3)).

We will now consider two Petri nets N7 and N; and question wether they have the same external
effect or not, and how this differs from transition oriented Petri net semantics (e.g. bisimulation).
We will do this by studying an example and counterexample.

Figure 6 shows two Petri nets N7 and Ny together with similar Petri systems P, and P». Figure
7 then shows how the productions of P; can be obtained as the effect of computations in P> and
vice versa. This proves that N; and N have the same external effect. Intuitively, this can be
explained by observing that b,c and d form equivalent places because a token, in one of these
places, can always evolve to a token in another place. By consequence, it does not matter where
the transitions ¢; and ¢} place their output tokens. Using bisimilarity, this effect could only be
obtained by making the transitions s, 3,4 and t{,t5, 5 silent.

Conversely, consider the Petri nets Nj, N with their similar Petri systems P;, P} in Figure
8. Both nets have the same firing properties, and will thus be equivalent for bisimulations if the
corresponding transitions have the same labels. For the external effect, however, it is impossible
for N{ to produce a token in a place labelled e, thus N and N/ differ for the external effect
semantics (productions pj and p§ cannot be obtained as the effect of system Py).

If we would like to consider N and N (or P; and Pj) equivalent, we would have to define a
more abstract semantics than the external effect (e.g. one that does not consider nodes labelled
e). Some research still has to be done in this direction.
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Figure 6: example nets and systems

Figure 7: Productions (above) with their corresponding computations (below).
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Figure 8: counterexample nets and systems

5 Conclusion

As is claimed in the introduction, we have shown that P/T-nets correspond to ESM systems that
operate on discrete graphs and that processes then correspond to process structures. We can
now argue that, on the one hand, computation structures play the same role for ESM systems as
processes do for Petri nets, i.e. they give a detailed description of the computations of a system.
On the other hand, we can use the external effect as a more abstract semantics of Petri nets, which
1s a compositional semantics for Petri systems and thus for Petri nets. Also, this approach shows
that ESM systems are essentially Petri nets with relations between the ”tokens” (nodes in ESM
terminology).

Furthermore, it has been shown in [Del93] that similar constructions can be defined for labelled
P/T-nets and that their concurrent bisimilarity [BDKP91] can be easily expressed using labelled
Petri systems and their external effect. It should still be investigated how other bisimilarities (such
as FC-bisimilarity) can be expressed by labelled Petri systems, and how bisimilarity can be used
for general ESM systems.
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