
1

Agora: Reintroducing Safety in Prototype-based Languages

Wolfgang De Meuter, Tom Mens, Patrick Steyaert
{ wdmeuter@vnet3 | tommens@is1 | prsteyae@vnet3 }.vub.ac.be

Programming Techonology Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium

ABSTRACT. Prototype-based languages are often described as being more
flexible and expressive than class-based languages. This greater flexibility
makes prototype-based languages well-suited for rapid prototyping and
exploratory programming, but comes with a serious loss of safety. Examples of
this are the encapsulation problem and the prototype corruption problem most
prototype-based languages suffer from. These problems preclude prototype-
based languages from being widely used. We propose a prototype-based
language that eliminates these problems and thus reintroduces safety in
prototype-based languages.

1. Introduction

Usually, prototype-based languages allow a wide variety of operations to be performed
on objects. Examples of such operations are message sending, parent assignment, adding a
slot to an object and cloning an object [Ungar&Smith87] [Dony&al.92] [Taivalsaari93].
Such operations are often designed without a general theory behind them. For this reason
Agora [Steyaert&al.93] [Codenie&al.94] was initially conceived as a prototype-based
language kernel based on objects and message sending alone (in the same way as pure
functional languages are based on functions and function application alone). The original
idea was to add other operations later on in an incremental fashion, in order to precisely
determine which object-oriented features behave orthogonal and what kind of semantic
constructions (in the implementation) are needed to support them. However, as the Agora
project evolved, it became clear that besides message sending no additional operations are
needed to obtain a full-fledged object-oriented language.

We will argue that this simple message sending paradigm results in a lucid prototype-
based programming language that is much safer than other prototype-based languages. It
features a combination of controlled inheritance, controlled cloning and controlled
reflective capabilities without neglecting the achievements of other prototype-based
languages (such as dynamic object extension). It is the way these features are controlled by
the language that makes Agora safe. We claim that this safety is an important prerequisite
for prototype-based languages to become a viable alternative for the widely used class-
based languages.

2. Agora Language Definition

2.1 Agora = Objects + Messages

In Agora, user defined objects can be created by simply putting a sequence of valid
message expressions between a pair of brackets. The semantics of such an “ex nihilo
created object” is to create a new object and to evaluate each of its message expressions in
the context of that new object.

Agora features two kinds of messages expressions: ordinary messages and reifier
messages. The evaluation strategy for ordinary messages is to send the message to the
evaluated receiver with the evaluated arguments. This is much like function application in
an applicative order functional language like Scheme. Reifier messages on the other hand
can be seen as messages whose receiver and arguments are not necessarily evaluated. They
thus correspond to the notion of reifier functions in 3-Lisp [Smith82] or special forms in
Scheme. In the same way as special forms are ‘special functions’ that are intercepted by the
Scheme interpreter, reifier messages can be seen as ‘special messages’ that are intercepted

2

by the Agora interpreter. The Agora interpreter recognizes reifier messages by their
boldfaced appearance.

An example of a reifier message is the variable: message, which should be sent to an
identifier and whose argument can be any valid Agora expression. The currently chosen
implementation of the variable: message will evaluate its argument and will declare its
receiving identifier in the 'current' object. This idea is illustrated in the following code
fragment that defines an ex-nihilo created object containing a single instance variable x with
initial value 10.

[x variable: 10]

If we would employ the evaluation strategy for ordinary messages here, a
“variable x not declared” error would occur.

Like special forms make up the concrete syntax of Scheme, reifier messages define the
particular flavour of Agora. The following section describes a subset of the currently
implemented reifiers. An elaborate description can be found in the Agora user manual
[DeMeuter96].

2.2 Some reifier messages

Methods can be declared in Agora by sending the method: reifier to a pattern. The
argument of the method: reifier should be a valid Agora expression constituting the body
of the method. Methods can be defined functional or imperative depending on
whether or not they return a result. This corresponds to the difference between functions
and procedures in Algol like languages.

Like Self [Ungar&Smith87], Agora is a slot-based language, meaning that its variables
are accessed through read and write accessor slots. Hence, a variable x defines a couple of
method slots x and x: to read, respectively write the variable. As indicated above, variables
are declared using the variable: reifier.

Inheritance is achieved by yet another kind of methods called mixin methods
[Steyaert&al.93]. Upon invocation, mixin-methods extend the receiving object with the
contents of their method body. When a mixin-method is declared functional, it returns a
new object whose parent object is the receiver of the mixin-method. Functional mixin-
methods can thus be used to create different views on objects. The usual inheritance rules
govern the relation between the parent and each view. When a mixin-method is declared
imperative, the receiving object and all its descendants will be destructively changed with
the contents of the mixin-method. This can for example be used to turn an entire hierarchy
of black and white graphical objects into a coloured hierarchy in one stroke.

Cloning is accomplished through cloning methods. These are methods whose body is
executed in a shallow clone of the receiver. By definition, cloning methods are always
functional, and their result is the clone of the receiver in which they were executed. The
body of the cloning method can contain initialisation code.

Every method slot can be declared either public or local. Public slots are visible to
everyone while local slots are only visible to the object itself.

All these features have been used in the bank account example below. While everyone
can deposit money on an account, a client can only withdraw money from the account if
she provides the correct user password. On request of a client, a clerk can create new bank
accounts (by invoking a local cloning method). Unauthorised access by clients is prohibited
by requiring a clerk password. Clerks can also extend existing accounts with phone banking
functionality. This is achieved by invoking a local imperative mixin method.

3

[
account local variable:
 [clerk local variable: "ClerkPwd";
 user local variable: "UserPwd";
 amount local variable: 5000;
 deposit:val public imperative method:
 [amount:amount+val];
 withdraw:val userPwd:pwd public imperative method:
 [(pwd=user) ifTrue: amount:amount-val];
 newAccount:initval userPwd:upwd clerkPwd:cpwd public functional method:
 [makeClone local cloning:
 [user: upwd;
 amount: initval
];
 (cpwd=clerk) ifTrue: makeClone return
];
 phoneBanking:cpwd numericCode:num public imperative method:
 [makePhoneAccount local imperative mixin:
 [code local variable: num;
 remoteWithdraw:val numericPwd:npwd public imperative method:
 [(npwd=code) ifTrue: amount:amount-val]
];
 (cpwd=clerk) ifTrue: makePhoneAccount
]
];

account deposit:1000;

"Change the account into a phone banking account with numeric code 2341" comment;
account phoneBanking:"ClerkPwd" numericCode:"2341";
account remoteWithdraw:500 numericPwd:"2341";

"Clone the account with initial amount 10000 and password NewUser" comment;
account2 variable: account newAccount:10000 userPwd:"NewUser" clerkPwd:"ClerkPwd";
account withdraw:2000 userPwd:"UserPwd"
]

3. Reintroducing safety in prototype-based languages

Agora objects can only be extended by sending them a message that invokes a mixin-
method. This kind of inheritance was baptised encapsulated inheritance on objects because
the potential extensions of an object are encapsulated within that object1. Encapsulated
inheritance on objects solves the encapsulation problem that is inherent to all prototype-
based languages featuring dynamic object extension [Steyaert&DeMeuter95]
[Dony&al.92]. Indeed, due to dynamic object extension it is easy to breach object
encapsulation, since objects can always be inherited from and inheritance is (due to late
binding of self) by definition an encapsulation breaching mechanism [Snyder87].

Like object extension, cloning is accomplished by message sending, making it impossible
to clone an object ‘from the outside’. The object itself decides how it can be cloned by
implementing the necessary cloning methods. For this reason we speak of encapsulated
cloning. Encapsulated cloning allows to avoid the so called prototype-corruption problem
[Blaschek94], which arises when users of prototypes accidentally change the internal state
of a prototype instead of a clone of the prototype. One possible solution is to preclude
prototypes from being changed. This is exactly what happens in class-based languages,
where a distinction is made between unchangeable entities (classes) and changeable entities
(objects). The alternative solution to the prototype corruption problem is to control the way
copies of prototypes are created, and this is precisely what cloning methods do.

As will be discussed below, both mixin-methods and cloning methods are consequences
of the very secure Agora meta object protocol.

1The theoretical difference between encapsulated inheritance on objects and other inheritance mechanisms
is discussed in [Steyaert&DeMeuter95] and [Mens&al.96].

4

4. The Agora Meta Object Protocol

Agora is a reflective language which means that it is possible to influence the
implementation of Agora from within Agora. New reifiers can thus be implemented in
Agora itself. Agora’s reflective architecture (described in [Steyaert94]) is based upon a
linguistic symbiosis mechanism between Agora and its object-oriented implementation
language, which means that Agora objects and implementation level objects can be freely
intermixed. Thanks to this symbiosis, the implementation structures of the interpreter can
be adapted or replaced by structures written in Agora itself.

The implementation level representation of an Agora object is called its meta object. The
set of messages understood by meta objects is called the meta object protocol (MOP). The
Agora MOP consists solely of a send message. This reflects the fact that Agora objects only
understand messages. The following code fragment shows what the MOP looks like in a
C++-like language:

class Object
{ private:

...
 public:

Object send(Message m, ListOfObjects args);
};

When writing meta programs (i.e. Agora code that explicitly deals with meta objects), the
implementation level objects that become visible in Agora always satisfy the above protocol.
Thus, it is impossible to bypass the message sending paradigm by ‘going meta’. The only
meta operation applicable to objects is message sending2.

The inheritance and cloning mechanisms of Agora are direct consequences of this simple
MOP: every Agora object knows itself unencapsulated (the private information in the above
code fragment) but can only be accessed by the ‘send’ operation. Once a message arrives
in an object, the object knows about its internal structures and can use these structures to
deliver a clone or an extension of itself.

5. Conclusion and Future Work

The Agora approach differs fundamentally from other prototype-based languages, where
any object can be cloned or extended by any client through explicit cloning and extension
operators. In Agora the responsibility of extending or cloning an object is a contract
between the object under consideration and the client requesting the extension or clone.

The very simple meta object protocol lying at the heart of the Agora philosophy only
contains a message sending operation. This gives rise to very controlled extension, cloning
and reflection mechanisms. The degree to which these operations are controlled by Agora
determines the safety of Agora programs. A programmer is precluded from making
accidental extensions, and although prototypes can be changed, the prototype corruption
problem can easily be avoided using cloning methods. Furthermore, the safety barriers
cannot be broken by using the reflective facilities of Agora. It is our strongest belief that
this kind of safety is a necessary condition for prototype-based programming languages to
become ready for the prime time.

An essential ingredient of safe programming languages is static typing. A static type
system for dynamic extensions is being designed at our lab [Lucas&al.95], and remains to
be fit into Agora. Another important field of future study is to find out how Agora (and
prototype-based languages in general) handles the current shift in emphasis from ‘plain
object-oriented programming’ to more abstract software engineering notions like
frameworks, design reuse and contracts. In this context we plan to incorporate the work of
[Steyaert&al.96] in Agora. The design reuse formalism that is introduced by this work
continues the "safety philosophy" that is akin to Agora.

2This is very similar to functional languages whose only meta operation is ‘apply’.

5

References
[Blaschek94] Blaschek, G. - 1994. Object-Oriented Programming with Prototypes;
Springer-Verlag.

[Codenie&al.94] Codenie, W.; De Hondt, K.; D’Hondt, T. & Steyaert, P. - 1994. Agora:
Message Passing as a Foundation for Exploring OO Language Concepts; SIGPLAN
Notices, Volume 29, Number 12, December 1994, pp. 48-58, ACM Press.

[DeMeuter96] De Meuter, W. - 1996. Agora 96 User Manual; Programming Technology
Lab, Vrije Universiteit Brussel.

[Dony&al.92] Dony, C.; Malenfant, J. & Cointe, P. - 1992. Prototype-Based Languages:
From a New Taxonomy to Constructive Proposals and Their Validation; OOPSLA ‘92
Proceedings, pp. 201-217, ACM Press.

[Lucas&al.95] Lucas, C.; Mens, K. & Steyaert, P. - 1995. Typing Dynamic Inheritance: A
Trade-off between Substitutability and Extensibility; Technical Report vub-prog-tr-95-03,
Vrije Universiteit Brussel.

[Mens&al.96] Mens, K.; De Volder, K. & Mens, T. - 1996. A Layered Calculus for
Encapsulated Object Modification; Submitted to Foundations of Object-Oriented
Languages Workshop 3.

[Smith82] Smith, B. C. - 1982. Procedural Reflection in Programming Languages; PhD
thesis, MIT.

[Snyder87] Snyder, A. - 1987. Inheritance and the Development of Encapsulated Software
Components; Research Directions in Object-Oriented Programming; pp. 165-188, MIT
Press.

[Steyaert94] Steyaert, P. - 1994. Open Design of Object-Oriented Languages, A
Foundation for Specialisable Reflective Language Frameworks; PhD thesis, Vrije
Universiteit Brussel.

[Steyaert&al.93] Steyaert, P.; Codenie, W.; D’Hondt, T.; De Hondt, K.; Lucas, C. & Van
Limberghen, M. - 1993. Nested Mixin-Methods in Agora; ECOOP ‘93 Proceedings, LNCS
707, pp. 197-219, Springer-Verlag.

[Steyaert&al.96] Steyaert, P.; Lucas, C.; Mens, K. & D’Hondt, T. - 1996. Reuse Contracts:
Managing the Evolution of Reusable Assets; To appear in OOPSLA ‘96 Proceedings, ACM
Press.

[Steyaert&DeMeuter95] Steyaert, P. & De Meuter, W. - 1995. A Marriage of Class- and
Object-Based Inheritance Without Unwanted Children; ECOOP ‘95 Proceedings, LNCS
952, pp. 127-144, Springer-Verlag.

[Taivalsaari93] Taivalsaari, A. - 1993. A Critical View of Inheritance and Reusability in
Object-oriented Programming; PhD thesis, University of Jyväskylä.

[Ungar&Smith87] Ungar, D. & Smith, R. B. - 1987. Self: The Power of Simplicity;
OOPSLA ‘87 Proceedings, pp. 227-242, ACM Sigplan Notices, Vol. 22, No. 12, ACM
Press.

