
Encapsulation and composition as orthogonal
operators on mixins: a solution to multiple
inheritance problems
M A R C V A N L I M B E R G H E N 1 and T O M M E N S2

1Department of Computer Science, Faculty of Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels,
Belgium.
2Department of Mathematics, Faculty of Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium

Received August 1994; Revised August 1995

In class-based multiple inheritance systems, interpretations as different as duplication, sharing and specialization are
associated with the single phenomenon of name collisions. To deal with those name collisions, various mechanisms
have been proposed, but these solutions generally restrain software reusability which is considered to be one of the
key features of OO systems. On top of this, most multiple inheritance systems do not completely cover all the dif-
ferent interpretations of name collisions. This paper shows that the entire multiple inheritance dilemma can and
should be seen as a conflict between inheritance and data encapsulation only. Orthogonalizing these two concepts
in a mixin-based framework permits appropriate solutions of all the problems listed above. To this extent a formal
model is proposed together with its denotational semantics. This minimal multiple inheritance model establishes a
valuable basis for OO languages and software engineering systems.

Keywords: Multiple inheritance, name collisions, mixins, encapsulation, composition

1. Introduction

In class-based languages that use multiple inheritance, multiple parents of a class can have instance
variables or methods with the same name. The question arises how to treat these name collisions. Dif-
ferent semantics to deal with those collisions are needed: specialization, sharing and duplication. The
diversity of these semantics causes a lot of problems for current multiple inheritance systems.

Knudsen [1] fully described the problems concerning duplication of instance variables of shared
ancestors. We will generalize these problems by taking also methods into account. Carre´ and Geib
[2] investigated another problem, namely the preservation of homonymous attributes of multiple, inde-
pendent superclasses. They rejected message selector renaming and class qualification as solution
mechanisms. Snyder [3] indicated problems resulting from the exposure of inheritance structure.
Sakkinen [4] discussed the problem of unwanted side effects between independently developed sub-
classes of a single parent.

Object Oriented Systems3, (1996) 1–30

0969-9767 1996 Chapman & Hall

Historically these different kinds of problems were investigated one by one as they emerged. Research
literature mostly concentrated on only one of them, and suggested a solution specific to one category
while ignoring the others. Some systems simply gathered different solution mechanisms, but – as far as
we know – never succeeded in accurately solving all the problems.

We will involve another category of problems in the field of multiple inheritance, namely encapsula-
tion (in the sense of attribute visibility). We will show that the mentioned problems are closely related.
We will exploit this similarity to uniformly solve all problems with a single strategy, namely an orthogonal
and disciplined combination of mixin-based inheritance and encapsulation:

1. Mixin-based inheritance [5] can accurately solve duplication problems. It also deals with the
exposure of inheritance structure in the sense that it gives rise to a layered software engineering
scheme.

2. Encapsulation of methods is often only considered with regard to message passing clients. How-
ever an encapsulation mechanism can also be very useful for inheritors: introducing scope in the
inheritance hierarchy avoids name collisions solving the problems concerning homonymous char-
acteristics. Moreover encapsulation towards inheritors favours the independent development of
subclasses.

The key to solve the different multiple inheritance problems lies in the combination of both concepts.
Bracha and Lindstrom [6] showed that viewing inheritance as a composition of software modules can

be regarded as a new way of building adaptable software. We will introduce an encapsulation mechan-
ism similar to theirhideoperator. Together with the usual inheritance operator, this encapsulation opera-
tor is appropriate and sufficient to deal with multiple inheritance problems. No additional operators are
required.

In the evolution of object-oriented programming two groups of languages have emerged: class-based
languages and prototype-based (or object-based) languages. Class-based languages define inheritance on
classes while prototype-based languages do this on objects. The problems mentioned will be described
in a class-based medium, but are also present in prototype-based languages that try to support multiple
inheritance.

The class-prototype controversy, however, concerns a much larger dilemma than the absence or pres-
ence of classes. Prototype-based languages are generally considered too flexible, resulting in a mere
code-sharing mechanism without conceptual meaning. The class-based mixin model we will present
suffers from the same criticism since mixins are code components that can be freely composed. Our
model should however be seen as a basis that can be orthogonally extended with suitable software
engineering tools reinforcing reliability, as will be clarified in Section 7.

2. Multiple inheritance problems

In this section we will illustrate the common multiple inheritance problems with program examples. To
this extent we first need to agree upon some terminology and notational conventions. In the rest of this
text the termattributewill designate an instance variable or a method. We will also adopt the following
message-passing notation in our examples:

* Messages with an explicit receiver are denoted by writing the receiver followed by the message-
selector, that we will calllabel. Arguments can be passed by putting them behind the label

2 Van Limberghen and Mens

between parentheses; e.g.p move(1,2)means sending the messagemoveto p with arguments1
and2.

* Receiverless messages represent self sends, e.g.x meansself x.
* To avoid confusion with receiverless self-sends, formal argument names are always preceded by a

symbol.
* Super calls are denoted with thesuperkeyword. We use super calls only to refer to the method we

are currently overriding. Consequently it is redundant to specify which super method is activated.
In other words when for example overriding themovemethod, we will no longer writesuper
move(1,2)to call the super variant of themovemethod, but simplysuper(1,2).

* We have included instance variables in a slot-based way [3]: instance variables can only be
accessed through a pair ofaccessor methods,even from within the class: a retrieve method that
returns the value of the instance variable, and an update method that expects an argument and
updates the value of the variable with this argument. From the point of view of the client (inheritor
as well as message-passing client), accessor methods must behave in exactly the same way as
ordinary methods: a client should not be aware of whether she is invoking state or behaviour.
This obviously leads to a higher degree of abstraction and modifiability, making inheritance
more powerful. To make the examples more clear we will adopt the convention that, given a
certain instance variablex, its accessor methods both have the same labelx. Nevertheless they
can be distinguished from each other since the update method expects an argument between
parentheses, while the retrieve method does not.

2.1 Duplication of common ancestors

A first multiple inheritance problem arises when different parents of a class have common ancestors.
Should the instance variables in those common ancestors be duplicated or shared? Duplication means
simultaneously holding multiple versions of the instance variable. A similar question holds for a method
of the common ancestor. Should the associated method-body be invoked once or several times when the
method is selected? The following example illustrates a class in which a combination of both duplication
and sharing (respectively, multiple and single invocation) is desired.

Consider the example depicted by the class hierarchy in Fig. 1. The black shadowed rounded rectan-
gles can be seen as traditional classes. The code of the root classPoint and its subclass extensions are
presented on the left. APoint is a class containing two instance variablesx andy, a movemethod that
moves the point, and adoublemethod that doubles thex andy-values of the point by making use of the
movemethod. Suppose we want to obtain aBoundedPoint class, that ensures that they-value of the
point never exceeds a certain constant upper bound. Then we need to override the existingmovemethod
with one that performs an additional check. The upper bound does not even have to be a constant value,
but can be an arbitrary function, e.g. a sinus. To illustrate this, we will extend theBoundedPointclass to
a SinusBoundedPointclass by overriding theboundmethod in an appropriate way. Invoking themove
method on an instance of thisSinusBoundedPointclass moves the point, and checks if the new ordinate
of the point lies under the curve illustrated in Fig. 2.

Another specialization ofPoint is HistoryPoint . Its instances print the old value ofx andy every time
the movemethod is invoked.

Solving multiple inheritance name collisions using mixins 3

Until now we have not encountered any problems, since we did not multiply inherit yet. The grey
shadowed rounded rectangles in Fig. 1 denote classes we would like to construct with some multiple
inheritance mechanism. Suppose that we want to create aHistoryBoundedPoint class that includes the
functionalities of bothBoundedPoint andHistoryPoint . It is clear that thex andy instance variables
and themovemethod that occurred in thePoint class should be shared in the newHistoryBounded-
Point class. The two differentmovespecializations have to be combined somehow.

Consider on the other hand aDoubleBoundedPointclass, that ensures that the upper bound of a
certainPoint never exceeds two upper bounds: a sinus bound and a horizontal bound. In other words,
we want to check if they-value of a point always lies under the curve depicted in Fig. 3.

Fig. 1. Point class hierarchy and corresponding code.

Fig. 2. An upper sinus bound.

4 Van Limberghen and Mens

DoubleBoundedPointneeds two versions of theboundattribute, once as a constant, once as a sinus.
Consequently theboundattribute must be duplicated. Themovemethod-body of Bound needs to be
invoked twice: once with eachboundversion. HenceDoubleBoundedPointneeds duplication of the
attributes introduced by the common ancestorBoundedPoint, while the attributes of the common ances-
tor Point need to be shared. Reference [1] even gives an example where an instance variable of the same
ancestor common ton parent classes needs to be duplicated less thann times. The programmer thus
needs a flexible control concerning sharing and duplication.

2.2 Homonymous attributes

The previous problem concerned multiply inheriting the same attribute. Another problem arises when
we want to inherit different attributes with the same name, necessarily from different parents. One needs
a mechanism to invoke each of these attributes separately.

Consider for example thePersonclass hierarchy in Fig. 4. Some persons are entitled to reduction, but
only if they are younger than 25 years. In this case they receive a reduction card, and belong to the

Fig. 3. Composition of two upper bounds.

Fig. 4. Person class hierarchy.

Solving multiple inheritance name collisions using mixins 5

PersonWithReduction class. ASportsman also possesses a card, granting him access to the sport
infrastructure.TopSportsman represents a sportsman with a special kind of sport card number. A
sportsman that is entitled to reduction is represented bySportsmanWithReduction. She possesses
two cards, one as sportsman and one to benefit from a reduction.

A name collision between those different cards can appear by coincidence if both specializations of
Personhave been designed independently. It can also be intentional, namely when aSportsmanand a
PersonWithReductionmust be mutually substitutable in some applications. For example in a program
that fills in the card number of a person via a dialog box that can be used for both kinds of card number.

Suppose that we want the classSportsmanWithReduction to provide a methodsetCardNumbersthat
updates both card numbers. In this case we need to access both card numbers separately. A multiple
inheritance system should offer this access possibility. Moreover such an access strategy should take the
so-called genericity inhibition problem of Carre´ and Geib [2] into account. In this case this means that
the setCardNumberscode ofSportsmanWithReduction should also be reusable forTopSportsman-
WithReduction.

2.3 Encapsulation of attributes

In the literature the term encapsulation has been employed with different meanings. When we speak of
encapsulation we always mean attribute hiding. Encapsulation of attributes is generally accepted as an
important aspect of OO systems. Due to a conflict of interests the interaction between encapsulation and
inheritance is very delicate. On one hand a subclass should have the possibility to override the imple-
mentation attributes of his superclass. On the other hand a subclass should not have access to the imple-
mentation details of its parent, in order to guarantee the possibility to re-implement the superclass.

Most OO systems include encapsulation by distinguishing different kinds of attributes. In C++ [7] for
instancepublic attributes are visible to all clients;private attributes are only locally visible (i.e. in the
extension itself);protectedattributes are invisible to message passing clients, but visible to inheriting
clients (i.e. subclasses).

In the example of Fig. 5, we define aLamp as a class containing two public methodsdimandbrighten
to regulate theintensityof the lamp. ASafeLamp is a special kind of lamp with a restricted intensity. A
ColouredLamp is another kind of lamp of which thecolour is given by a public instance variable. The
intensityof the colour can only be adjusted via the public methodsdarkenand lighten.

In software engineering it is opportune to have the possibility to write the subclass and superclass
code independently (after having agreed on the super calling and self sending protocol if necessary).
This is also important in multiple inheritance to obtain a higher degree of substitutability of the
superclass.

Due to independent development, Lamp and Colour may contain a homonymous implementation
attributeintensity, denoting the intensity of the light and the intensity of the colour, respectively. Since
intensityis an implementation attribute (denoting an internal characteristic of the lamp), it shouldn’t be
visible for message-passing clients. This in indicated in Fig. 5 by a horizontal line separating the inten-
sity from the other attributes. The question here is which kind of encapsulation is appropriate. Since the
subclassSafeLamp overridesintensity, intensityshould be declared as a protected attribute inLamp.
The subclassColouredLamp on the other hand coincidentally contains also anintensity attribute,
requiring intensity to be declared as a private attribute inLamp. Consequently, in the context of

6 Van Limberghen and Mens

independent development of software components, the use of protected and private attributes (as in C++)
exhibits a conflict between data encapsulation and reusability interests. We need a more general encap-
sulation mechanism that allows the possibility to restrict visibility towards inheritors.

3. Current multiple inheritance systems

Current inheritance systems do not offer the required expressiveness to deal with the problems indicated
in the previous section. We will now present a list of strategies commonly found in the literature, and
show their shortcomings.

Linear approachestowards multiple inheritance automatically linearize the inheritance graph in order
to handle name collisions. The linearization algorithm never duplicates common ancestors and conse-
quently fails to deal with the duplication problem. Flavors [8] and its successor CLOS [9] use linear
approaches. Besides their impossibility to duplicate common ancestors, the two other problems dis-
cussed in Section 2 are not treated.

Tree multiple inheritanceon the other hand converts the inheritance graph in a tree by duplicating
nodes that can be reached from multiple paths: in this case sharing of common ancestor attributes
becomes impossible. Tree multiple inheritance is explored in CommonObjects [3].

Fig. 5. Lamp class hierarchy.

Solving multiple inheritance name collisions using mixins 7

The graph-based approachwas specifically meant to solve the homonymous attribute problem. By
extending message passing with a class qualifier, this approach directly deals with the inheritance graph
without transforming it. The methodsetCardNumbersof the classSportsmanWithReduction as men-
tioned in Section 2.2 can then be implemented as follows:

setCardNumbers(#reductionNr, #sportsmanNr) !

[PersonWithReduction.cardNr(#reductionNr); Sportsman.cardNr(#sportsmanNr)]

Due to thisclass qualification, method lookup starts from the specified class rather than from the class
of the receiver of the messagesetCardNumbers.

Extended Smalltalk [10] extends Smalltalk with class qualification. However, it ignores encapsulation
and never duplicates common ancestors.

C++ also offers class qualification as an optional means to deal with homonymous attributes. Con-
cerning the duplication problem, Knudsen [1] indicates that the use of virtual classes in C++ is insuffi-
cient. As mentioned in Section 2.3, C++ does not satisfy our software engineering requirements
concerning encapsulation.

Carré and Geib [2] criticized class qualification because it violates late binding and consequently
restrains reusability. Reconsider for example the classTopSportsmanWithReduction. In order to
implement this class, we need to rewrite thesetCardNumbersmethod ofSportsmanWithReduction
because it refers to the wrong class! ROME, as presented in [2], introduces as-expressions, an innovative
solution to the homonymous attribute problem, but ignores duplication of common ancestors and
encapsulation.

Message selector renamingis an alternative solution to the homonymous attribute problem. Rename
clauses allow to rename inherited attributes. This way we can choose in the implementation ofSports-
manWithReduction a different name for both inherited card numbers.

Eiffel [11] belongs to the category of models using graph multiple inheritance. It offers message
selector renaming to deal with homonymous attributes. Renaming is also used to deal with sharing
and duplication. The renaming mechanism exhibits difficulties in constructingTopSportsmanWith-
Reduction since the renaming clause explicitly refers to the inherited class name. This way class quali-
fication problems turn up. Eiffel does not fulfil our requirements for encapsulation either since
encapsulation towards inheriting clients is absent.

4. Disciplined encapsulated mixin-based inheritance

Research literature on multiple inheritance mostly concentrated on only one of the problems of Section
2. Nevertheless these problems are apparently closely related. ThecardNr in the person example and the
intensityin the lamp example had to be duplicated, insinuating a similarity with the common ancestor
duplication problem. On the other hand theboundattribute in the point example would be typically
invisible to message passing clients, suggesting a relation to the encapsulation problem. Also the label
cardNr in the person example may not be directly visible to instances ofSportsmanWithReduction
since there are two values according to that label.

This similarity not only appears between the problems, but also between respective candidate solu-
tions. Section 2.3 showed that adding properties to attributes (public, private, protected) does not offer

8 Van Limberghen and Mens

an adequate encapsulation mechanism. Also with regard to duplication adding properties to attributes is
insufficient. This was illustrated by Knudsen [1] who distinguished so-called singleton and plural
instance variables. All these experiences indicate that distinguishing different kinds of attributes is an
inferior strategy with respect to both duplication and encapsulation.

The novelty of our multiple inheritance approach is that we exploit this similarity to untangle the
problems. Our model consists of disciplined mixin-based inheritance provided with an explicit encap-
sulation mechanism. On one hand, mixin-based inheritance fulfils the need of a more flexible control of
sharing and duplication (pointed out in the common ancestor problem) by offering total expressiveness
on the inheritance structure. On the other hand, an explicit encapsulation mechanism allows us to limit
the scope of attributes in the inheritance hierarchy. This way name collisions can be avoided.

4.1 History of mixin-based inheritance

Before starting to formalize our model, we will present an historic overview of mixins. Mixins first
emerged in LISP-based languages like Flavors and CLOS. The concept of mixins is introduced there
as a special use of the already present multiple inheritance mechanism. In this approach, a mixin is
regarded as an abstract subclass, i.e. a subclass definition that may be applied to different superclasses
to create a related family of modified classes. More specifically a mixin is a class without specified
superclasses, and is usually intended to support some aspect of behaviour orthogonal to the behaviour
supported by other classes in the program [9].

In [5] on the contrary, mixins are not a special use of, but rather the supporting mechanism for
inheritance. For this reason the termmixin-based inheritanceis coined. The essence of mixin-based
inheritance is exactly to view mixins as stand-alone entities that can be used (or mixed in) in the con-
struction of different classes. In this way each class is obtained as a composition of different mixins. The
code components in the examples of section 2 can be seen as mixins, for example:

SinusBoundedPoint�Point composed with Bound composed with Sinus

where Point, Bound and Sinus are mixins corresponding to the code blocks in Fig. 1.
Cook and Palsberg [12] proposed a denotational semantics of the latter kind of mixins using the

notion of wrappers, i.e. attribute records with an unbound self- and super-reference. Hense [13] inde-
pendently introduced a language complete with denotational semantics, containing wrappers as an explicit
language feature.

An important difference between mixin-based inheritance and CLOS-mixins is the way parent classes
are merged during inheritance.

* In CLOS the ordering of this merging is determined by a linearization algorithm.1 Each ancestor of
a given class occurs only once in the resulting linearized inheritance graph. For this reason, CLOS
can be categorized in the linear multiple inheritance models. CLOS has been criticized for the
unexpected or non-intuitive behaviour resulting from the linearization algorithm [14].

* In mixin-based inheritance on the contrary, the programmer has explicit control over the linear-
ization: the inheritance chain is made explicit. This avoids unforeseen insertions of mixin-classes

1This algorithm can be altered by meta-programming (using the CLOS meta-object protocol).

Solving multiple inheritance name collisions using mixins 9

between a class and its parent: the resulting behaviour can hardly be considered unexpected or
non-intuitive. Explicit control also allows the same mixin to occur more than once in an inher-
itance chain. The construction of the classDoubleBoundedPoint for instance will require the
Bound mixin to appear twice and the Point mixin only once. It is exactly this peculiarity of mixins
that opens the way to gain total expressiveness on duplication of attributes of common ancestors.

A direct consequence of this difference is that mixin-based inheritance cannot be categorized in any of
the existing multiple inheritance models. Not in linear multiple inheritance, since mixins can occur more
than once in the inheritance chain; nor in graph or tree based multiple inheritance, since each mixin can
only have one direct parent. Strictly speaking mixin-based inheritance is a form of single inheritance.
However, since one and the same mixin can be employed to construct different classes, the code reuse
advantages of multiple inheritance are obtained.

4.2 Extending mixin-based inheritance to cover multiple inheritance

The mixin-based inheritance model proposed by Bracha and Cook [5] treats all name collisions as
specializations and needs to be extended in order to obtain other conflict resolution strategies.

One could consider upgrading linear mixin-based inheritance to multiple mixin-based inheritance by
providing a mixin with multiple parametrical super variables (as mixin-variant for class qualification).
However such an approach would undo the linear property of mixins and would consequently reintro-
duce common ancestors and the associated duplication dilemma.

Bracha and Lindstrom [6] start from a slightly different mixin model without a default conflict reso-
lution strategy: all name collisions must be solved explicitly at mixin combination time. To this extent, a
suite of mixin operators is provided including some specifically destined to deal with multiple inher-
itance name collisions. However, no complete analysis of their exact relation with multiple inheritance
problems is given.

* A renameoperator is proposed to obtain duplication. But whereas renaming is well suited to deal
with homonymous attributes, it is not the most appropriate way to deal with duplication in general.
With renaming wemustchoose new names. The inadequacy of this obligation will become appar-
ent later on in this text (Section 5.3).

* To obtain sharing, arestrictoperator is offered. This operator removes the definition of an attribute
from a mixin. The attribute becomes virtual in the sense that internal references to it will be bound
later on when the mixin is composed. When composing several mixins containing an homonymous
attribute, the programmer canarbitrarily choose which definition she wants to retain by removing
(i.e. restricting) all the other definitions. But, as we will illustrate in Section 7.1, by grouping
attributes in mixins a software designer constrains the possible classes that can be constructed
with mixins. The restrict operator bypasses these design constraints. Therefore we consider it
too powerful to serve as a basic solution for name conflicts.

The essential idea of our paper is the opposite to the above suggestions. We will use an encapsulation
mechanism to deal with multiple inheritance. Bracha and Lindstrom [6] also introduced an encapsula-
tion mechanism on mixins, namely thehide operator. They did howevernot show how to use this
operator with respect to multiple inheritance. On the contrary, they suggested to use the above

10 Van Limberghen and Mens

mentionedrenameandrestrict operators for this purpose. We prefer encapsulation because it deals more
appropriately with duplication and preserves the design behind mixins. Moreover, by using only one
operator, all kinds of name collisions are treated in a uniform way. The uniformity of this solution
reflects the similarity between the multiple inheritance problems of Section 2.

Yet another reason why we find encapsulation so important is inherent to mixin-based inheritance. A
mixin subclass is precisely intended to be applicable to different superclasses. Hence the need for encap-
sulation towards inheritors (as recognized in Section 2.3) becomes the more important since it gives rise
to a higher degree of substitutability of the superclass.

We will formally present a mixin-based model containing two operators. An incremental modification
mechanism under the form of a mixin composition operator; and an encapsulation mechanism that is
similar to the one of [6], except for the treatment of super calls. Multiple inheritance name collisions
either correspond to overriding, which will be handled by the composition operator, or to a collision
where one attribute is not a specialization of the other. In that case the encapsulation operator will solve
the conflict. Because both operators will be defined in an orthogonal way, attribute duplication can be
obtained by composing a mixin with itself in combination with encapsulation to solve the inevitably
associated name collisions. This way we obtain a minimal multiple inheritance mechanism that uni-
formly captures the different interpretations of name collisions, as will be illustrated in Section 5.

4.3 Super sends at method level

In this subsection we discuss a feature that is included in our model because it is considered to be good
object-oriented programming practice.

Cook and Palsberg [12] formally described mixins as wrapper functions of the form�self.�super.body.

self andsuper may occur free inbody, and are used to represent self-reference and the super-structure to
be specialized, respectively. Intuitively this means that a method in a mixin can refer to any method that
is being defined in the super mixin. This is similar to the Smalltalk approach, where thesuperpseudo
variable can be used to invoke any of the parent methods.

As already suggested by our special notation for super calls, we believe that a super call in a method
should only be able to refer to the method it is overriding. As pointed out in Section 3, Carre´ and Geib
[2] showed that message lookup with class qualification violates late binding and consequently restrains
reusability. A super call to another attribute similarly redirects the method lookup mechanism, and
consequently suffers from the same problem. For example, in Fig. 6 the super call on the right wrongly
prohibits overriding ofy. A caller of an attribute should always allow an overridden version to be acti-
vated with his call. For this reason, super calls to other methods should be replaced by self sends. This
way the new implementation of those methods is used whenever one of them becomes overridden, due
to late binding of self.

Fig. 6. Allowed super calls.

Solving multiple inheritance name collisions using mixins 11

Needing to invoke the super-part of another attribute instead of its new overridden implementation,
indicates that this super-part should be represented by an extra attribute with a different name. This extra
attribute can then be called with a self send.

This informal discussion allows us to decide that, instead of parametrizing subclasses with their parent
class, methods should be parametrized with their super variant. In other words, the�super should be
moved from mixin level to method level. This makes a mixin a generator function of the form
�self.record, where record is a record of method-bodies; and a method-body is a function of the
form �super.body whereself and super may occur free inbody. The denotational semantics will be
given in more detail in the following subsections.

This restriction on the use of super clearly avoids an overlap between the functionalities of self sends
and super calls, and can consequently be considered as an illustration of the orthogonality principle for
programming languages.

4.4 Formal definition of mixins

In this and the following subsection we formally present the syntax and denotational semantics of
objects and mixins.

To make the examples more attractive we have included instance variables (in a slot-based way). In
our formalism however, state is not made explicit: we will not give the denotational semantics of the
accessor methods associated with instance variables. It would only make the model more difficult and
lead us away from the essence of the problem. We want to define encapsulation and inheritance without
stating anything about object identity.

As a consequenceimperativestatements, indicated in the examples between brackets and separated by
semicolons, are not modelled. In our formalism a method body will only consist of a singlefunctional
expression.

4.4.1Syntax Below, the grammar rules for the syntax of mixins are presented. The definition of objects
will be given later.

Mixin ! Method | Compose | Encapsulate
Method ! Label ‘‘(’’ ‘‘#’’ Label ‘‘)’’ ‘‘=’’ Object
Compose ! ‘‘(’’ Mixin ‘‘+’’ Mixin ‘‘)’’
Encapsulate ! ‘‘Encaps’’ ‘‘(’’ Mixin ‘‘,’’ ‘‘{’’ Label ‘‘}’’ ‘‘)’’

Label ! Letter { Letter }
Letter ! ‘‘a’’ | ‘‘b’’ | ... | ‘‘z’’

Methods can make use of an argument, and return an object. Methods can be combined by using the
following two operators on mixins: composition (+) and encapsulation (Encaps). Mixins are closed
under these operators: the result of applying an operator on mixins is again a mixin that can further
be used by both operators. We will see in the denotational semantics that the operators are orthogonal.
Combinations of application of the operators cover a fully-fledged class mechanism with multiple
inheritance. Finally Section 4.5.3 introduces an instantiation operator on mixins yielding a complete
object-oriented system.

12 Van Limberghen and Mens

To make the examples more appealing, we will introduce the shorthand notation

Encaps(M, {a,b}) for Encaps(Encaps(M, {a}), {b})

and similarly for more than two labels.
As an example of the syntax, theSafeLamp of Section 2.3 could be written as follows:

Encaps(Lamp� SafeIntensity, { intensity, intensity()})

whereLamp and SafeIntensity are mixins, andintensity is the instance variable that needs to be
encapsulated.2

4.4.2 Denotational semantics of mixinsFirst we will give the semantic domains needed. The most
important semantic domains represent mixins, objects and method-bodies:

* Mixins are functions expecting a self-context and returning an object.
* Objects are modelled as records mapping labels onto method-bodies. Note that all these labels are

visible to everyone. There is no need to consider non-public methods since we provide an explicit
encapsulation mechanism.

* Method-bodies are entities expecting a super variant, and performing a computation with an object
as result. The method-body as well as its super variant can make use of an argument to implement
their behaviour.

Record � Label ! Object

Mixin � Object ! Object

Object � Label ! Methodbody

Methodbody � ArgObject ! ArgObject

ArgObject � Object ! Object

Using these domains, the denotational semantics of mixins is given via the semantic function []m.

�Mixin �m : Mixin

� L1�#L2� � O �m � �self:fL1 ! �super:�arg:�O �o self fL2 ! argg super g

�M1 �M2 �m � �M1 �m � �M2 �m

�Encaps�M; fLg� �m � encaps��M �m�L

where

fkey ! valg is a record�as defined in�15�� with a single slot:

In the following two subsections, we will describe the semantics of the composition (�) and encap-
sulation (encaps) operator in more detail.

2For reasons of simplicity, and since we have not formally defined instance variables, both accessor methods have the same
label.

Solving multiple inheritance name collisions using mixins 13

4.4.3 Composition operator The semantic composition operator� corresponds to an incremental
modification mechanism for mixins. It defines by means of record composition how a method is
combined with its super variant.

� : Mixin ! Mixin ! Mixin

m1 �m2 � �self: � �m1 self� �r �label:�super:m2 self label ��flabel ! �super:superg

�r m1 self� label super� �

where�r is the right preferential concatenation of records (as defined in [15]).

Super calls are regulated as follows: every occurrence of a super call in the method-body of a method
in m2 is replaced by the method-body of a homonymous method inm1, while the super calls inm1

remain to be filled in. This idea is similar to the definition of inheritance in [5] except that super handling
has been moved from mixin level to method level.

4.4.4 Encapsulation operator The encapsulation operator defined below is a variant of thehide
operator of [6]. It makes it possible to encapsulate attributes in such a way that they become invisible
to further clients.

Intuitively, encapsulating an attribute consists of removing its label from the domain of the mixin,
after having replaced recursively all self sends to this attribute by the actual method-body (using a fixed
point operatorY). Consequently these sends will never be redirected anymore.

encaps : Mixin ! Label ! Mixin

encapsmL ��self: � �Y��fix:�self2:m �self2�r fL ! �super:�args: fix self2 L ? argsg� �

self �nL�

where \ is a record restriction operator: inrnL the attribute corresponding to labelL is removed from the
recordr if it is present inr (as defined in [15]).

To avoid interference with the composition operator, only attributes with method-bodies performing
no super calls are allowed to be encapsulated. This way encapsulated attributes cannot interfere with
parent attributes. Similarly, since all self-sends to an encapsulated attribute are replaced recursively,
encapsulated attributes cannot interfere with child attributes. Encapsulation and composition can
therefore be considered orthogonal.

This orthogonality improves the comprehensibility of our model and prohibits unusual constructions not
belonging to common object oriented ideas. Consider for example the parent and child mixin in Fig. 7.
Attribute a in ChildMixin performs a super call. Encapsulating it and composing the resulting mixin with
ParentMixin results in a strange behaviour of the super call: the super call ina has become a kind of
aggregation because the self senda (remember that receiverless messages denote self sends) in the parent
is not redirected to thea version of the child since this version is hidden to any client. Such an overlap
between aggregation (commonly obtained by message passing) and inheritance is avoided. As in most
object-oriented systems inheritance and aggregation are strictly separated software design concepts.

14 Van Limberghen and Mens

As mentioned by Cook [15], record composition operators other than +r (corresponding to a different
conflict resolution strategy) can be used in the definition of mixin composition. Thanks to the orthog-
onality, the definition of our composition operator can be altered independently of the other mixin
operators.

4.5 Formal definition of objects

Now we present the syntax and denotational semantics of objects. Because our model is stateless,
objects have no identity. This way they correspond to object values rather than to fully fledged objects.

4.5.1Syntax

Object ! InstantiatejObjectSendjSelfSendjSuperCalljArgRefjPrimitivej�

Instantiate ! ‘‘ �’’ Mixin‘‘ �’’‘‘ new’’

ObjectSend ! Object Label Argument

SelfSend ! Label Argument

SuperCall ! ‘‘ super’’ Argument

Argument ! ‘‘ �’’ Object‘‘ �’’

ArgRef ! ‘‘ #’’ Label

� denotes the empty object.super andnew are reserved keywords.new is the syntactical representation
of the instantiation operator that will be discussed in Section 4.5.3. It is only included for reasons of
completeness.

Self-sends, super calls and ordinary message sends can make use of an argument. The formal argu-
ment names (ArgRef) are preceded by a # symbol to avoid confusion with receiverless self sends. In this
syntax, only one argument at a time can be passed with message sends and super calls. Multiple argu-
ments can be added in a straightforward way, but this would unnecessarily clutter the formal model.
When no arguments are provided, we adopt the convention to omit the parentheses.

Fig. 7. Encapsulating an attribute that performs a super call.

Solving multiple inheritance name collisions using mixins 15

An object can be a primitive object like a number or a string. Since this is not essential to our model,
their syntax and denotational semantics will not be made explicit.

4.5.2Denotational semantics of objects

�Object �o : Object ! Record ! ArgObject ! Object

� �M�new �o � �self:�args:�super: inst ��M �m�

� �O1�L�O2� �o � �self:�args:�super: send ��O1 �o self args super�L ��O2 �o self args super�

�#L �o � �self:�args:�super: args L

�L�O��o � �self:�args:�super: send self L ��O �o self args super�

� super�O� �o � �self:�args:�super: super ��O �o self args super�

� � �o � �self:�args:�super:fg

As can be seen in the semantic domains given earlier, methods can make use of the super variant of the
method body they override. {} denotes the empty record.

To send a message to an object, the auxiliary functionsendis needed. Performing a self-send occurs
by sending a message to the self object.

send : Object ! Label ! Object ! Object

send receiver L arg � receiver L ? arg

4.5.3 Instantiation operator In classical class-based languages, classes with methods that call as yet
undefined attributes cannot be instantiated. They are called ‘abstract superclasses’: their only reason for
existence is to be inherited from. Similarly, in mixin-based languages not every mixin can be
instantiated. However, things are a bit different here. A mixin that contains self sends to attributes that
it does not define itself, can not only be used as an ancestor to inherit from, but also as a descendant
relying on definitions of parent mixins. Therefore we cannot speak of abstract supermixins, nor of
abstract submixins. We simply call a non-instantiable mixin anabstract mixin.3 Another reason for a
mixin to be abstract is the presence of a method containing a super call. We will not formalize the
definition of an abstract mixin since this is not so important for this paper.

inst : Mixin ! Object

inst m � if m is abstract then ? else Y�m�

In this definition we can see that instantiation of a mixin (that is not abstract) creates an object (or
instance) in which all self-references are permanently bound to the object itself. Since this usage of self
gives rise to inherent recursive behaviour, we need a fixed point operator (as in the definition of the
encapsulation operator) for instantiation. This approach is similar to the one followed by Cook and
Palsberg [12].

3Using the terminology of [5] an ‘abstract’ (resp. ‘instantiable’) mixin is called ‘partial’ (resp. ‘complete’).

16 Van Limberghen and Mens

5. Solution of the multiple inheritance problems

Now that we have been more specific about our formal mixin model, we illustrate how the problems
outlined in Section 2 can be solved in a uniform way, and why an explicit encapsulation mechanism
goes hand in hand with mixin-based inheritance.

5.1 Encapsulation of attributes

Reconsider the coloured lamp example of Section 2.3. As mentioned earlier, the code components in
Fig. 5 represent mixins. Initially, mixins consist of public attributes only. The line separating public and
non-public attributes in the mixins of Fig. 5 should no longer be taken into consideration since encap-
sulation has become explicit. If we want a lamp class with instances that cannot directly accessintensity,
we should encapsulateintensity:

Encaps�Lamp; fintensity� �; intensityg �

A SafeLamp class4 with not directly accessible intensity can be constructed as follows:

SafeLamp � Encaps�Lamp� SafeIntensity; fintensity� �; intensityg�

In other words, we first need to compose Lamp with the SafeIntensity mixin that overrides theintensity
attribute, and then we have to make this attribute invisible by encapsulating it, as illustrated in Fig. 8.

In agreement with the definition of our encapsulation operator, we can deduce the following scope
rules in Fig. 8:

* a self-send pointer can only enter or exit an encapsulation boundary in its own horizontal level
(between composition boundaries);

* a super call can never cross an encapsulation boundary.

Fig. 8. Safe lamp mixin with encapsulated intensity.

4We will no longer put class names in bold because classes are now mixins just as the code components earlier.

Solving multiple inheritance name collisions using mixins 17

The encapsulation ofintensityin SafeLamp can also serve inheriting clients. For example, the previously
defined SafeLamp mixin can be extended with the Colour mixin to obtain a ColouredSafeLamp, sche-
matically represented in Fig. 9.

ColouredSafeLamp � SafeLamp� Encaps�Colour; fintensity� �; intensityg�

These examples illustrate that attributes should not be defined directly as e.g. ‘public’, ‘protected’ or
‘private’, but that encapsulation should be arranged at mixin using level. Moreover, the same encapsula-
tion mechanism should be used for all clients. This allows us to provide a whole range of different
interfaces, all constructed with one and the same encapsulation mechanism. For instance the implemen-
tor of SafeLamp receives the Lamp mixin, whereas the implementor of ColouredLamp and message
passing clients get a lamp mixin with encapsulatedintensity.

Notice that encapsulation does not distribute over composition. For example, the class ColouredLamp
of Section 2.3 can be constructed as follows:

ColouredLamp � Encaps�Lamp; fintensity� �; intensityg�

� Encaps�Colour; fintensity� �; intensityg�

But in the following construction the brightness and colour intensities would be mixed up, since the
methodsdim andbrightenwill act on the colour intensity that overrides the brightness intensity!

WrongLamp � Encaps�Lamp� Colour; fintensity� �; intensityg�

5.2 Sharing and duplication of attributes in common ancestors

Let us reconsider the point example of Section 2.1. The constant upper bound functionality wherebound
is hidden towards all clients, is represented by the following abstract mixin:

ConstantBound � Encaps�Bound; fboundg�

ConstantBound is abstract since itsmovemethod performs an unbound super call. It can be used as
stand-alone extension for different classes, illustrating the multiple inheritance power of mixins. For

Fig. 9. Avoiding unintended name collisions through encapsulation.

18 Van Limberghen and Mens

example a bounded point class with visiblex andy instance variables is constructed by:

XYBoundedPoint � Point� ConstantBound

To prevent clients from directly accessingx andy, we need to encapsulate these attributes:

BoundedPoint � Encaps�XYBoundedPoint; fx; x� �; y; y� �g�

Suppose that we add a printed history to our bounded points, i.e. we want to build the class History-
BoundedPoint. This cannot be done by composing BoundedPoint with History, because History needs
access to thex andy attributes while BoundedPoint encapsulated them. For this reason we have to use
XYBoundedPoint:

HistoryBoundedPoint � Encaps�XYBoundedPoint� History; fx� �; x; y� �; yg�

� Encaps�Point� ConstantBound� History; fx� �; x; y� �; yg�

HistoryBoundedPoint is represented in Fig. 10. The Bound mixin and the History mixin both share the
attributes of the Point parent. We can also see that late binding of self sends is achieved, because the
doublemethod always refers to the most recentmovemethod.

The relative order in which the bound and the history functionality are added determines the behav-
iour represented by the resulting class. Consider:

BoundedHistoryPoint � Encaps�Point� History� ConstantBound; fx� �; x; y� �; yg�

BoundedHistoryPoint is very similar to HistoryBoundedPoint, except that the last two arguments for
the� operator have been reversed. As a result both mixins have a different behaviour. An instance of
HistoryBoundedPoint will record the current position even when the point is tried to be moved outside
the boundary, as opposed to a BoundedHistoryPoint that only prints a history of successful invocations
of the movemethod. Consequently the composition operator is not commutative.

Fig. 10. Bound and History share the Point attributes.

Solving multiple inheritance name collisions using mixins 19

The sinus bound facility, as required by the class SinusBoundedPoint with encapsulatedx and y is
obtained as follows:

SinusBound � Encaps�Bound� Sinus; fboundg�

SinusBoundedPoint � Encaps�Point� SinusBound; fx� �; x; y� �; yg�

Now we can show that duplication of attributes in common ancestors is obtained by composing with the
same mixin twice. Recall that the DoubleBoundedPoint class combined both the constant and the sinus
bound and therefore needed duplication of the Bound attributes.

DoubleBoundedPoint

� Encaps�XYBoundedPoint� SinusBound; fx� �; x; y� �; yg�

� Encaps�Point� ConstantBound� SinusBound; fx� �; x; y� �; yg�

� Encaps�Point� Encaps�Bound; fboundg� � Encaps�Bound� Sinus; fboundg�; fx� �; x; y� �; yg�

The last lines are added to illustrate that Bound is applied twice, once specialized with Sinus.
We can conclude that multiple application of a mixin, in this case Bound, together with separate

encapsulation of some of its attributes, in this casebound, results in duplication of these attributes.
More specifically multiple versions of these attributes are retained. This can be seen in Fig. 11. The
movemethod has not been encapsulated. Only one version is held that is invoked twice (via successive
super calls).

The examples in this subsection illustrated that the combination of encapsulation and composition
provides the required flexibility concerning sharing and duplication. Note that the mixin components of
Section 2.1 donot intend to cover all possible kinds of bounded points. For example, an OrBounded-
Point in which they-value of the point is required to stay below the constant boundor the sinus bound

Fig. 11. Schematic representation of the DoubleBoundedPoint mixin.

20 Van Limberghen and Mens

cannot be created, since Bound is designed to impose one additional bound. Repeatedly applying it
logically results in anand-combination of the bounds. Our approach intends to use mixins only in con-
structing the behaviour they are designed for, or to put it another way, to respect the design behind
mixins. We will say more about mixin design issues in Section 7.

5.3 Homonymous attributes

The last remaining problem concerns homonymous attributes in different superclasses, as explained in
Section 2.2. In fact theboundattributes of the subclasses SinusBoundedPoint and BoundedPoint can be
seen as homonymous attributes too. It is rather coincidental that both bounds stem from a common
ancestor. The difference between the duplication problem and the homonymous attributes problem con-
cerns visibility towards subclasses. In the point example, both versions of thebound attribute were
invisible to the subclass DoubleBoundedPoint. In the person example however, we want the subclass
SportsmanWithReduction to be able to refer to bothcardNr attributes. Since these attributes should be
distinguishable we need to rename them. Renaming does not require an extra operator but can be
obtained by using the mixins in Fig. 12.

Making SportsmanWithReduction is then simply done by composing ReductionCard with Reduction-
Labels and SportsmanCard with SportsLabels, followed by encapsulating the card numbers:

SportsmanWithReduction �

Person�

Encaps� Encaps�ReductionCard� ReductionLabels; fcardNr; cardNr� �g��

Encaps�SportsmanCard� SportsLabels; fcardNr; cardNr� �g��

SportAndReduction;

freductionCardNr� �; sportsmanCardNr� �g�

This solution does not suffer from the reusability restrictions caused by class qualified message passing.
Indeed, the renaming mixins can also be composed with specializations of card mixins, for instance that

Fig. 12. Renaming and extension mixins.

Solving multiple inheritance name collisions using mixins 21

for TopSportsmanCard (see also Fig. 13):

TopSportsmanWithReduction �

Person�

Encaps� Encaps�ReductionCard� ReductionLabels; fcardNr; cardNr� �g��

Encaps�SportsmanCard�TopSportsmanCard�SportsLabels; fcardNr; cardNr� �g��

SportAndReduction;

freductionCardNr� �; sportsmanCardNr� �g�

The nuisance of writing and combining the auxiliary mixins ReductionLabels and SportsLabels can
be eliminated by introducing a rename operator as syntactic sugar. This approach is different from other
approaches like Eiffel that introduce renaming as an extra semantic construct. But as mentioned in
Section 3, Eiffel’s renaming is too tightly coupled to the inheritance mechanism. Bracha and Lindstrom
[6] also offer a renaming operation at semantic level. As opposed to Eiffel, their rename operator on
mixins is orthogonal with inheritance. Nevertheless it is not fully suited as a means to deal with multiple
inheritance for the following reasons:

* Renaming does not provide encapsulation. Consequently, encapsulation is needed anyway. More-
over we have seen in the example how to model a kind of renaming via encapsulation.

Fig. 13. Duplication and renaming of the card numbers.

22 Van Limberghen and Mens

* Although renaming can solve the homonymous attributes problem, sometimes there is no need to
explicitly rename the homonymous attributes. This is the case when the subclass specialization
code does not need to refer to the homonymous attributes. DoubleBoundedPoint for example does
not need to access its different bounds simultaneously. For this reason, encapsulation of the bound
attributes again seems a better alternative, since it relieves us from the obligation to choose dif-
ferent names. In an environment of dynamic inheritance, this annoying obligation can become a
defect since a mixin could be applied a statically unknown number of times. In such a case it is
impossible to choose different names.

* Bracha’s rename operator is more powerful than our renaming strategy but it seems that this
additional power does not really strengthen multiple inheritance. A rename operator is rather a
tool to integrate independently-developed components as in [16]. This exceeds ‘pure’ multiple
inheritance where the interface is part of the agreement between the developers of different com-
ponents. Using Bracha’s rename operator, SportsmanWithReduction would be constructed as
follows:

SportsmanWithReduction � Person�

Rename�ReductionCard; �cardNr ! reductionCardNr; cardNr� � ! reductionCardNr� ����

Rename�SportsmanCard; �cardNr ! sportsmanCardNr; cardNr� � ! sportsmanCardNr� ���

The additional power of renaming lies in the possibility to convert SportsmanWithReduction to
TopSportsmanWithReductionafterwards:

TopSportsmanWithReduction � SportsmanWithReduction�

Rename�TopSportsmanCard; �cardNr ! sportsmanCardNr; cardNr� � ! sportsmanCardNr� ���

If there had been a self send tocardNr from within the mixin SportsmanCard, this self send would
be redirected to the top sportsman version. If on the contrary the attribute is renamed via encap-
sulation, as we propose, that self send will not be redirected. But such a redefinition, with the
intention to redirect the self call, necessarily relies on the internal structure of SportsmanWith-
Reduction. Consequently such a redefinition can as well be mixed in directly after SportsmanCard,
just as we mixed in TopSportsmanCard.

5.4 Classical class-based versus mixin-based approach

This subsection shows that uncoupling inheritance and encapsulation would be less powerful in a tradi-
tional class-based approach than in a mixin-based formalism. Because class extensions in conventional
class-based inheritance are not stand-alone, encapsulation cannot be limited to the extension only. This
restricts the combination of composition and encapsulation to the following constructions:

Encaps�Encaps�Encaps�Encaps�Parent�Extension1��Extension2��Extension3��Extension4�

The following adaptation to our point example illustrates the necessity for encapsulation of the extension
separately. Imagine that we asked somebody to implement a MaxStep mixin that limits the distance a

Solving multiple inheritance name collisions using mixins 23

point can be moved in one step. The instance variables that hold the maximal step size coincidentally
have been namedx andy, as in Fig. 14.

We now want to construct a class that represents points with limited step size and with recorded
history. More specifically we want these points to record their current position for every attempt to
move, even when the point is not moved due to a too big step size. Since Point also has instance vari-
ables namedx and y, the name conflict has to be resolved. The described behaviour is obtained as
follows:

XYHistoryStepPoint � Point� Encaps�MaxStep; fx; x� �; y; y� �g� �History

The encapsulation has to be limited to the MaxStep extension alone. We can not encapsulatex andy in
Point since History needs to access them. In other words we must be able to make attributes local to sub-
mixins (i.e. extensions). Note that in the above example reversing the order of the composition operands
does not work either since it results in another behaviour.

We can conclude that the stand-alone characteristic of mixins raises explicit encapsulation to its full
import. Mixin-based inheritance allows us to separately encapsulate attributes in the extension and in the
parent.

6. Linearization criticized

Besides encapsulation, linearization is a key feature in our solution of the duplication dilemma. Systems
that linearize the inheritance hierarchy – including mixin-based inheritance – inherently only treat one
direct parent, i.e. only one super pseudo variable.5 The power of mixin-based inheritance stems from the
fact that this single super variable can be filled in with different parents.

6.1 Rejection of criticisms on linearization

Snyder [3] stresses that the use of inheritance in a software component should not be exposed to clients,

Fig. 14. A mixin limiting the step size.

5The super variable can refer to the whole parent, or to only one method of the parent (as in our case). This aspect is, however,
irrelevant to the current discussion.

24 Van Limberghen and Mens

in order to be able to reimplement the parent with another inheritance hierarchy. On the other hand our
discussion about duplication and sharing of attributes stresses the need for a more global view on the
inheritance graph to obtain the necessary inheritance expressiveness. Stand-alone mixins appear to be a
good compromise between both contradictory requirements. Composition of mixins results in a new
mixin, establishing a hierarchical exposure of inheritance structure. While building a mixin, one is
exposed to and can consequently appropriately alter the component chain it is built of; once the mixin
is created the component chain becomes invisible.

Another criticism is that linearization forces an ordering between immediate superclasses. Section
5.2 however showed that BoundedHistoryPoint and HistoryBoundedPoint represent another behaviour.
Consequently two subclasses that multiply inherit from BoundedPoint and HistoryPoint are
needed, even at analysis level. Instead of considering the semantically significant order of both
direct parents as a flaw, we appreciate it as a mechanism to specify the difference between both
subclasses.

A related criticism is that a forced ordering of superclasses prevents a compiler choosing an optimised
order [14]. If the order in which some mixins are composed with another mixin is irrelevant (always
resulting in the same behaviour), one could consider introducing an additional syntactical construct,
permitting the programmer to add at once a (unordered) set of mixins. Such a construct then suggests
the compiler to search for an optimized order.

6.2 Limitation of our model because of linearization

As mentioned above linearization implies the restriction to one super variable. Consequently our multi-
ple inheritance mechanism is not capable of implementing the notion of views. Consider the example of
a Person with aname, a Professor that inherits from Person by overriding the existingnamewith a new
one that adds a prefix ‘Prof.’, and a Doctor that overridesnameby adding a prefix ‘Dr.’ (see Fig. 15).

A person that is both professor and doctor, is represented by:

ProfessorDoctor � Person�Doctor� Professor

Because both Professor and Doctor share the Person name in a linearized inheritance chain, this has the
effect of adding as prefix ‘Prof. Dr.’.

There is, however, another kind of behaviour that, starting from the mixins of Fig. 15, cannot be
expressed with our model. Suppose we want to create a professor-doctor with two views: one only as
professor, and one only as doctor. Invokingnameon the professor-view should only concatenate ‘Prof.’,

Fig. 15. Person-, Professor- and Doctor-mixins.

Solving multiple inheritance name collisions using mixins 25

while namein the doctor-view should only concatenate ‘Dr.’. As opposed to the person example in
Section 5.3 where a sportsman with reduction has two card numbers, a professor-doctor should only
have one name, shared in the Person parent. It appears to be impossible to use the Professor and Doctor
mixins of Fig. 15 in combination with a renaming mechanism similar to Section 5.3 for constructing the
two views. We cannot encapsulate two overriding variants of the samesharedattribute separately.

With two super variables, one for professor and one for doctor, one can imagine a solution. But this
way, as mentioned before, the duplication dilemma fornamein Person is re-introduced. Moreover it is
debatable if an inheritance mechanism must provide the means to implement views or that the notion of
views should be added orthogonally to an inheritance mechanism.

7. Extensions towards reliability

The principle of orthogonality is severely violated in many class-based languages. It is widely under-
stood that the class concept is heavily overworked. Among others, classes are used for incremental
modification, classification, determining attribute visibility and typing. Bracha and Lindstrom [6] enu-
merate no less than 11 different roles classes play. We are currently working on orthogonally enhancing
our basic model with independent features in order to obtain a level of static reasoning comparable to
that of classical class-based systems, yet with a larger flexibility. We will briefly discuss three of them.

7.1 Mixin normalization

Until now we have grouped attributes together in mixins on a rather intuitive basis. Grouping attributes
together in mixins should however not be an arbitrary choice. Together with Sakkinen [4], we believe
that the distribution of attributes over mixins is a class design issue that should be guided by introducing
a kind of normalization mechanism for mixins [17], similar to normalization in relational databases.
Grouping attributes can be exploited as a controlled restriction on the possible classes that can be con-
structed. We now give three examples of such restrictions.

* When composing two mixins, all the attributes of the second one override or are added to the first.
By putting different attributes together in the same mixin, the designer decides that it is for exam-
ple impossible to compose two mixins in such a way that some of the attributes of the first mixin
override those of the second, while other attributes in the second mixin override those of the first.
An example of this kind of behaviour is shown in Fig. 16.
By putting the attributesx andy together this way in mixinA and mixinB, the designer explicitly
excluded (A,x)+(B,y) as representative for an element of his universe of discourse.

* A second example involves multiple invocation of method bodies that perform a super call. By

Fig. 16. Attribute dependent composition.

26 Van Limberghen and Mens

puttingx andy together in mixin A (Fig. 17), the mixin designer took the decision to exclude the
construction of classes where, upon sending x and y respectively,body(x,A)and body(y,A)are
invoked a different number of times. For example, in the classA� B� C both body(x,A)and
body(y,A)are invoked only once. InA� B� A� C body(x,A)andbody(y,A)are invoked twice.
x or y can be specialized in B or C, as illustrated in Fig. 17.

The classA� B� A� C contains only one version of the instance variablev. v is shared while
body(x,A)and body(y,A)are duplicated. In [4] this situation is called ‘fork-join inheritance’.
Sakkinen claims that ‘subobject integrity’ can be violated in the sense that updating shared attri-
butes and accessing duplicated attributes of A may cause unexpected side effects between the B
and the C part of the object. These side effects are indeed unexpected if both B and C are inherited
from, ignorant of the existence of the common ancestor A. In our model on the contrary, we
consider the possible side effects to be intended, because of the explicitness of the inheritance
chain and becausev is visible. If v is encapsulated, as for instance in EncBPart� EncCPart where

EncBPart � Encaps�A� B; fv� �; vg� and EncCPart � Encaps�A� C; fv� �; vg�

Fig. 17. body(x,A)andbody(y,A)are executed the same number of times.

Solving multiple inheritance name collisions using mixins 27

thenv will be duplicated. This way unexpected side effects are avoided. Therefore our approach
supports subobject integrity more strongly than other approaches to fork-join inheritance.

* A last example of the relation between the universe of discourse and attribute grouping is the
ReductionCard mixin of Section 2.2, in which seemingly different attributes asage and cardNr
are grouped together to force owners of a reduction card to be younger than 25 years.

Bracha and Lindstrom [6] started from the opposite standpoint. They offer mixin operators to construct
anykind of behaviour starting from a given set of mixins. Theirrestrict operator removes (the definition
of) an attribute from a mixin. This way attribute grouping is disrupted. It even becomes possible to
convert a grouping of attributes in mixins into any other grouping. As a result, grouping attributes in
mixins no longer has any significance. An encapsulation operator on the contrary does not disrupt attri-
bute grouping: it does not remove an attribute from a mixin, but simply hides it.

7.2 Mixin classification

Mixins are chunks of code that can be freely combined using the offered operators, allowing unantici-
pated combinations of behaviour to be made. If uncontrolled, one faces an explosion of possible com-
binations of mixins. A mechanism to control this combinatorial explosion is needed.

In traditional class-based systems the class hierarchy partially fulfils this combination restricting role,
but still has to be enriched with extra restricting capabilities. Multiple inheritance is less expressive than
it appears, essentially in its lack to put constraints on multiple inheritance from different classes. For
example we should be able to prevent a class inheriting from the classes Male and Female simulta-
neously. To this extent, [18] includesclassifiersin the class hierarchy. We are thinking about a similar
classification mechanism especially destined for mixins, preserving its characteristic of parametrical
super binding.

7.3 Typing

As opposed to many current languages, subclassing and subtyping should be separated [19]. Therefore
inheritance should only be seen as a subclassing, and not as a subtyping mechanism. In this
paper instances of a subclass are not necessarily substitutable for instances of the superclass. A type
system for mixin-based inheritance similar to the one described in [20] can be added orthogonally to our
model.

8. Conclusion

Multiply inheriting from different classes raises the question of how to treat shared ancestors. It should
be possible to share some ancestor attributes while duplicating the others. Many current multiple inher-
itance systems however fail to do so. Secondly, homonymous attributes inherited from different parents
are often dealt with by label renaming or qualifying labels with class names. Both solutions are criticized
because they restrain reusability.

Mixin-based inheritance constitutes the basis for the required expressiveness on the aspect of sharing

28 Van Limberghen and Mens

and duplication, but ignores different interpretations for multiple inheritance name collisions. We shed a
new light on multiple inheritance by taking encapsulation into account. We pointed out how to obtain all
sorts of name conflict strategies using mixin-based inheritance enhanced with an explicit encapsulation
operator. Reusability was hereby preserved since label renaming or class qualifying was not needed.
This way we obtained a minimal model that uniformly captures the different interpretations of name
collisions. Consequently this model seems to constitute a good basis for OO languages that include
multiple inheritance in their scope.

As already shown in [6] viewing inheritance as a composition of software components opens the way
for new OO software methodologies. Mixin-based inheritance makes the parent-child relationship much
more symmetrical than conventional inheritance. While classical class hierarchies only consist of classes
that can be subclassed, it now becomes possible to offer mixins as stand-alone extensions where the
parent remains to be filled in.

Mere mixin-based inheritance exhibits combinatorial flexibility of software components but lacks
conceptual meaning. In order to obtain a level of static reasoning comparable to that of classical
class-based systems, we are currently working on mixin design, amongst others, mixin classification
and normalization. We criticized therestrict operator of [6] because it counteracts these design issues.
An encapsulation mechanism on the contrary respects mixin design. Therefore we consider it as a valu-
able software engineering extension to pure mixin-based inheritance.

Acknowledgements

We express our gratitude to our promotor Theo D’Hondt, and to Thomas Ku¨hne, Carine Lucas and
Patrick Steyaert for their useful comments on earlier versions of this paper. We also thank Niels Boyen,
Wolfgang De Meuter and Kim Mens for taking a closer look at the formal aspects of our approach. Last
but not least, we are indebted to Russel Winder for guiding us to acceptance of the paper and to the
anonymous referees, for their interesting suggestions and remarks.

References

1. Knudsen, J. Name collision in multiple classification hierarchies, in S. Gjessing and K. Nygaard (eds)ECOOP
’88 Conference Proceedings(Springer-Verlag, 1988), pp. 93–109.

2. Carré, B. and Geib, J. The point of view notion for multiple inheritance, in N. Meyrowitz (ed.)Joint OOPSLA/
ECOOP ’90 Conference Proceedings(ACM Press, 1990), pp. 312–321.

3. Snyder, A. Inheritance and the development of encapsulated software components, in B. Shriver and P. Wegner
(eds)Research Directions in Object-Oriented Programming(MIT Press, 1987), pp. 165–188.

4. Sakkinen, M. Disciplined inheritance. InECOOP ’89 Conference Proceedings(Springer-Verlag, 1989), pp.
39–56.

5. Bracha, G. and Cook, W. Mixin-based inheritance, in N. Meyrowitz (ed.)Joint OOPSLA/ECOOP ’90
Conference Proceedings(ACM Press, 1990), pp. 303–311.

6. Bracha, G. and Lindstrom, G. Modularity meets inheritance, inProceedings of International Conference on
Computer Languages(IEEE Computer Society, 1992), pp. 282–290. Also available as Tecnical Report
UUCS-91-017.

Solving multiple inheritance name collisions using mixins 29

7. Ellis, M. and Stroustrup, B.The Annotated C++ Reference Manual(Addison-Wesley, 1991).
8. Moon, D.A. Object-oriented programming with Flavors, in N. Meyrowitz (ed.)OOPSLA ’86 Conference

Proceedings(ACM Press, 1986), pp. 1–8.
9. Keene, S.E.Object-Oriented Programming in Common Lisp: a Programmer’s Guide to CLOS(Addison-

Wesley, 1989).
10. Borning, A.H. and Ingalls, D.H. Multiple inheritance in Smalltalk 80,Proceedings at the National Conference

on AI ’82 (1982), pp. 234–237.
11. Meyer, B.Object Oriented Software Construction(Prentice Hall, 1988).
12. Cook, W. and Palsberg, J. A denotational semantics of inheritance and its correctness, in N. Meyrowitz (ed.)

OOPSLA ’89 Conference Proceedings(ACM Press, 1989), pp. 433–444.
13. Hense, A.V. Denotational semantics of an object-oriented programming language with explicit wrappers,

Formal Aspects of Computing, 3, (1992) 1–27.
14. Baker, H.G. CLOStrophobia: Its etiology and treatment,OOPS Messenger, 2(4), (1991) 4–15.
15. Cook, W. A Denotational Semantics of Inheritance, PhD thesis, Department of Computer Science, Brown

University, 1989.
16. Hölzle, U. Integrating independently-developed components in object-oriented languages, in O. Nierstrasz,

ECOOP ’93 Conference Proceedings(Springer-Verlag, 1993), pp. 36–56.
17. Van Limberghen, M. Normalising class components. Technical Report vub-prog-tr-95-05, Vrije Universiteit

Brussel, Department of Computer Science, 1995.
18. Hamer, J., Hosking, J.G. and Mugridge, W.B. Static subclass constraints and dynamic class membership using

classifiers. Technical Report, University of Auckland, Computer Science Department, 1992.
19. Canning, W.R., Cook, W.L., Hill, W.L. and Olthoff, W.G. Interfaces for strongly-typed object-oriented

programming, in N. Meyrowitz (ed.)OOPSLA ’89 Conference Proceedings(ACM Press, 1989), pp. 457–467.
20. Lucas, C., Mens, K. and Steyaert, P. Typing dynamic inheritance. A trade-off between substitutability and

extensibility. Technical Report vub-prog-tr-95-03, Vrije Universiteit Brussel, Department of Computer Science,
1995.

30 Van Limberghen and Mens

	Abstract
	1. Introduction
	2. Multiple inheritance problems
	2.1 Duplication of common ancestors
	2.2 Homonymous attributes
	2.3 Encapsulation of attributes
	3. Current multiple inheritance systems
	4. Disciplined encapsulated mixin-based inheritance
	4.1 History of mixin-based inheritance
	4.2 Extending mixin-based inheritance to cover multiple inheritance
	4.3 Super sends at method level
	4.4 Formal definition of mixins
	4.4.1 Syntax Below, the grammar rules for the syntax of mixins are presented. The definition of objects will be given later.
	4.4.2 Denotational semantics of mixins
	4.4.3 Composition operator
	4.4.4 Encapsulation operator
	4.5 Formal definition of objects
	4.5.1 Syntax
	4.5.2 Denotational semantics of objects
	4.5.3 Instantiation operator
	5. Solution of the multiple inheritance problems
	5.1 Encapsulation of attributes
	5.2 Sharing and duplication of attributes in common ancestors
	5.3 Homonymous attributes
	5.4 Classical class-based versus mixin-based approach
	6. Linearization criticized
	6.1 Rejection of criticisms on linearization
	6.2 Limitation of our model because of linearization
	7. Extensions towards reliability
	7.1 Mixin normalization
	7.2 Mixin classification
	7.3 Typing
	8. Conclusion
	Acknowledgements
	References

