
Vrije Universiteit Brussel
Faculteit Wetenschappen

SREVINU

ITEIT

EJI
R

V
BRUS

S
E

L

ECNIV
RE T EN

E
B

R
A

S

AI

T
N

EI
C

S

Managing Software Evolution
through Reuse Contracts

Carine Lucas, Patrick Steyaert, Kim Mens

Techreport vub-prog-tr-97-01

Programming Technology Lab
PROG(WE)

VUB
Pleinlaan 2

1050 Brussel
BELGIUM

Fax: (+32) 2-629-3525
Tel: (+32) 2-629-3308

Anon. FTP: progftp.vub.ac.be
WWW: progwww.vub.ac.be

Abstract

1. Introduction

Managing Software Evolution through Reuse Contracts

Carine Lucas, Patrick Steyaert, Kim Mens
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium

http://progwww.vub.ac.be/
clucas@vnet3.vub.ac.be, prsteyae@vnet3.vub.ac.be, kimmens@is1.vub.ac.be

Assessing the impact of changes in one part of a soft-
ware system on other parts remains one of the most com-
pelling problems in software maintenance. This problem
can be relieved by making implicit dependencies between
different system parts explicit. We propose to explicitly doc-
ument the interaction between the different system parts by
means of reuse contracts, that can only be manipulated by
formal reuse operators. Reuse contracts and their opera-
tors facilitate managing the evolution of a software system
by indicating how much work is needed to update the sys-
tem, by pointing out when and which problems might occur
and where and how to test and adjust the system.

which
how

reuse contracts

reuse operators

can
is

Minimisation of dependencies between different parts of
a software system is by far the most successful software en-
gineering principle to cope with change and evolution. This
principle is the foundation of, amongst others, encapsula-
tion, modularity, high cohesion and loose coupling. It en-
ables reasoning about different system parts separately as
well as making changes to certain parts of a system with-
out interfering with the other parts. Details unimportant to
other system parts are hidden behind interfaces. As these
other parts only rely on the information they get from these
interfaces, they are not affected when the structures and im-
plementations behind the interfaces are changed.

While the continuous elaboration on this principle ac-
counts for much of the progress that has been made in soft-
ware engineering, it can only take us so far. At a certain
point in the evolution of a software system, changes occur
that cannot be kept local to one system part and thus inter-
faces do have to be changed as well.

Assessing the impact of such non-local changes remains
one of the most compelling problems in the development

of software. This can only be dealt with by a careful doc-
umentation of dependencies between different system parts.
Such a documentation must not only include parts de-
pend on what other parts, but more importantly they de-
pend on each other. The former gives an indication on where
problems might arise upon change; the latter provides us in-
formation on what the problem is (and thus on how it can be
solved). The lack of this kind of documentation is a major
impediment to the management of evolving software sys-
tems with current methodologies.

We have studied how changes to reusable assets propa-
gate in the systems built on them. We propose to document
the interaction between designers and users of reusable as-
sets by means of . These provide the ade-
quate interface for possible reusers of an asset. Moreover,
reuse contracts can only be adapted through a fixed set of
formal : extension, refinement and concreti-
sation and their inverse operators: cancellation, coarsening
and abstraction. Reuse contracts thus not only document
how an asset be reused, but also how and why the asset

actually reused by others. When a system evolves, this
information allows forecasting where and how the system
should be tested, which problems might occur and how the
system should be adjusted. Reuse contracts thus facilitate
managing the evolution of a software system.

This paper briefly discusses the most important features
of reuse contracts on class hierarchies (section 2) and multi-
class components (section 3). Currently, reuse contracts for
state transition diagrams, black-box components and analy-
sis models are also under development and early results en-
dorse our claim that this approach is applicable to other and
more general reuse mechanisms. In general, the develop-
ment of reuse contracts for a certain domain involves a num-
ber of steps. First, it is decided what kind of documentation
should be included in the reuse contracts and an intuitive no-
tation is defined for it. Generally, we annotate the notations
from known methods (e.g., OMT, UML, Booch) with ex-
tra information. Second, the reuse operators for these reuse

conc
 add {}
 addAll {add}

Set

conc
 add {}
 addAll {add}

Set

conc
 count {}
 add {count}

CountableSet

conc
 add {}
 addAll {}

OptimisedSet

refinement
 + count
 add {+count}

coarsening
 addAll {-add}

evolution of
parent class

LEGEND:

2. Managing Evolving Class Hierarchies

Figure 1. The Set reuse contract

Figure 2. Inconsistent Methods

Concretisation

extension
refinement

assumptions
intentions

explicitSet add
addAll

CountableSet Set

addAll
add

add

Set

OptimisedSet Set addAll

add
CountableSet Set

OptimisedSet
CountableSet

addAll add OptimisedSet
addAll add

CountableSet
Set addAll Add

CountableSet Set

CountableSet OptimisedSet
Set

Set

OptimisedSet
Set Set

CountableSet
Set

contracts are defined, and third rules — based on reuse con-
tracts and their operators — are developed that can detect
conflicts when software evolves.

The use of abstract classes with inheritance as reuse me-
chanism is undoubtedly the best-known technique available
today for structuring and adapting object-oriented software.
Therefore, we first focus on the problem of evolving class
hierarchies as a tangible case to investigate the concept of
reuse contracts. In that context, reuse contracts and their op-
erators describe the protocol between managers and users
of (abstract) classes. Reuse contracts of abstract classes
provide an explicit representation of the important design
decisions behind an abstract class, including information
such as: which methods can be sent to the class, which
methods should be invoked by what other methods, which
methods are abstract or concrete, ... Only information rel-
evant to the design is included. For example, auxiliary or
implementation-specific methods are purposefully omitted
from the reuse contract.

Consider the example of a Collection hierarchy. A class
defines a method to add one element to a set

and a method to add a set of elements simultane-
ously. When creating a subclass of
that keeps a count of the number of elements in the set, we
need information on which methods depend on what other
methods, in order to decide which methods need to be over-
ridden. For example, if we know that depends on

in its implementation, it is sufficient to override the
method to perform the counting. Reuse contracts for
classes document exactly such dependencies. In such reuse
contracts each method has a specialisation clause (between
curly braces in the example below) that documents on which
other methods from this reuse contract a method depends (as
in Lampings specialisation interfaces [2]). The reuse con-
tract is an interface description to which the implementation
must comply. It provides information that is typically not
included in other methodologies. Figure 1 shows the reuse
contract for .

Reuse contracts can only be manipulated by means of
reuse operators. makes abstract methods

concrete, adds new methods to a reuse con-
tract and refines the design of some methods by
adding extra methods to their specialisation clause. These
reuse operators not only allow documenting the changes
made to a class, but a careful investigation of their in-
teractions also allows to predict and manage the effect of
these changes. Suppose we want to make an optimised ver-
sion of . In this version
stores the added elements directly rather than invoking
the method to do this. This leads to inconsistent
behaviour in when is replaced by

. Not all additions will be counted, be-
cause the implicit assumption made by ,
that invokes , is broken in .
Using the terminology of [1] we say that and
have become inconsistent. Although in this simple exam-
ple the conflict can easily be derived from the code, in larger
examples this is not so trivial. In practice it should be possi-
ble to detect such conflicts without code inspection. Reuse
contracts and their operators provide the necessary infor-
mation by making the (as-
sumes that in relies on) and
(intends to make a refinement of)
made by adapters . In the example below, the reuse
contracts of and docu-
ment how they were derived from , and thus what as-
sumptions about they rely on.

is a coarsening (the inverse of a refine-
ment) of , which means that it partially breaches ’s
design. This is done by removing a method from one of its
specialisation clauses. is a refinement of

, as it adds a new method and refines one of the existing
methods’ design, by extending its specialisation clause with
this new method.

We have made an extensive study of possible conflicts
when making changes to parent classes and created a set of
rules that allow automatic detection of conflicts based on

abs output
conc send
 accept
 isDestFor

node
accept{handle}

handle {output, send,
 isDestFor }

conc
 handle

packet

Figure 3. The Packet Handling contract

3. Managing Evolution of Collaborating
Classes

4. Features of the Formal Model

accept
handle

isDestinationFor

output
send

output handle

output
output

isDestinationFor

Gateway

VisitorPacket

VisitorPacket handle
send

handle VisitorPacket
output
PacketHandling

VisitorPacket Gateway
Gateway

output

VisitorPacket VisitorPacket
Gateway

the interaction of reuse operators (see also section 4). For
a complete discussion we refer to [3]. As an example, one
rule says that inconsistent methods occur when a method,
that was modified by the inheritor, is removed from the spe-
cialisation clause of the exchanged parent by a coarsening.

A first elaboration on reuse contracts for class hierarchies
is the extension of reuse contracts to include information on
interclass interactions. To be able to reuse larger compo-
nents composed of more than one class, information is also
needed on which methods rely on which other methods from
the acquainted classes.

Consider the example of a software simulation of a local
area network (LAN). The LAN exists out of a series of con-
nected nodes, that pass packets to each other. The general
behaviour of passing the packets and handling them is de-
scribed by the PacketHandling reuse contract as depicted in
figure 3.

This contract describes that when a node receives a new
packet through the message it sends the message

to the packet. This is depicted by the arrow along
the binding between node and packet. These arrows repre-
sent an extension of the specialisation clauses from above,
that not only show which methods are sent to self, but also
which are sent to other participants. The reaction of the
packet is to send the message back
to the node, to check whether this node is the destination (or
one of the destinations) of this particular packet. If it is, it
sends the message to the node to perform some ac-
tion with the packet, if not it sends the message that
will pass the packet on to the next node. This reuse con-
tract describes the general behaviour of the LAN. Different
kinds of nodes and packets can then be created that comply
to this contract and perform a particular behaviour by giving
a particular implementation to or . For
example, special kinds of nodes could be printservers, where

prints the contents of the packet, and fileservers,
where saves the contents of the packet. Special
kinds of packets could be broadcastpackets, that are to be

handled by every node. In other words, these reuse con-
tracts describe how different parts of a system, here nodes
and packets, can work together. They thus document the
design of the PacketHandling mini-framework. Moreover,
they can be used to check that this design is adhered to.

Consider introducing gateways, as a new kind
of node. When a gateway receives the message

from a packet, it will check
the domain name. When this name is correct it will return
yes and receive the message output, which sends the packet
through to the particular domain. thus complies
to the PacketHandling reuse contract. This implies that
Gateway can be used in combination with all kinds of
packets as long as these comply in their turn to the contract.
Consider, for example, introducing a .
Such a packet has to be passed to all the nodes in the LAN
to perform a particular behaviour. It could, for example,
count the number of printers in the network. To achieve
this re-implements , so that
it always sends the message to node to be passed
through. As on no longer
has in its specialisation clause it does not comply
to . This is exactly what we would
want to detect, as using and
together would cause a problem. uses the
method to send a packet through to the right
subnetwork. As it will never receive this message from

, a would never get
passed the .

So, on the one hand, a better documentation already as-
sists in managing evolution, by enabling to detect whether
newly added comoponents will work together correctly with
the framework. On the other hand, again the reuse operators
concretisation, extension and refinement and their inverses
can be defined to describe how the different kinds of reuse
contracts are derived from each other. Instead of just de-
scribing what happens to methods and their (now extended)
specialisation clauses, the operators will now also consider
the addition of new acquaintances etc. These operators can
then again be used to discover conflicts upon change.

In the previous sections reuse contracts, with their op-
erators and associated rules for conflict detection were in-
formally discussed. Although space limitations prohibit a
complete technical discussion of the methodology and for-
mal model of reuse contracts, some important features of the
general model are summarised and motivated here.

In general, reuse contracts provide an explicit descrip-
tion of the important design aspects of some reusable as-
set. A remark must be made about the kind of informa-
tion that reuse contracts provide. The specialisation clauses

5. Conclusion

References

Proceedings of OOPSLA ’92,
Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications

Proceed-
ings of OOPSLA ’93, Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications

Proceed-
ings of OOPSLA ’96, Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications

[1] G. Kiczales and J. Lamping. Issues in the design and spec-
ification of class libraries. In

, pages 435–451. ACM Press, 1992.
[2] J. Lamping. Typing the specialisation interface. In

, pages 201–
215. ACM Press, 1993.

[3] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse con-
tracts: Managing the evolution of reusable assets. In

, pages 268–
285. ACM Press, 1996.

discussed above describe method dependencies purely by
name. This could be extended by including type information
or by including semantic information, that specifies, for ex-
ample, the order in which methods should be invoked. The
art is in finding the right balance between descriptions that
are easily understood and expressed, and descriptions that
capture enough of the semantics of the system part it de-
scribes. Understandability and simplicity of reuse contracts
is important for asset reusers, and makes the development
of automated support tools for reuse contracts feasible. On
the other hand, reuse contracts should be detailed enough to
be able to detect the most important conflicts when assets
evolve. For example, the same (and more) conflicts could
be detected using pre- and post-conditions, but the required
conditions often tend to be so low-level and technical, that
their intuitive meaning is either lost or hidden behind the
details. With reuse contracts we try to explore the bound-
aries of how far we can get in detecting behavioural prob-
lems by considering only structural information. For exam-
ple, although reuse contracts for abstract classes essentially
provide information only on the calling structure, a number
of important behavioural conflicts when changing a parent
class can be detected

Reuse contracts can only be manipulated through a small
number of elementary reuse operators. Each reuse operator
corresponds to changing a particular aspect of the contract.
A detailed study of the interactions between the elementary
reuse operators provides a categorisation of possible con-
flicts that can occur when a reuse contract is changed. Based
on this categorisation, formal rules can be defined to auto-
matically detect conflicts when a reuse contract is adapted.
An informal example of such a rule was given at the end of
section 2. A prototype version of a detection tool based on
such rules has been implemented in PROLOG.

For assets that have not been documented by means
of reuse contracts, tools can be constructed that semi-
automatically extract this information from the assets. The
programmer only has to delete the implementation-specific
parts of the extracted documentation, as reuse contracts
should include only information relevant to the design.
Once the different reuse contracts have been extracted, the
tool can easily compute how the reuse contracts are re-
lated to one another by means of elementary reuse operators.
A prototype implementation of such a tool for Smalltalk
classes has been implemented. Similar to the extractor, tools
can be conceived that assist in the synchronisation of reuse
contracts and their corresponding implementations

Because the elementary operators are too low level, more
intuitive reuse operators — which are a combination of more
elementary operators — are needed. An operation on ab-
stract classes that is often needed is making a method ab-
straction: i.e. when a method m makes a call to a method n,
the call to m can be replaced by a call to a newly introduced

auxiliary method, which in turn calls n. This intuitive oper-
ator can be defined as a combination of the elementary op-
erators extension (introducing the auxiliary method), refine-
ment (adding a call to the auxiliary method) and coarsening
(removing the original call from m to n).

Conflict detection of the intuitive reuse operators — or in
general, on more complex adaptations, described by multi-
ple operators — can then be defined in terms of conflict de-
tection of elementary reuse operators. However, not every
conflict at the lower level is actually a conflict at the more
intuitive level. It is possible that some conflicts cancel each
other. To see this, the intuition of the considered operator
needs to be taken into account. For example, a method ab-
straction is defined in terms of a coarsening, and a coarsen-
ing might introduce an inconsistent method conflict (as ex-
plained at the end of section 2). However, we know that this
is not really a conflict, because the coarsened method is still
called indirectly by the newly introduced auxiliary method.
It is possible to define extra rules such that this kind of in-
formation is also taken into account.

Current methodological and tool support for managing
the evolution of large, long-lived software systems, focuses
mainly on minimising dependencies between system parts.
However, the question what happens when existing depen-
dencies are changed at some point during the evolution pro-
cess is largely neglected. Documenting these dependencies
by means of reuse contracts and reuse operators allows us
to signal such changes and to assess their impact. More-
over, reuse contracts have a broader scope than managing
change in evolving systems: they shed light on the architec-
ture of a system, can be used as structured documentation
and can generally assist software engineers in adapting sys-
tems to particular requirements. When adopted, reuse con-
tracts may significantly enhance the way in which software
is being built and managed.

