
CHAPTER 8

Protocols in an Open
Hypermedia Framework

Navigation Template: Specifying The
Control Flow

Intent
Provide a high level specification for the control
flow of the hypermedia system to make clear
what parts must be extended to achieve a certain
effect. This specification is independent of
particular information repositories, viewer applications or navigation resolution algorithms.

Analysis
An object-oriented framework is a set of co-operating classes that makes up a reusable
design for a given problem domain. This is in some sense opposed to a software library,
which is a set of routines where the code may be reused in different implementations. It is
widely recognised that object-oriented frameworks aim at design reuse, while software
libraries aim at code reuse.

One of the important differences between software libraries and frameworks is the so-called
Hollywood principle ("don't call us, we'll call you") [Cotter,Potel'95]. This principle is the
basis to understand how an object-oriented framework promotes design reuse and has to do
with the definition of the control flow. With a software library approach, a software engineer
writes code that calls the routines supplied by the library, so it is the software engineer that is

- 138 -

defining the control flow. With the framework approach, a software engineer writes code
that is installed in the framework and the framework calls that code.

The Hollywood principle states that a framework manages the control flow, which implies
that the definition of the control flow is an essential ingredient of a framework's design
specification. So, an important question to answer is how much of the control flow is
incorporated in the design.

So far ([interoperability], [navigation], [resolver], [editor], [loader], [events], [meta-
objects], [meta-meta-objects]), we have established design specifications for domain level,
system level and configuration level tailorability. The emphasis of these design specifications
lay on the definition of the elements constituting the framework structure and the role those
elements play in that structure (i.e. the "Contract" section). As far as control flow concerns,
this is too detailed to be useful. As a result, the control flow of the overall system is unclear,
which makes it hard to understand what part of the system must be extended to achieve a
certain effect.

Note that —according to the Hollywood principle— most of the functionality of the system
is defined in the classes supplied by the software engineer tailoring the framework for a
particular application. To attain a clear specification of the overall control flow, we must
ensure that the specification is independent of particular information repositories, viewer
applications or navigation resolution algorithms.

Problem
According to the Hollywood principle, provide a specification for the control flow of the
hypermedia framework.

Solution
Define an infinite loop, with a body that defines how control is transferred from one object to
another. Incorporate important messages only and leave the detailed protocols are for the
contracts. Base the infinite loop on the navigation operation, which is the heart of any
hypermedia system. Call it navigation template, to emphasise that is a description of a
navigation operation omitting details of the participants involved.

Contract
(See [object interaction diagrams] for a short survey of the main elements in an object
interaction diagram)

Step 1: Selection of origin point

editor

markerinstantiation

activateOn (instantiation)

Path

activateMarkerOn (
 marker, instantiation)

All navigation starts with a selection of the navigation source by the viewer application. This
event is detected in the editor object and initiated by sending the activateOn message to a
marker with an associated instantiation object as parameter. The marker transfers control to
the Path meta-object by means of the activateMarkerOn message.

- 139 -

Step 2: Identification of origin point

Path

markerinstantiation

representationOf (marker)

Session

activateMarkerOn (marker, instantiation)

anchorrepresentationOf (instantiation)

component
activateOn (component)

On receiving the activateMarkerOn message, the Path infers the anchor and component
associated with the given marker and instantiation by sending the representationOf
message to the Session meta-object. Afterwards, the Path transfers control to the anchor
object by means of the activateOn message (with the component as parameter). Note that
this scheme allows to start navigation without presentation layer objects, which is important
for automatic analysis of static hypermedia structures.

Step 3: Start resolution process

Anchor

component

activateAnchorOn (anchor,
 component)

Path

activateOn (component)

HypermediaContext

determineResolverFor
 (anchor, component)

determineResolverFor
 (value, componentClass)

resolver
resolveAnchorComponent
 (anchor, component)

On receiving the activateOn message, the anchor transfers control back to the Path meta-
object by means of the activateAnchorOn message. The Path then identifies the
resolver that is supposed to handle the resolution request by sending the self message
determineResolverFor. As part of this identification process, the Path requests the
HypermediaContext meta-meta-object for the name of an installed and active resolver.
Afterwards, the Path requests the identified resolver for the navigation targets by means of
the resolveAnchorComponent message.

- 140 -

Step 4: Resolution process

component
Specification

resolver
resolveAnchorComponent (anchor, component)

component
PSpec

anchor
Specification

anchor
PSpec

On receiving the resolveAnchorComponent request, the resolver returns a collection of
quadruples to the Path object. Each quadruple in the collection is a specification for one
navigation target.

Step 5: Target identification

Path

HypermediaContext

component

createFrom
 (componentSpec)

Hypertext

component
Spec

anchor
Spec

interpretComponentSpec
 (componentSpec)

determineStorageClassFor
 (componentSpec)

anchor

createFrom
 (anchorSpec)

interpretAnchorSpec
 (anchorSpec)

determineStorageClassFor
 (componentSpec)

On receiving the quadruples specifying the target locations, the Path turns them into objects
representing those locations. For each quadruple, the Path object asks the Hypertext meta-
object to create a component (anchor) by sending the createFrom message. The Hypertext
object interprets that specifier with a self send of interpretComponentSpec
(interpretAnchorSpec), which in turn requests the HypermediaContext object for the
class to instantiate by means of the determineStorageClassFor.

- 141 -

determinePresentationClassFor
 (componentClass, componentPSpec)

Path

HypermediaContext

instantiation

Session

component
PSpec

anchor
PSpec

interpretComponentAndSpec
 (component, componentPSpec)

marker

createFrom (anchor,
 anchorPSpec)

interpretAnchorAndPSpec
 (anchor, anchorPSpec)

component anchor

createFrom (component,
 componentPSpec)

determinePresentationClassFor
 (anchorClass, anchorPSpec)

Having created objects representing target locations, the Path uses the rest of the quadruples
to turn them into presentable objects. For each component (anchor), the Path object asks the
Session meta-object to create an instantiation (marker) by sending the createFrom
message. The Session object interprets that specifier with a self send of
interpretComponentAndPSpec (interpretAnchorAndPSpec), which in turn
requests the HypermediaContext object for the class to instantiate by means of the
determinePresentationClassFor.

Step 6: Target presentation

determineEditorFor
 (instantiationClass)

Path

HypermediaContext

editor

Session

instantiation

marker

determineEditorFor
 (instantiation)

edit () editInstantiation
 (instantiation)

editInstantiation
 (instantiation)

enumerateMarkers ()

higlightOn
 (instantiation)

- 142 -

Having created the target instantiation object, the Path requests to present it by sending the
edit message. On receiving the edit message, the instantiation passes it on to the Session
meta-object. The Session first identifies the editor that is supposed to handle the request by
sending the self message determineEditorFor. As part of this identification process,
the Session requests the HypermediaContext meta-meta-object for the name of an installed
and active editor. Afterwards, the Session transfers control to the identified editor by means
of the editInstantiation message. On returning the Session enumerates all markers
associated with an instantiation (by sending the enumerateMarkers message to the
instantiation object) and highlights them by sending the highlightOn message. Note that
the highlightOn message is processed like the selectOn message.

determineEditorFor
 (markerClass)

Path

HypermediaContext

editor

Session

instantiation
marker

determineEditorFor
 (marker)

selectOn
(instantiation)

selectMarkerOn
 (marker,
 instantiation)

selectMarkerOn
 (marker, instantiation)

Having created the target marker object, the Path requests to select it by sending the
selectOn message. On receiving the selectOn message, the marker passes it on to the
Session meta-object. The Session first identifies the editor that is supposed to handle the
request by sending the self message determineEditorFor. As part of this identification
process, the Session requests the HypermediaContext meta-meta-object for the name of an
installed and active editor. Afterwards, the Session transfers control to the identified editor
by means of the selectMarkerOn message.

Step 7: Back to step 1

After the editor has displayed the instantiation and highlighted the associated markers it goes
in sleeping mode, waiting for an event that activates the following navigation action.

Issues
Singleton Meta-Objects

The navigation template is a specification for the control flow in the Zypher open hypermedia
framework. We see that a large part of the internal communication in the framework is
message passing between the base level objects and meta-level objects. An obvious question
is of course "What about performance" ?

It is clear that extra meta-level communication is an overhead compared to systems without a
meta-level, thus that a meta-level has a bad effect on the performance. One may argue that
this is reasonable: a meta-level is an extra abstraction layer which makes a system more
adaptable but that adaptability comes at a cost. Although this is a valuable argument, it is not
satisfying because it does not show the whole picture.

Reviewing the diagrams in the navigation template, we see that all the meta-level objects are
presented as global objects and that all important messages are funnelled through these global

- 143 -

objects. Software engineers recognise this as a "bottle-neck" pattern and know that bottle-
necks usually have a bad effect on system's performance.

Yet, there is no rule that says that a meta-level object should be one global object. For
instance, if one wants to set-up a system for a distributed environment then it is no use to
have a central meta-object that must be consulted for each important activity in the system.
To reduce network communication, a better approach would be to replicate the meta-level
objects on each client system. In fact, replication is one example that illustrates the value of
having a separate meta-level.

Consider a tele-presence situation, where two people are simultaneously editing a shared
document and want to be aware of the modifications made by the other. Tele-presence can be
achieved by adapting the editor software to pass all open, close and change events to the
other application. Such an adaptation implies that one must change the internal
implementation of the editor software to incorporate the message passing mechanism. If we
review the Zypher design, we see that there is an event-passing mechanism available (see
[events]) and that this event-passing is controlled by the meta-level objects (see [meta-
objects], [meta-meta-objects]). This architecture allows to replicate the meta-level objects
over the two machines and it is feasible to plug in special meta-objects that pass open- and
close-events to all other meta-objects residing on other machines. This way, meta-level
objects can detect other meta-level objects controlling the same document and synchronise
with them by passing change-events. The base level objects remain unchanged, since the
event-passing mechanism is still the same.

We conclude that a meta-level would allow to implement the tele-presence example without
modifying the internal implementation of the editor software. Although we did not perform
the actual experiment, other work has shown that this is feasible approach. CodA
[McAffer'95] has been used to open up the implementation of Smalltalk message passing
and is able to add meta-level infrastructure to Smalltalk objects so that additional behaviour
like concurrency or distribution can be added when necessary. The CodA experiment is
especially important as it shows that a meta-level is "just another application" and that
traditional software design techniques like abstraction and decomposition remain valuable.
Abstract Communication Types [AksitEtAl'93] are objects that abstract interactions among
objects and can be used to model distribution and concurrency. Unlike CodA, the abstract
communication types are intended to be part of the design of a new programming language
(i.e. Sina). Apertos [Yokote,Teraoka,Tokoro'89], [Yokote'92] is object-oriented operating
system for mobile computing, supporting distribution and object migration by means of its
meta-object protocol. SOM, the System Object Model part of IBM's OS/2 operating system
[Forman,Danforth,Madduri'95] includes the notion of meta-classes, which can be used to
wrap additional behaviour (locking, notification) around base level message sends.

Relations
Where To Go Next ?

∇ People that read the Zypher design pattern documentation sequentially came at the end. The
obvious next step is to review the design by following a non-sequential path.

Other Catalogues

The Path, Session and Hypertext meta-objects and the HypermediaContext meta-meta-object
are singletons [GammaEtAl'93]. This allows to implement them as global variables,
accessible from the whole system, yet with a restricted access.

- 144 -

